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Abstract

In a previous paper of this author [1] building upon insights reached in
[2], we constructed the free theory on a rather general curved spacetime
for spin-0, 1

2
, 1 particles and we wrote down the most general interaction

vertices for the latter leading to the principle of local gauge invariance. In
this paper, we further define the interacting theory and study the behavior
of modified particle propagators, leading to a finite theory.

1 Introduction.

The reason for constructing a generally covariant realist quantum theory is mul-
tifold; first of all one wishes to get rid of the crucial role played by the observer
which results in an operational instead of realistic framework in the old fash-
ioned formulations of Schrodinger and Heisenberg. Second, one wishes quantum
theory to speak the same language as does general relativity so that the two
approach one and another and consistent ideas about nature on all scales may
arise. As argued in a philosophical paper of this author [3], the application of
the superposition principle to spacetime will require novel ideas beyond those
explained in this series of papers and moreover, it is not clear at all that the
superposition principle should be applied to spacetime in the first place. It
might just be that the gravitational field is determined by the classical degrees
of freedom in the universe and that individual particles will only influence grav-
itation once they acquire classical properties (during an act of measurement for
example). After all, the world is not purely quantum alone and different rules
emerge in different regimes. Third, finding a realist theory of processes for the
quantum world should clarify the position of the measurement postulate; in-
deed, in our previous construction, the latter got a rather natural place on pair
with the “Schrodinger” equation by means of processes which do not travel into
the relativistic past but are possibly superluminal. So, we already gained some
novel insights and the intention of this paper is to put what we know already
on more solid grounds. That is, we rely upon the construction of the interact-
ing theory in [2] and then move on to the issue of “renormalization” as well as
the structure of gravitationally modified two point functions on a Friedmann
universe. Hence, we investigate technical issues related to our novel conceptual
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approach in order to deepen our understanding of it; a next conceptual step for-
wards would consist in further understanding the pieceful coexistence between
the quantum microworld and classical macroworld. The problem of quantum
gravity is just at the end of this road and must be postponed for the future. To
give an idea why this is so, quantum theory formulated in the way done in this
series of papers relies crucially upon the spacetime metric, therefore one would
suspect a quantum theory of the spacetime metric to depend upon a universal
metric on the space of metrics. This was the topic of this author’s PhD thesis
and requires a rather abstract construction of the Gromov type: at this point,
it is unclear how these considerations may lead to a well defined generalization
of quantum mechanics.

Although the real essential parts of the references [1, 3] are explained in this
paper, the reader is advised to read carefully through those references before
embarking upon this paper. There are plenty of ideas in those papers which
should be absorbed and digested prior to acquire a proper understanding of
the construction below. This paper is written with a fairly high mathematical
rigour and no sloppy arguments have a place in it unlike what is the case for
almost all papers on renormalization. Actually, I really do not treat the issue
of renormalization of the coupling constants but rather straightforwardly adress
the finiteness of every Feynman diagram and the whole theory in particular.

2 A modified propagator for a free relativistic
particle on a general space-time.

As argued in [1], the correct two point function for a spin-0 particle in a general
curved background spacetime is given by

W (x, y) =

∫
TMx

d4k

(2π)3
δ(k2 −m2)θ(k0)φ(x, ka, y)

where
φ(x, ka, y) =

∑
wa∈TMx:expx(w)=y

eikaw
a

where the exponential map is defined as usual. In Minkowski spacetime, this
expression is given by

W (x, y) =

∫
TMx

d3k

2(2π)3
√
~k2 +m2

eika(ya−xa)

which may be computed further by making a distinction between the spacelike,
null, and timelike case. For spacelike ya−xa, one may choose the Lorentz frame
such that ya − xa =

√
(y − x)2e3 resulting in

W (x, y) =

∫
TMx

d3k

2(2π)3
√
~k2 +m2

eik
3
√

(y−x)2
=

1

8π2

∫ ∞
0

r dr

∫ +∞

−∞
dk

1√
k2 + r2 +m2

eik
√

(y−x)2

=
∞
4π
δ(
√

(y − x)2)
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where we performed the r integration prior to the k integration which does
not only give the wrong answer but also shows that the original “integral”
cannot be computed by appealing to Fubini’s theorem in this coordinate system
and therefore, the Lebesgue integral does not exist. Indeed, no momentum
integral in standard field theory exists in the sense of Lebesgue as one considers
integration of widely fluctuating functions which do not go sufficiently fast to
zero at infinity so that the positive and negative, real and imaginary parts of
the integrand do not give finite integrals by themselves. In fact, there does not
exist a straightforward way how to define this expression. It does exist as a
bi-distribution however:

W (f, g) =

∫
M
dx

∫
TMx

d3k

2(2π)3
√
~k2 +m2

∫
M
dy eika(ya−xa)f(x)g(y)

or

W (f, g) =

∫
R3

d3k

2(2π)3
√
~k2 +m2

∫
M×M

dx dy eika(ya−xa)f(x)g(y)

since all tangent spaces are isomorphic and both definitions agree for smooth
test functions f, g of compact support, where the integrals are taken in the order
indicated in the above expressions. In the literature W (x, y) is often presented
as a smooth function W̃ (x, y) with a delta distribution on the light-cone; this
representation however holds only when contractions with Schwartz functions
f, g are made, in either

W (f, g) =

∫
M×M

f(x)g(y)W̃ (x, y)

and the reader may easily find out that W̃ (x, y) is given by special Bessel func-
tions. Indeed, for x, y spacelike, we have that

W̃ (x, y) :=
m√

(x− y)24π2

∫ ∞
0

dk√
k2 + 1

k sin(km
√

(x− y)2)e−εk
2

=
m√

(x− y)24π2
K1(m

√
(x− y)2)

as a formal expression. Indeed, it is fairly easy to check by means of partial
integration that K1(z) satisfies Bessels equation

z2K̈1(z) + zK̇1(z)− (z2 + 1)K1(z) = 0

with appropriate boundary conditions. However, W̃ (x, y) is not absolutely in-
tegrable given that it does not vanish at infinity (it remains constant on space-
like hyperbolae). Therefore, one cannot extend the definition of W̃ (x, y) from
Schwartz functions to smooth L2 functions of non-compact support as one would
expect of realistic wave packages. However, it is worthwhile to mention that
K1(z) diverges as 1

z at z = 0 and goes to zero as e−z at z = +∞. Indeed,
coming back to the formal integral representation of K1(z) one may consider
the effect of smoothening out with a Schwarz function of compact support as
cutting off the integral at high momenta so that only the lower momenta count;
this cutoff can be computed by means of a square contour in the complex plane
which goes form 0 to R to R+iπ2 to iπ2 to 0 in the variable α where k = sinh(α).
The large vertical integral oscillates in a bounded way for large R but becomes
irrelevant in the limit for R to infinity when smeared out with test functions
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while the vertical integral from 0 to π
2 is irrelevant. In this way, it can be shown

that the Schwartz kernel K1(z) corresponds to the integral

K1(z) =

∫ ∞
0

cosh(t)e− cosh(t)z

and it is easy to see that this expression diverges as 1
z if z approaches zero.

