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Deducing special relativity from Newtonian physics.

The motivation and intended audience
It is widely understood that Newton's laws are a local approximation to general 
relativity.  It is less widely understood that, as this paper and a later paper show, 
general relativity follows from a reliance on Newton's laws.

I have two audiences in mind.  I hope it will help those who, like me, left school 
decades ago but still like to understand today's physics and are dissatisfied with 
inexact analogies.  The second target audience are those academic physicists who do 
not realise how readily relativity follows from Newton's laws:  I want to be able to 
reference this argument in later papers rather than having to remake it.  

I find1 that in 1908 Minkowski made effectively the same observation as I am making 
here.  However, he used language that may not easily be understood by non-
mathematicians, and anyhow I find that Minkowski's observations have been largely 
forgotten, so I think this paper still useful. 

Background
The key to this paper is understanding what we mean when we say something 
happens 'at the same time' in two separate places: what exactly does it mean to say 
distributed clocks are synchronised?  There are in fact several different possible 
meanings to 'at the same time', depending on the context.  People may have a gut 
feeling that the meaning in context is obvious if a little hard to put into words, but that
gut feeling can be misleading.

Newtonian laws are symmetrical, so they require that time is unbiased.  It's easiest to 
understand what this means by thinking about a definition of time that is strongly 
biased.  If you fly from London to New York, it takes roughly 3 hours by local time, 
but the return journey will take roughly 12 hours.  The difference is largely accounted 
for by the bias inherent in local time.  We can use symmetry to synchronise two 
clocks, or to test if two clocks are synchronised.  All other things being equal, it 
should take as long to send a message between the clocks in either direction.2

At first sight this looks unhelpful.   Movement that is symmetrical about a point which
is stationary is not symmetrical about the same point if it is moving, nor is it 
symmetrical about some other point some distance away.  So the symmetry of 
Newton's laws do not help us decide if two people in relative motion will attach the 
same meaning to 'at the same time'.  It turns out they don't, and in showing that I shall 
derive special relativity.  Similarly Newton's laws do not help us decide if two people 
who are widely separated in time or space will attach the same meaning to 'at the 
same time'.  General relativity explains why they might not, and will be covered in a 
later paper.

Newton assumed that time was kept by God's clock, implying everyone everywhere 
would attach the same meaning to “at the same time”.  The assumption was 
understandable, but wrong and anyhow was unnecessary.

1From https://www.mathpages.com/rr/s1-07/1-07.htm
2In practice, 'all other things' are never exactly equal, leading to experimental error.  In
this paper I am conducting a thought experiment, and the only error possible is a logic
error.
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Part 1: The derivation of special relativity
I want to describe an area of deep space, sufficiently remote from any galaxy for 
gravity to be negligible.  In order to describe what happens in the space I need a 
system that allows us to say when and where anything happens.  I make a number of 
arbitrary choices.  I choose a reference point as origin, and then choose 3 arbitrary 
directions that will allow me to say when and where  something is relative to that 
reference point.  For example, if at time t something is distance x in front, y to the 
right, and z above our reference point, I will say it is at address {t,x,y,z}.   I assume 
the space is Euclidean.3  Initially the reference point is at {0,0,0,0}, and after time t it 
is at {t,0,0,0}.  Given this reference system we can apply Newton’s laws of motion to 
the contents of space.4

I need a second reference frame against which to compare the first.  I choose the same
reference point but face in the opposite direction.  At first I will choose that each 
reference frame be stationary with respect to the other, so if the address of a point is 
{t,x,y,z) in one reference frame, it is {t,-x,-y,z} in the other.5  

Now consider what happens when one reference frame is moving with respect to the 
other.  To keep things simple, I will always make the reference frames move along the
same axis and in the same direction, so that when the relative speed is v, then the 
address within one reference frame of the origin of the other reference frame will be 
{t,vt,0,0}.  

I want to see how we convert from one reference frame to another, and we shall use 
Mv to represent the algorithm that achieves that conversion.   For example, I showed 
above what the conversion would be when the reference frames were stationary with 
respect to each other, meaning that v=0, so we  know that M0{t,x,y,z}={t,-x,-y,z}.

Traditionally it was assumed that Mv{t,x,y,z} should be {t,-x+vt,-y,z}, but that 
contains an assumption that ‘simultaneous’ means the same to both laboratories.  We 
do not make that assumption if we take:

Mv{t,x,y,z} = {av(t-bvx),cv(-x+vt),-y,z}.   6

This contains three unknown quantities, av, bv, and cv which we need to evaluate.   If 
we find that av=cv=1 and bv=0, then we shall know that Newtonian time is the same 
for everyone after all.  In any case we know that when v is small, both av and cv must 
be very close to 1, and bv very close to 0.

Showing that av=cv.
If we translate an address from one reference system to the other and then translate 
back, we should end up with the same address as we started with.  So let us try that:

MvMv{t,x,y,z} = Mv{av(t-bvx),cv(-x+vt),-y,z}
={av

2(t-bvx)-avbvcv(-x+vt),-cv
2(-x+vt)+cvvav(t-bvx),y,z}

3 This is indeed an assumption: it is not always absolutely true, which is why special 
relativity cannot be applied over very large distances.
4 Implying that the reference point is inertial, the reference frame is not rotating, and 
that time runs at the same rate everywhere (space/time is flat). 
5 The ‘in front’ measure and the ‘to the right’ measure have changed signs because we
are facing in the opposite direction, and because we (must have) faced in the opposite 
direction by turning so that ‘above’ remains ‘above’.  In other words, we turned just 
as you would expect to turn. 
6 This definition of Mv follows from an assumption that Mv is linear, meaning that 
Mv{t1+t2,x1+x2,y1+y2,z1+z2}=Mv{t1,x1,y1,z1}+Mv{t2,x2,y2,z2}, and that in turn follows 
from the assumptions listed above, plus the symmetry of Newtonian laws. 
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={av(av-bvcvv)t+avbv(-av+cv)x,cv(cv-vavbv)x+cvv(-cv+av)t,y,z}
Comparing that address with {t,x,y,z} we get:

x=cv(cv-vavbv)x+cvv(-cv+av)t
From this,  cv(cv-vavbv)=1  and   cvv(-cv+av)=0
From the first of these, cv≠0, so from the second, cv=av, and hence from the first again,
av

2(1-vbv)=1.

I will use av
2(1-vbv)=1 later.  I will use cv=av now to rewrite the definition of Mv thus:

Mv{t,x,y,z} = {av(t-bvx),av(-x+vt),-y,z}.

Showing that bv/v is constant
I shall now to work with several reference frames in order to look at what happens as 
we change the relative speed of the two frames.  M0 turns the frame round without 
changing the speed, so if u and v are both positive, MuM0Mv is equivalent to Mw 
where w is some speed greater than either u or v.  You might instinctively expect that 
w=u+v, but let us check that.

Mw{t,x,y,z}=MuM0Mv{t,x,y,z}
= MuM0{av(t-bvx),av(-x+vt),-y,z}
= Mu{av(t-bvx),-av(-x+vt),y,z}
={auav(t-bvx)+aubuav(-x+vt),auav(-x+vt)+auuav(t-bvx),-y,z}
={auav[(1+buv)t-(bv+bu)x],-auav[(1+ubv)x-(v+u)t],-y,z}

Compare this address with 
Mw{t,x,y,z}={aw(t-bwx),aw(-x+wt),-y,z}
and note that auav(1+buv)=aw and auav(1+ubv)=aw and auav(v+u)=aww.

From the second and third of these equations, notice that (v+u)=(1+ubv)w, so w is 
only equal to u+v if u or bv is zero.

From the first two equations notice that buv=ubv, so bv/v is the same as bu/u, and is 
therefore a constant.   Setting k=bv/v we can rewrite  Mv as:

Mv{t,x,y,z}={av(t-kvx),av(-x+vt),-y,z}, 

We can also rewrite the relation between u, v, and w as (v+u)=(1+uvk)w, and 
remembering that av

2(1-vbv)=1, we can now say av
2=1/(1-v2k).  

k has dimensions of time2/distance2.  We don’t know how big k is, but we do know 
that if k>0 then 1/√k is the highest speed to which we can accelerate anything that is 
affected by time, since above that speed we can no longer calculate the value of av 
from the equation av

2=1/(1-v2k).