Hence, K1(z) is not uniformly bounded and therefore the best kind of duality one
may set up is one of L1

loc which are the absolutely integrable functions of compact
support (disjoint from the lightcone). To construct interactions, we need to
calculate the Feynman propagator, which is defined as ∆F (x, y) = W (x, y) if
y /∈ J−(x) and W (y, x) otherwise, and has a formal integral representation as

∆F (x, y) =

∫
d4k

(2π)4

eika(ya−xa)

k2 −m2 + iε

where ε is a positive infinitesimal which may be taken to zero after all compu-
tations have been performed. Hence, integrals of the kind∫

dx dv dy dz∆F (v, x)∆F (w, x)∆F (y, x)∆F (z, x)f(v, w, y, z)

are well defined since all logical orders1 of integration give the same result for
entire complex analytic f with exponential falloff on the real section towards
infinity. I am not aware if such special functions are really needed to obtain
this result but it certainly allows one to appeal to the residue theorem for
complex analytic functions in order to compute the result2. Even stronger,
the above integral exists in a distributional sense for ordinary multidimensional
plane waves as the reader may easily compute. Loops, however, are not well
digested since one cannot give direct meaning to∫

M×M
dx dy∆F (x, y)2f(x, y)

with f(x, y) an absolutely integrable function, not necessarily of compact sup-
port3. Alternatively, one might suggest that the correct expression to compute

1By logical, we mean any order which gives a well defined, finite, result.
2It would be interesting to have a result regarding the existence of the above integral if f

were merely a Schwartz function.
3This follows easily from∫
d4kd4l

f̂(k + l, k + l)

(k2 −m2 + iε)(l2 −m2 + iε)
=

∫
d4r d4k

f̂(r, r)

(k2 −m2 + iε)((r − k)2 −m2 + iε)

and for S-matrix elements f(x, y) = ei(p+q).xei(r+s).y where p, q are the on-shell incoming
momenta and r, s the on-shell outgoing momenta so that

f̂(k, l) = δ4(k + l + p+ q)δ4(k + l − r − s).

It is easy to see that for generic absolutely integrable and differentiable f̂ , the above integral
is ill defined as ∫

d4k

(k2 −m2 + iε)((r − k)2 −m2 + iε)

is for generic r. This is most easily seen by application of the residue theorem and noticing
that one is left with integrals of the kind∫

d3k

|k|2 +m2

which are linearly divergent.
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is given by ∫
M×M

dx dy ∆̃F (x, y)2f(x, y)

where ∆̃F is the smooth distribution constructed before. Taking for f(x, y) =
ei(p+q)x+i(k+l)y, one notices that for x ∼ y the integral reduces to

δ4(k + l − p− q)
∫

(y−x) spacelike

d(y − x)
m2K2

1 (y − x)

16π4(y − x)2
ei(k+l)(y−x)

and by an appropriate change of variables

t = r sinhα

x = r coshα sin θ sinψ

y = r coshα sin θ cosψ

z = r coshα cos θ

which reduces the metric to

ds2 = −dr2 + r2dα2 − r2 cosh2 αdθ2 − r2 cosh2 α sin2 θdψ2

and the volume form to

r3 cosh2 α sin θdαdθdψdr

one obtains that the latter integral reduces to

I(k + l) =

∫
dr dα coshα

m2K2
1 (r)

4π3t0 sinhα0
eit0 coshα0 r sinhα sin(t0 sinhα0r coshα)

where k + l = t0(coshα0, 0, 0, sinhα0). It is clear, again, that this integral does
not exist in the Lebesgue sense but one might wish to regard it as a distribution
in k+ l where k, l are on-shell. As before, we may extract a kernel Ĩ(k+ l) in the
dual sense and equate the integral to that expression. However, in general, one
superposes wave packages of such on-shell plane waves which do not have com-
pact support in momentum space and therefore, even this method will fall short
in the end although it can be consistenly applied on a much higher level than is
usually argued for in standard QFT textbooks. The lightcone will give trouble
since there we do have a δ((y − x)2) distribution in the formula for ∆̃F (x, y)
and the square of that is of course ill defined; one might, however, wish to ig-
nore these contributions and effectively “cut out” the null cone. However, such
procedure seems to be hard to motivate from a physical point of view and we
will proceed in a way which makes the propagator well defined in the Lebesgue
sense so that W and W̃ coincide and are smooth distributions. In a general
renormalization procedure, one takes “particular sums” of such nonsensical in-
tegrals, performs an associated ad-hoc analytic continuation, and makes the
result finite by means of a redefinition of the bare parameters with an infinite
amount. This happens, for example, in φ4 field theory regarding corrections to
the bare propagator; apart from the fact that this procedure is entirely arbitrary
(but motivated by “physical intuition”), distinct “regularizations” might give
different answers and this should not be the case for a physical theory unless
there is a very good physical reason to prefer a particular regularization scheme
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over another. Moreover, this procedure splits theories into two categories: those
to which some procedure of this kind can be applied, called the renormalizable
theories, and those to which it cannot, the nonrenormalizable ones. The shear
arbitrareness of the infinite renormalization procedure as well as the lack of a
deep physical motivation behind it resulted in my thesis that interacting QFT
on Minkowski does not exist and that gravitation had to play a fundamental role
in making each Feynman diagram finite to the dismay of many field theorists I
know of.

The reader notices that we had to twist ourselves into many small corners in
order to give meaning to the two point function, the Feynman propagator and
some “interaction” integrals. The results in the literature regarding renormal-
izability are alas much weaker than the kind of results we alluded to above;
there, it is only shown that S-matrix elements in the distributional basis of
plane Fourier waves can be given a distributional, perturbative, meaning due to
renormalization. Nothing is said about physical, more general wave packages
and not a single non-perturbative result is achieved. By this, I do not want to
say that the results of ’t Hooft and Veltman in the 1970’s are virtually mean-
ingless; they constituted a big step forwards in a time where everybody was
concentrated upon Minkowski spacetime and the scattering matrix orginated
by Wheeler. From a modern point of view, they do however fall short by many
margins and better mathematicians such as Connes and Marcolli have tried to
dig deeper in the mathematics behind renormalization. However, they seem to
suggest that such a thing would only work for some noncommutative geome-
try, something I deeply disagree with and, moreover, might be in conflict with
nature. We will now argue now that all these “dual” points of view are rather
nonsensical from a physical point of view and that the propagator has to exist
in a stronger sense than the dual one, that is the usual Lebesgue sense. It is
here that gravitation by means of some positive energy condition becomes of
primordial importance. Our fundamental formula for the two point function in
a general curved spacetime has rather the same shortcomings than the standard
Minkowski one; in [1] we therefore suggested to gravitationally deform it so
that the resulting integrals become well defined in the standard Lebesgue sense.
The particular proposal made in that reference however is not entirely complete
and we shall discuss a better one in the remained of this section. We want to
keep the definition of φ(x, ka, y) as a sum over geodesic(s) but we will provide
every exponential eikaw

a

with an exponential surpression factor which is local
at x and y; these factors may be interpreted as a kind of resistance spacetime
offers to the sending and receiving of geodesic signals. If wa is causal, then this
surpression factor might be defined by

α(x, ka, wb) = Rαβ(x)kαkβ +Rα′β′(y)kα
′

?wbk
β′

?wb
+ γ(kaw

a)2

where Rαβ is the Ricci tensor, ?wb : TMx → TMy : kaeµa(x) → ka
′

?wbe
µ′

a′ (y)
denotes parallel transport along the geodesic defined by wbeαb (x); the latter
induces an orthochronous Lorentz transformation and (un)primed indices do
refer to y (x). Here, we require the weak energy condition that RαβV

αV β > 0
for all timelike vectors V α. This certainly does the job for a timelike wa, however
for a null wa this formula may be insufficient to get convergence. In case wb

is spacelike, then denote by R(wb)αβ the reflection around wb: the latter is an
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idempotent isometry on the future pointing causal vectors. One could now
define

α(x, ka, y) = Rαβ(x)kαkβ +Rα′β′(y)kα
′

?wbk
β′

?wb
+

Rαβ(x)R(wb)ακk
κR(wb)βγk

γ+Rα′β′(y)R(wb
′

?wb)
α′

κ′k
κ′

?wbR(wb
′

?wb)
β′

γ′k
γ′

?wb
+γ(kaw

a)2

and by using that R(λwb)αβ is independent of λ for λ 6= 0 (a reflection is defined
by an axis, not an orientation), we have that

α(x, ka, wb) = α(y, ka
′

?wb ,−w
b′

?wb)

and
α(x, ka, wb) = α(x,R(wb)abk

b, wc).

The distinction between the spacelike and causal case is obvious since null wa

do not canonically define a reflection and the reflection around timelike vectors
swaps the future and past lightcones. We define now

φµ(x, ka, y) =
∑

wa∈TMx:expx(w)=y

eikaw
a

e−µα(x,ka,wb)

and as before

Wµ(x, y) =

∫
TMx

d4k

(2π)3
δ(k2 −m2)θ(k0)φµ(x, ka, y).

From the above properties and similar reasoning as in [1] we obtain that

Wµ(x, y) = Wµ(y, x)

and
Wµ(x, y) = Wµ(y, x)

for x ∼ y. It is kind of obvious that this propagator on a de-Sitter spacetime
is not finite for µ, λ > 0 given that the Ricci tensor is proportional to the met-
ric and therefore all curvature terms are constant. More precisely, for timelike
wa we do have exponential surpression due to the (kaw

a)2 term, but the latter
does not do a proper job in case wa is spacelike. Thus, in a maximally sym-
metric spacetime, where the Riemann tensor is fully equivalent to the metric
itself, there is no way to get a theory out satisfying our finiteness criteria unless
one simply ignores spatial propagation which would endanger the spin-statistics
theorem. One can easily save the day by relying on geometries which do locally
define a preferred timelike unit vectorfield V µ; as is well known, such geometries
are generic and may even be algebraically special; Wylleman has recently given
an explicit construction hereof. Hence, one could simply replace the (kaw

a)2

term by a (kµV
µ)2 or (kµV

µ)2 + (R(w)µνk
νVµ)2 term, in case w is spacelike,

which would provide one with the necessary falloff and symmetry properties
independent of wa. The physical message here is plain and simple, in the non
relativistic theory, one had that the two point function is well defined4 and fi-
nite unlike in the Minkowski case; to restore these salient properties, we need
a physical arrow of time which is realized by generic matter distributions. All

4The propagator is certainly well defined when applying a momentum cutoff and sending
the cutoff towards infinity; I did not check if it exists in the Lebesgue sense.
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maximally symmetric spacetimes are pathological in the sense that no realistic
matter propagates on them; now, people would argue that such timelike vec-
torfield is not observed in nature as it might suggest a violation of “Lorentz
invariance” although everything is formally locally Lorentz covariant. Such at-
titude is of course rather nonsensical given that we have not specified yet how
the two point functions relate to observable quantities and moreover, the sur-
pression terms in the amplitude are local and therefore do not influence the
propagation part of the definition which resulted in the Fourier basis functions.
All our surpression terms do is to incoorporate a kind of resistance of the space-
time fabric to the creation and annihilation of a signal of a particular type just
like a liquid offers resistance to the creation and annihilation by pointlike motion
of waves but little if nothing to the propagation theirof. The gravitational field
is such an eather and Minkowski’s idealization is just fictituous; I have no idea
wether it is sensible to say that these surpression terms have to be small in some
sense as, again, they seem not pertain to the propagation aspect of the signal
but just to the creation and annihilation thereof. It is still possible to work in
a spatially homogeneous and isotropic cosmology, such as the one given by the
usual Friedmann universes: therefore, in a later section, we will compute the
quantum theory on such a big bang type of universe. It will turn out however
that a little friction on the propagation of the signal is also required in order to
tame the divergencies of the lightcone and we shall adress that issue in a while.