An experiment to determine the value of k
We now (at last) have something that we can hope to measure by experiment.   If we 
accelerate something to a high speed, does there come a point at which it is 
impossible to make it go faster?  When Einstein first proposed the theory of relativity, 
the technology did not exist to perform this experiment, but it has been performed 
many times since.  We now know there is indeed a limiting speed.  Places like CERN 
accelerate a particle to within a whisker of the maximum possible, so we know k is 
positive, and we know its value very accurately.  We find that, within experimental 
error, the limiting speed is the same as the speed of light in a vacuum.  
If something is going at the limiting speed in one frame of reference, it must be 
moving at the limiting speed in all reference frames,7 which explains why all attempts 
to find some variation in the speed of light failed.  

7 This is proved in appendix A.
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Relativistic coordinates
For historical reasons we say that nothing can go faster than the speed of light, and it 
is more convenient to talk about the speed of light than to talk about some abstract 
limiting speed.  

We can choose the units for time and distance that make the speed of light equal to 
one: for example, light takes a year to travel a distance of one light year.   These are 
known as relativistic units, and when working with relativistic units the speed of light 
and k can be left out of definitions and formulae.  For example, Mv becomes:

Mv{t,x,y,z} = {av(t-vx),av(-x+vt),-y,z},   where av = 1/√(1-v2).

It is more usual to use the symbol β rather than av, so β=1/√(1-v2).    Mv is a special 
case of the Lorentz transform.8

Part 2: Special relativity and Faraday's laws.
It is interesting to see that Faraday's laws arguably allow us to determine the sign and 
value of k.  CERN offers certainty, but Faraday's laws came much earlier.  So I will 
again pretend we know nothing about special relativity in general, and the value of k 
in particular.   

From now on I will use the formula Lv=M0Mv in order to remove the rotation that Mv 
on its own introduces, so:

Lv{t,x,y,z}=M0Mv{t,x,y,z}
                 =M0{av(t-kvx),av(-x+vt),y,z},  where av

2=1/(1-v2k).  
                 ={av(t-kvx),av(x-vt),y,z},  since a0

2=1.  

and I extend the definition of Lv so that if velocity v has components in the three 
directions of vx, vy, and vz, then Lv{1,0,0,0}=av{1,-vx,-vy,-vz}.9  

The effect on force of changing the reference frame.
Suppose an object has address A={τ,x,y,z} in its rest frame10.  τ is called the object's 
proper time.  The quantity dA/dτ is called the four velocity of the object: in the rest 
frame dA/dτ = {1,0,0,0}.   If m0 is the mass of the body measured in it rest frame, and 
V is the four velocity, then P=m0V={M,px,py,pz} is the four momentum, where M is 
the mass in the current reference frame, and px,py, and pz are the momentum of the 
body in each direction.  The four force on the body is dP/dτ={ct,cx,cy,cz}, so (for 
example) cx is proportional to the acceleration of the body in the x direction.

Although the four velocity, momentum, and force are not addresses, we can use the 
algorithm Lv to convert them between frames.11

8 Mv represents a Lorentz boost in the first space dimension combined with a rotation through 
180 degrees about the third space dimension.  A simple Lorentz boost would be:

M0Mv{t,x,y,z} = {β(t-vx),β(x-vt),y,z},   where β = 1/√(1-v2).
9I have here taken liberties with the definition of Lv. generalising it to enable us to 
apply it when v is not a velocity in the x direction.  To see that the generalised Lv 
works in this special case where it is used to convert {1,0,0,0}, rotate the spacial 
coordinates until v points in the x direction, do the convertion, and then rotate the 
coordinates back.
10The rest frame is that in which the object is not moving.  It may be accelerating, but 
in the rest frame it is accelerating from rest.
11since (for example) Lv(d/dτ m0{t,x,y,z})=m0d/dτ Lv{t,x,y,z}.  
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Suppose that a charged body is moving in an electric field which is aligned with the y 
axis.  If there is no magnetic field, the body will experience four force {ct,0,cy,0}.   
But look at what we get if we convert to a reference frame moving at speed v in the x 
direction:

Lv{ct,0,cy,0}={avct,-avvct,cy,0} 
If k≠0, the electric field now exerts a force on the charge along the x axis, the 
direction of the force being dependant on the sign of c1 and hence on the sign of k.  
This force is electromagnetism.