3 No cosmological constant problem.

One might at this point reflect if one can still couple geometry semiclasically to
our novel definition of a quantum theory and whether it is meaningful to do so.
The main point of our discussion so far [1, 2, 3] turned around the two point
function: any reference regarding quantum fields has been omitted so, the point
of view of an energy momentum tensor is not natural anymore. More in particu-
lar, the creation and annihilation processes at events x and y respectively came
with a local energy momentum dependent “viscosity” so that the total process
is not of Hamiltonian nature anymore and therefore no conserved currents can
be constructed, something which is badly needed if one might want to look for a
source for gravitation. Also, we did not speak about virtual processes here, all
processes in the computation of the relevant amplitudes [3] are real and the limit
of instantaneous creation and annihilation is just unphysical; these processes do
not happen since we cannot measure them and moreover, they should come with
a viscous surpression. This last fact alone implies that our framework does not
contain a natural energy momentum tensor anymore. Indeed, the only natural
definition in our framework would be the following quadratic expression

〈0|Tµν(x)|0〉 = lim
y→x

(
∂µ∂ν′W (x, y)− 1

2
gµν′(x, y)

(
gαβ

′
(x, y)∂α∂β′W (x, y)−m2W (x, y)

))
which does not exist because the limit differs when y approaches x from the
spacelike or timelike side. The fundamental reason herefore is to be found
in the “reflection symmetry” in the surpression terms for spacelike geodesics,
something which only depends upon an axis and not a magnitude nor a specific
orientation. We recall that this symmetry was needed to obtain Bose statistics
which crucially determined the definition of the Feynman propagator. Now, it
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may very well be that Bose statistics is something which does not survive in a
curved spacetime, but then the Feynman propagator would depend upon a frame
of reference as there is no canonical way to define it. This is an avenue which we
shall not take here; the reader, moreover, notices that the limit taken for y in
the future lightcone of x gives an expression which is not covariantly conserved
at all. This can be easily seen by noticing that for y ∈ I±(x) sufficiently close
to x one has that

Wµ(x, y) =

∫
d4k

(2π)3
δ(k2−m2)θ(k0)e−ik

aσa(x,y)e
−µ
(
Kab(x)kakb+Ka′b′ (y)ka

′
?−σc(x,y)k

b′
?−σc(x,y)

)

where σ(x, y) denotes as usual Synge’s world function and the index a refers to
the operation eµa(x)∂µ applied to it. The quadratic form Kabk

akb satisfies the
property that it blows up quadratically in any Lorentz frame towards infinity
if k0 goes to infinity. In this limit y → x, Wµ(x, x) becomes a smooth func-
tion of Kab(x) only since σa(x, x) = 0. The latter, however, does not satisfy
a conservation law since generically Kab;ν(x) 6= 0 and the same reasoning ap-
plies to the whole energy momentum tensor where second covariant derivatives
of Kab(x) come ito play and the expression becomes much more complicated.
More abstract and from first principles, there is a priori no good reason why
the coincidence limit of derivatives applied to an amplitude for particle propa-
gation should have something to do with a vacuum expectation value of some
energy momentum tensor. Our above reasoning shows that this is not so and
that therefore, no candidate for a conserved vacuum energy momentum ten-
sor exists which makes the cosmological constant problem obsolete. There is
another way the quantum influences the geometry than by means of simple
propagation; indeed, particles do not propagate in quantum theory and, as we
have seen here, wave functions also don’t in the naive sense of second order
hyperbolic PDE’s. Indeed, the way geometry is influenced by particles must be
encoded in a new theory which requires a super metric, a universal, and there-
fore background independent, metric on the space of all Lorentzian geometries
(and matter configurations thereupon). This author has written ideas regarding
this super-metric up in his Phd thesis [4].

The reader might wonder whether, given the fact that there is a preferred time-
like vectorfield, it would not be more convenient to work in an Euclidean theory
by means of a Wick rotation. The answer is that it wouldn’t do much: all
Feynman diagrams give finite results as we will study in rather much detail in a
short while. The only nontrivial question concerns the convergence of the total
series defining the interacting theory [3], we adress that question in section six.

4 Computations on a Friedmann universe.

Before we proceed, some words of physical significance are in place, in a Schwarzschild
and Kerr-Newman rotationally symmetric black hole solution we can speak of a
null Killing horizon, which coincides with the union of black hole surfaces defined
by Hawking [12], where our preferred timelike vectorfield, or gravitational arrow
of time, becomes null and therefore quantum theory becomes ill defined again.
It may be clear that generic perturbations in the initial data, even smooth ones
of compact support, will destroy the Killing Horizon and most likely, also the
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strongly future asymptotically predictable character of the spacetime. Indeed,
to my knowledge, the issue of stability regarding the very definition of an event
horizon by means of the past of the boundary of the asymptotic future in some
conformal spacetime has not been properly examined. I really do not care much
about it, as I have always found this definition rather contrarian and “unphysi-
cal” to some extend (given that in quantum gravity the future is not known at
all). What our thoughts above reveal is that Kerr-Newman spacetimes also can-
not serve as a background for quantum theory as the Lebesgue well definedness
of the propagator goes havoc on the horizon and also within. One might again
want to resort to weaker, dual, interpretations as before but it could be that
the old problems of Minkowski come back in some different jacket. With those
words of caution, we now proceed to the definition of the two-point function on
the k = 0 or spatially flat Friedmann universe in the way envisioned at the end
of the previous section. The metric is given by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2)

and the Einstein equations with cosmological constant and homogeneous isotropic
fluid reduce to

3
ȧ2

a2
= 8πρ+ Λ

and
3ä

a
= −4π(ρ+ 3p) + Λ.

The energy momentum conservation law reads

ρ̇+ 3
ȧ

a
(ρ+ p) = 0

while the geodesic equation equals

d2t

ds2
+ ȧa

∣∣∣∣d~xds
∣∣∣∣2 = 0,

d2~x

ds2
+ 2

ȧ

a

dt

ds

d~x

ds
= 0.

In this section, we shall be interested in the cosmological vacuum defined by
ρ = p = 0; in that case the scale factor reads

a(t) = αe
√

Λt

with α > 0 and the Ricci tensor is given by

Rαβ = −3Λgαβ

in other words, our cosmology is an Einstein space. Performing the coordinate

transformation t̃ = e−
√

Λt

α
√

Λ
leads to the expression

ds2 =
1

t̃2Λ
(dt̃2 − dx2 − dy2 − dz2)

which shows that our Einstein space is conformally flat. It is also a space of
constant negative sectional curvature as the Riemann tensor takes on the form

Rαβµν = −Λ (gαµgβν − gανgβµ)
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a property which will be most convenient later on. It is nevertheless not a
maximally symmetric spacetime such as is the case for a de Sitter spacetime.
Taking t̃ as a time coordinate suggests a big crunch while the t coordinate hints
to an exponentially expanding universe. They both determine the same unit
norm timelike vectorfield up to a time orientation, which explains the qualitative
difference, and in the sequel, we will keep on working in the t, x, y, z instead of
in the t̃, x, y, z system. Further specialization of the geodesic equation leads to

d2t

ds2
+
√

Λα2e2
√

Λt

∣∣∣∣d~xds
∣∣∣∣2 = 0

and
d2~x

ds2
+ 2
√

Λ
dt

ds

d~x

ds
= 0

from which it can be deduced that∣∣∣∣d~xds
∣∣∣∣ = βe−2

√
Λt

with β ≥ 0. These equations show that the affine time derivative slows down so
that one may wonder wether it is possible to get at t = +∞ in the first place.
As we will show, this is the case for future oriented timelike geodesics but not
so for spacelike geodesics for which the dt

ds > 0 part of the solution has a finite
future t and s extend. One obtains the Newtonian law

d2t

ds2
+
√

Λ(αβ)2e−2
√

Λt = 0

which can be integrated to give

e−
√

Λt√
δ

α2β2 + e−2
√

Λt +
√
δ

αβ

= e−
√
δΛ(s+γ)

where α, β, δ ≥ 0 and γ ∈ R. This, again, leads to

t(s) = − 1√
Λ

ln

(√
4δ

α2β2

e−
√
δΛ(s+γ)

1− e−2
√
δΛ(s+γ)

)
and γ > 0. It is clear that for s < −γ the space is past geodesically incomplete,
unless γ = +∞ which corresponds to ~v = 0, while for s to plus infinity, we
obtain again an approximate linear relation between t and s. The geodesic
equation for the spatial part then becomes

d2~x

ds2
+ 2
√
δΛ

1 + e−2
√
δΛ(s+γ)

1− e−2
√
δΛ(s+γ)

d~x

ds
= 0

which leads to
d~x

ds
= ~β

4δ

α2β2

e−2
√
δΛ(s+γ)

(1− e−2
√
δΛ(s+γ))2

where
∣∣∣~β∣∣∣2 = β2. This last formula may again be integrated to yield

~x(s) = ~r0 − 2~β

√
δ

Λ

1

α2β2

1

1− e−2
√
δΛ(s+γ)
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where, in the limit for β to 0, ~r0 has to renormalize by an infinite constant
too. As it turns out, we have only given a parametrization for future oriented
causal geodesics; in terms of the initial values x and v = (dxds )s=0 the original
parameters read

~β = ~ve2
√

Λt

e−
√
δΛγ =

1

αe
√

Λt |~v|

(
v −

√
v2 − α2e2

√
Λt |~v|2

)
δ = v2 − α2e2

√
Λt |~v|2

~r0 = ~x+
~v

√
Λ(v −

√
v2 − α2e2

√
Λt |~v|2)

so in the limit of Λ to zero ~r0 renormalizes ~x0 by an infinite amount. One notices
that δ has the geometric significance of the length squared of the tangent vector
of the geodesic at x which we may put to one since we deal with timelike
geodesics. This further simplifies our formulae to

e−
√
δΛγ =

√
v − 1

v + 1

~r0 = ~x+
~v√

Λ(v − 1)

and with these reservations, we obtain that

t(s) = − 1√
Λ

ln

(
2e−
√

Λ(t+s)

v + 1− (v − 1)e−2
√

Λs

)

~x(s) = ~x+
~v√

Λ(v − 1)
− 2~v
√

Λ(v − 1)
(
v + 1− (v − 1)e−2

√
Λs
) .

From the first equation, one can solve v in function of z = e−
√

Λs; the formula
is given by

v =
2ze
√

Λ(t′−t) − 1− z2

1− z2

with z > e−
√

Λ(t′−t). Insertion into the second equation fixes z by the polynomial

z2 + 1−
(

2 cosh(
√

Λ(t′ − t))− Λ
∣∣∣~x′ − ~x∣∣∣2 α2e

√
Λ(t′+t)

)
z = 0

where the evaluation holds for (t′, ~x′) future timelike related to (t, ~x). Notice
that we have an asymptotic region of radius 1√

Λαe
√

Λt
, so unlike Minkowski

spacetime, in our vacuum cosmology, it is impossible for ~x′ to become infinite
and therefore any observer has a nontrivial horizon. It is easy to solve our
equation to

s = − 1√
Λ

ln
(
g(x, x′; Λ, α)−

√
g(x, x′; Λ, α)2 − 1

)
where

g(x, x′; Λ, α) = cosh(
√

Λ(t′ − t))− Λ
∣∣∣~x′ − ~x∣∣∣2 α2e

√
Λ(t′+t)

2
.
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In the limit for
√

Λ to zero, this expression becomes

s2
0 = lim√

Λ→0

(
(t′ − t) sinh(

√
Λ(t′ − t))−

√
Λ
∣∣∣~x′ − ~x∣∣∣2 α2e

√
Λ(t′+t) +O(λ)

)2

g(x, x′; Λ, α)2 − 1
= (t′−t)2−α2 |~x′ − ~x|2

as it should be. This formula can be easily analytically continued to the region

−1 < g(x, x′; Λ, α) < 1

by

is′ = − 1√
Λ

ln
(
g(x, x′; Λ, α)− i

√
1− g(x, x′; Λ, α)2

)
where we have made the branch cut for the complex square root in the upper
half plane at for example π

2 . It is then easily computed that

−s′(x, x′; Λ, α)2 = − 1

Λ
(arccos (g(x, x′; Λ, α)))2

and one can again check that the
√

Λ to zero limit is given by

−s′0(x, x′;α)2 = (t′ − t)2 − |~x′ − ~x|2 α2

as is should, so our formula is entirely correct. One can easily see that this result
comes by considering the case δ < 0 which corresponds to spacelike geodesics
which live a finite amount of time t in the future as well as a finite amount of
affine parameter time s in the past and the future. This is again a distinction
with Minkowski which is geodesically complete and where spacelike geodesics
reach out to infinite values of time in the future. The relevant formulae are
deduced by performing the analytic continuation to δ < 0 and putting δ = −1:

t(s) = − 1

Λ
ln

( √
−δ

αβ sin(
√
−δΛ(s+ γ))

)
~x(s) = ~r0 −

√
−δ
Λ

~β

α2β2 tan(
√
−δΛ(s+ γ))

.

As before

~β = ~ve2
√

Λt

ei
√

Λγ =
v + i√
v2 + 1

~x = ~r0 −
v~v√

Λ(v2 + 1)
.