If k=0, then mass does not change with velocity so c1 is zero and Newtonian physics 
would not predict the magnetic force. 

Conservation of momentum and electrical forces.
That k=1 explains magnetism: it also explains how momentum is conserved when an 
electrical field pushes on an electron.  The field pushes on the electron and the 
electron pushes on the field: action and reaction are equal and opposite.12  By contrast,
if k=0 than there is no predicted reaction, and we must assume the reaction is 
absorbed by some as yet undetected medium.  We make the same sort of assumption 
when (for example) calculating the acceleration of a car.  The car accelerates one way 
and the earth accelerates in the opposite direction, but the mass of the earth is so 
enormously greater than that of the car that the acceleration of the earth can be 
ignored.  This supposed medium defines a rest frame relative to which electrical fields
and charges, and everything else including the earth, could be said to move.  In 
particular, the speed of light was calculated in relation to the proposed medium, and 
so was expected to vary in relation to the earth as the earth moved round the sun.  It 
was the failure to detect such variation that finally led to special relativity.  However, 
there are logical problems with an attempt to explain electromagnetism by postulating
a stationary medium.  For example, it would imply that the mass of the stationary 
medium would be enormously greater than the mass of any charged particles.  This 
makes it hard to imagine how the relative velocity of the medium could change with 
time and space.  To illustrate the problem, it is hard to generate a sound wave in air 
that does significant damage, but relative movements of air are the cause of 
hurricanes, and can do enormous damage.  The relative movements of the medium 
would imply some mechanism that involves changes of momentum and energy on an 
enormously larger scale and density than can be achieved by electrical forces.

Summary
Explanations of the special theory of relativity usually start from an assumption that 
the speed of light is a constant for all observers, and use that to work out the Lorentz 
transform.  I have shown that it is not necessary to make any assumption about the 
speed of light.  This is useful because that assumption sometimes misleads people.  If 
they have difficulty accepting the predictions of the special theory, they are tempted to
doubt that the speed of light is always constant, and to conclude that we just haven’t 
tried hard enough to find the exceptions.  And if we assume that the theory of 
relativity depends on the constancy of the speed of light, then it invites speculation 
about what would happen if the speed of light changed.

GNNMartin@Gmail.com

12This is obvious once a tensor notation is introduced, and I apologise for relying on 
that.  If the energy momentum tensor at a point in space is Tab=T1ab+T2ab where T1ab is
the energy momentum tensor for the charge matter and T2ab is the energy momentum 
tensor for the electromagnetic field, then T1ab

;b is the four force acting on the charge, 
and T2ab

;b is the four force acting on the field, and Tab
;b=0, so T1ab

;b=-T2ab
;b.
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Appendix A: the limiting speed.
 If an object moves at the limiting speed in one reference frame, it moves at the 
limiting speed in all reference frames.  To verify this, suppose something moves from 
{0,0,0,0} to {t,x,y,z}, at speed s=1/√k, then s2=(x2+y2+z2)/t2.  Converting to a different
reference frame, Mv{t,x,y,z}={av(t-vx/s2),av(-x+vt),-y,z}, where av

2=s2/(s2-v2),  and the
square of the speed in the new reference frame will be: 

    (av
2(-x+vt)2+y2+z2)/av

2(t-vx/s2)2

=  (av
2(-x+vt)2+(s2t2-x2))/av

2(t-vx/s2)2

=  s2(s2(-x+vt)2+(s2-v2)(s2t2-x2))/(s2t-vx)2

= s2(s2x2-2s2xvt+s2v2t2+s4t2-s2x2-v2s2t2+v2x2)/(s2t-vx)2

= s2(-2s2xvt+s4t2+v2x2)/(s2t-vx)2

=  s2
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