This reshapes our solutions as

t(s) = − 1√
Λ

ln

(
e−
√

Λt

sin(
√

Λs)v + cos(
√

Λs)

)

~x(s) = ~x+
v~v√

Λ(v2 + 1)
− ~v(v − tan(

√
Λs))√

Λ(v2 + 1)(1 + v tan(
√

Λs))

13



and the reader notices that in the limit tan(
√

Λs) = v, our assumption dt
ds ≥ 0

no longer holds. Nevertheless, this solution is past incomplete in the sense that
for s = 1√

Λ
arctan(− 1

v ) it diverges to t = −∞ and |~x| → ∞. This limit cannot

be attained towards the future however and we notice that for tan(
√

Λs) = v
one has that dt

ds = 0 and for later times s, the geodesic evolves again towards
lower t(s) values. Our parameter domain reaches only up till s = π

2
√

Λ
at which

point nothing special happens given that the limit of ~x as well as its derivatives
are well defined if tan(

√
Λs) blows up to infinity. Hence, we need to glue a new

solution to the old one which makes the construction of Synge’s function for
spacelike geodesics rather complicated but we proceed first by determining the
world function for the above parametrization. We again obtain the following
formulae

v =
e
√

Λ(t′−t) − cos(
√

Λs)

sin(
√

Λs)

Λα2 |~x′ − ~x|2 e2
√

Λt =
(v2 + 1) tan2(

√
Λs)

(1 + v tan(
√

Λs))2

which leads to

s′(x, x′; Λ, α) =
1√
Λ

arccos(g(x, x; Λ, α))

a result which we obtained previously by means of analytic continuation; this
formula covers the full spacelike region as the maximal length of a spacelike
geodesic equals π√

Λ
which is precisely the range of that function. It is interesting

to study the limit for v → +∞ of our solution; from any starting point in
spacetime one arrives at t = +∞ in a parameter time s = π

2
√

Λ
at which dt

ds =

0 and still the limit of the tangent vectors has unit norm. This means, in
particular, that in any direction of space one can trace back these data for
smaller t values providing one with a null hypersurface of events in spacetime
demarcating, within the region of events which can be connected by means of
a spacelike curve to the initial point, those events which can be reached by a
spacelike geodesic starting at x. In particular, this horizon is given by

|~x′ − ~x| = 1

α
√

Λe
√

Λt
+

1

α
√

Λe
√

Λt′

and it obviously lies fully in the region

−1 < g(x, x′; Λ, α) < 1.

This leads us to the following definition: given a spacetime point x, the spacelike
geodesic horizon HS(x) is the boundary of the region which can be reached by
means of a spacelike geodesic. Likewise, we define the future timelike horizon
HT (x) at x as the boundary of the region of spacetime which can be reached
by means of timelike geodesics. HS(x) is not necessarily a null hypersurface as
it the case for our cosmology and neither does HT (x) need to coincide with the
boundary of J+(x). Note that HS(x) coincides in our case with the boundary
of J−(I+(x)) which is the standard horizon for timelike signals in a general
cosmology. Hence, there is a region of spacetime which cannot be reached by
any geodesic starting at x; this is a novel feature to be taken into account in the
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quantum theory which we shall do in the next section. We finish this section
by making a comment upon the way the vectorfield e0 is chosen from local
physical considerations. The most obvious criterion is a quasi -local one which
says that the Riemann curvature squared (or the Ricci curvature squared) of the
Riemannian metric on the orthogonal spacelike hypersurface attains an absolute
minimum 0. It may be that there exists some ultra-local criterium by looking for
minima of some function in the spacetime Riemann tensor components evaluated
in a tetrad with timelike vector given by ∂t. The latter characterization would
be preferred in my mind but we leave such fine points for the future.

5 The modified propagator on the cosmological
vacuum.

Before we come to the calculation of the two point function, we need to calculate
the parallel transporter Sα

′

β (x, y) between two points; the latter is defined by
means of the transport of a vector along the unique geodesic connecting x with
y. Before we come to the explicit computations, let us try to guess the structure
of the result based upon symmetry considerations. As is well known −σµ(x, y)
gives the tangent co-vector at x to the geodesic connecting x with y of length
equal to the geodesic length; that is

gµν(x)σµ(x, y)σν(x, y) = 2σ(x, y)

where we have surpressed Λ, α in the notation of Synge’s function σ(x, y). For

future convenience, let us denote by e0 = ∂t, ei = e−
√

Λt

α ∂i the standard tetrad
which is constant under parallel transport on timelike geodesics of constant
~x. Hence, the transporter expressed with respect to this tetrad Sa

′

b (x, y) is
the unit matrix if y has the same space coordinate than x. More in gen-
eral, one would expect Sa

′

b (x, y) to be a Lorentz boost determined by the
e0, eaσ

a(x, y) plane with a magnitude proportional to
√∑

i σi(x, y)2, σ0(x, y)
where σa(x, y) = eaµ(x)σµ(x, y) and it has been understood that the a index
has been raised with the flat Minkowski metric ηab. Let us now make the explicit
computations; the transport equation is given by

d

ds
Z0(s) + α2

√
Λe2
√

Λt~v(s). ~Z(s) = 0

d

ds
~Z(s) +

√
Λ
(
~v(s)Z0(s) + ~Z(s)v(s)

)
= 0

where vα(s) is the unit tangent to the geodesic in affine parametrization. From
our solutions for timelike and spacelike geodesics, it is easy to see that initial
vectors Z perpendicular to e0 and ~v remain so which confirms our claim that unit
vectors perpendicular to e0 and eaσ

a(x, y) are left invariant for as well spacelike
as timelike geodesics5. Remains to figure out the boost parameter; here we
study the transport of Z = e0. The fact that parallel transport preserves the
norm allows us to write

Z(s) = (cosh(γ(s)), sinh(γ(s))
~v(s)√
v(s)2 − 1

)

5Invariant in the sense that the components only undergo a rescaling as to preserve the
local norm.
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for timelike geodesics with γ(0) = 0. Hence, we obtain that the first transport
equation reduces to

dγ(s)

ds
= −

√
(v(s)2 − 1)Λ

and taking the explicit formula for

v(s) =
v + 1 + (v − 1)e−2

√
Λs

v + 1− (v − 1)e−2
√

Λs

results in

γ(s) =

ln

1 +
√

v−1
v+1e

−
√

Λs

1−
√

v−1
v+1e

−
√

Λs

− ln

1 +
√

v−1
v+1

1−
√

v−1
v+1

 .

Upon substitution by the well known formulae for v in function of t, t′, s and s
in function of g(x, x′; Λ, α), we arrive after some algebra at√

v − 1

v + 1
=

√
e
√

Λ(t′−t) − e
√

Λs

e
√

Λ(t′−t) − e−
√

Λs

and some rather complicated formula

γ(s) = ln

 1− z2(√
1− ze−

√
Λ(t′−t) −

√
z2 − ze−

√
Λ(t′−t)

)2



− ln

 2ze
√

Λ(t′−t) − 1− z2

2ze
√

Λ(t′−t) − 1− z2 − 2

√(
z2(e2

√
Λ(t′−t) + 1)− z3e

√
Λ(t′−t) − ze

√
Λ(t′−t)

)


where z = g(x, x′; Λ, α)−
√
g(x, x′; Λ, α)2 − 1. A similar result holds for space-

like geodesics and the above calculations show already that exact calculations
for the two point function will look rather messy. However, regarding the issue
of convergence, we can make useful estimates and it is important to notice that

− ln

1 +
√

v−1
v+1

1−
√

v−1
v+1

 ≤ γ(s) ≤ 0

meaning that in the limit for the affine parameter towards future infinity, the
boost parameter converges to a finite negative value. Only in the limit for v
towards infinity does γ(s) converge to infinity too. For spacelike geodesics, one
obtains a different qualitative result which is that in the limit for the affine time
towards its finite negative and positive values (with a difference of π√

Λ
), γ(s)

blows up towards minus infinity in the limit towards the positive value and to
plus infinity in the limit towards the negative value.

We now come to the determination of the two point function and will denote the
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relevant formula in terms of first derivatives of Synge’s function σa(x, x′; Λ, α)
and the boost parameter

γ(x, x′; Λ, α).

There is no need to use their explicit expressions to arrive at the desired results
and if the reader wants to, he or she can manipulate the final expressions by
substituting for the above obtained formulae. The two point function we shall
study is given by

Wµ(x, x′; Λ, α) =

∫
d4k

(2π)3
δ(k2−m2)θ(k0)e−ik

aσa(x,x′;Λ,α)e−µ(k0)2−µ(S0′
a (x,x′;Λ,α)ka)2

where x′ is causally related to x, since otherwise we would have to include
reflection symmetric terms, and S0′

a (x, x′; Λ, α) is given by

S0′

a (x, x′; Λ, α)ka = cosh(γ(x, x′; Λ, α))k0 + sinh(γ(x, x′; Λ, α))
~k.(~x′ − ~x)

|~x′ − ~x|

and x′ is supposed to lie within the total geodesic horizon of x (here the total
geodesic horizon is defined as the boundary of the set of events which can be
reached from x by means of a geodesic). Prior to making any further compu-
tation, let us study this integral in Minkowski spacetime where ∂t has to be
associated to the timelike vectorfield defined by some physical observer making
the quantum particle feel an eather due to the him or herself and see if our
integral has all desired properties. As is evident from the previous discussion,
the only problem with the two point function really resides near the null cone
and for this purpose it is sufficient to take the masless limit m→ 0. With these
reservations

Wµ(x, x′) =
1

2(2π)3

∫
d3~k∣∣∣~k∣∣∣ ei(|~k|(t′−t)+~k.(~x′−~x))e−2µ|~k|2 .

The reader may further calculate this expression to be

Wµ(x, x′) =
1

(2π)3 |~x′ − ~x|

∫ ∞
0

dk sin(k |~x′ − ~x|)eik(t′−t)−2µk2

=
1

2i(2π)3
√

2µ |~x′ − ~x|
e−

(t′−t+|~x′−~x|)2
2µ

∫ ∞
0

dke
−
(
k−i (t′−t+|~x′−~x|)√

2µ

)2

−

1

2i(2π)3
√

2µ |~x′ − ~x|
e−

(t′−t−|~x′−~x|)2
2µ

∫ ∞
0

dke
−
(
k−i (t′−t−|~x′−~x|)√

2µ

)2

and to study the limit µ→ 0 is a rather subtle issue since, albeit the real part

of both integrals equals
√
π

2 independent of the arguments t′ − t±
∣∣∣~x′ − ~x∣∣∣, the

complex part is diverging and cannot be computed exactly. More precisely, we
note that both integrals are of the form

I(c) =

∫ ∞
0

dke−(k−ic)2

and the integrand is complex analytic in k and c. For real c, we may compute
the integral by considering the limit of a contour in the complex plane from 0
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to R to R+ ic to ic and finally back to 0. As usual, the integral over the large
vertical part vanishes in the limit for R to infinity while the remainder gives

I(c) =

∫ ∞
0

dke−k
2

+ i

∫ c

0

dkek
2

.

This shows that the imaginary part of Wµ(x, x′) equals

√
π

4(2π)3
√

2µ |~x′ − ~x|

(
e−

(t′−t−|~x′−~x|)2
2µ − e−

(t′−t+|~x′−~x|)2
2µ

)
which converges in the limit for µ to zero to the usual delta functions on the
lightcone. The real part however is given by

1

2(2π)3
√

2µ |~x′ − ~x|

e− (t′−t+|~x′−~x|)2
2µ

∫ t′−t+|~x′−~x|√
2µ

0

dkek
2

− e−
(t′−t−|~x′−~x|)2

2µ

∫ t′−t−|~x′−~x|√
2µ

0

dkek
2


and the task remains to get insight into the large c behavior of∫ c

0

dkek
2

.

A crude estimate √
π

2
e
c2

2 ≤
∫ c

0

ek
2

dk ≤
√
π

2
ec

2

may be shown immediately by means of(∫ c

0

ek
2

dk

)2

≤ π

2

∫ √2c

0

dr rer
2

=
π

4
(e2c2 − 1)

and likewise for the lower bound. However, this is not good enough and for
c > 0 one can, by means of analytic methods, obtain that∫ c

0

ek
2

dk =
1

g(c)c

(
ec

2

− 1
)

where 1 ≤ g(c) ≤ 2 and g(0) = 1 and g(+∞) = 2 which is precisely what we
need. Hence, the real part of the two point function behaves as

ReWµ(x, x′) =
1

2(2π)3
√

2µ |~x′ − ~x|
1

c+(x, x′, µ)g(c+(x, x′, µ))

(
1− e−c+(x,x′,µ)2

)
− 1

2(2π)3
√

2µ |~x′ − ~x|
1

c−(x, x′, µ)g(c−(x, x′, µ))

(
1− e−c−(x,x′,µ)2

)
and

c±(x, x′, µ)) =
t′ − t± |~x′ − ~x|√

2µ
.

It is easy to see that for x′ in the lightcone of x, one has that the limit of µ to
zero of ReWµ(x, x′) vanishes and the same holds when x′ is null related. The
convergence of the right hand side towards spacetime infinity for x′ causally
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related to x is only slow since, along a branch of t′ − t − |~x′ − ~x| = c, it goes
proportional to

1

|~x′ − ~x|
which is not quadratically integrable in ~x′. Similar results hold when x′ is
spacelike related to x albeit the computation is somewhat more difficult there
due to the reflection symmetry. It is obviously so that in Minkowski spacetime,
it will never be possible to get the integral∫

|∆F,µ(x, y)|2 dxdy =

∫
|Wµ(x, y)|2 dxdy

finite due to the translation symmetry. However, this is not something we should
be ambitious of as such integrals have nothing to do with real physics. We shall
examine now wether this weak asymptotic behavior is sufficient to get finite
loop diagrams by studying some cases which usually give infinite results. Before
we proceed, let us notice that, under the agreement that the coincidence limit
is defined by the causal presciption, we have

Wµ(x, x) =
1

4π2

∫ ∞
0

dk ke−2µk2

=
1

4π2
√

2µ

which is a finite number usually much larger than one since µ is taken to be
small. Therefore, the simpelest one vertex correction to the propagator from x
to y reads

Oµ(x, z) =
−iζ

4π2
√

2µ

∫
M

∆F,µ(x, y)∆F,µ(y, z)dy

where ζ > 0 is the coupling constant of the theory. We will now isolate a,
fairly special, subintegral which diverges to infinity: consider the geometrical
situation where z is in the future of x and y in the future of z. These three
points determine a plane and consider now the set of spacetime point y′ such
that

c−(x, y′, µ) = c−(x, y, µ)

and
c−(z, y′, µ) = c−(z, y, µ).

The set of y′ constitutes a two dimensional manifold as it is the intersection of
two three dimensional manifolds and the product ∆F,µ(x, y′)∆F,µ(y′, z) behaves
as

∼ 1

8(2π)6µ

1

|~y′ − ~x| |~y′ − ~z|

(
− 1

c−(x, y, µ)g(c−(x, y, µ))

(
1− e−c−(x,y,µ)2

)
+ i

√
π

2
e−c−(x,y,µ)2

)
(
− 1

c−(z, y, µ)g(c−(z, y, µ))

(
1− e−c−(z,y,µ)2

)
+ i

√
π

2
e−c−(z,y,µ)2

)
for sufficiently large |~y′|. It is clear that the integration of this expression over
the one dimensional manifold defined as the intersection of the previous two
dimensional manifold with the plane formed by x, y, z diverges linearly (since

we have to take into account a |~y′|2 coming from the measure). One can “smell”
that this pathological behavior of well chosen subintegrals is going to cause gen-
eral trouble which brings us back to a suggestion made at the end of section
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two. That is, we have to include friction on the propagation of the signal as
well; however, this friction should be momentum independent as is dictated by
Lorentz invariance. Obviously, we might just have excluded loop diagrams of
this type since no propagation from x to x should ever happen but one might
envision problems with other diagrams containing two interaction vertices with
one loop and four externel legs. Naively, a logarithmic divergency might occur
there.

In this short intermezzo, we find the physical principles, and appropriate for-
mula, behind a friction term imposed upon propagation. This delivers the ul-
timate death blow to unitarity, something which has for long been envisioned
by this author [2]. The reader should understand very well that our formalism,
so far, is Lorentz covariant in spite of the local momentum dependent supres-
sion terms on the amplitudes φµ(x, ka, y). The propagation aspect does not
depend upon any local frame of reference6 and this is all experiments reveal so
far. Therefore, we have to preserve this salient feature and we now look for the
maximal extension of the physical law behind the determination of φ(x, ka, wb)
obeying this principle. In [1], we came to the prescription for φ(x, ka, wb) by
means of

φ(x, ka, wb) = φ(x, ka, wb, 1)

where
d

ds
φ(x, ka, wb, s) = iwµ(s)kµ(s)φ(x, ka, wb, s)

with kµ(s) parallely transported over the geodesic in affine parametrization s
with tangent vector wµ(s) fixed by initial conditions at s = 0 given by 1, ka

and wb respectively. The unique solution clearly is given by the exponential
function

φ(x, ka, wb) = eik
awa .

The reader notices that the equation in time s is reparametrization invariant
with respect to general, orientation preserving diffeomorphisms of the real line.
We now ask ourselves the question what kind of “energy” term could be added
which respects Lorentz covariance. As mentioned already, we assume that our
geometry provides for a unit timelike vectorfield V µ causing friction in the
creation and annihilation of particles at definite spacetime points: as is well
known, a unit timelike vectorfield determines a unique Riemannian metric tensor
hµν(x) as

hµν = 2VµVν − gµν
given our signature convention (+−−−). The reader should keep in mind that
all indices are raised and lowered with the Lorentzian metric and associated
vierbein; so hab = eµae

ν
bhµν with the standard vielbein eµa . With these lessons in

mind, we can now write down another covariant energy term given by√
hab(xwc(s))wa(s)wb(s)

where wµ(s) = dxµ(s)
ds . So, our differential equation becomes

d

ds
φκ(x, ka, wb, s) =

(
iwµ(s)kµ(s)− κ

√
hµν(xwb(s))wµ(s)wν(s)

)
φκ(x, ka, wb, s)

6By this, I mean that the momentum only couples to the zero’th and first derivatives of
the vielbein.
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giving rise to the solution

φκ(x, ka, wb) = eik
awae−κ

∫ 1
0

√
hµν(x

wb
(s))wµ(s)wν(s)ds.

In our case of Minkowski spacetime, and some vielbein with e0 = ∂t, hab = δab
and

φκ(x, ka, y) = eik
a(ya−xa)e−κ|y−x|.

For sake of convergence, it is assumed that the real part of κ is greater than
zero. It turns out that this surpression mechanism is sufficient as integrals of
the kind ∫

∆F,µ,κ(x, y)∆F,µ,κ(y, z)

are in the same “function class” as ∆F,µ,κ meaning they have similar fallof
properties towards infinity so that the proof of perturbative renormalizability
becomes self evident7. Roughly speaking, all cases are covered if integrals of the
kind ∫

dye−κ|x−y|−ρ|y−z|

where κ, ρ > 0 belong to the same function class as e−ζ|x−z| for some other
ζ > 0. From a simple triangle inequality estimate, one obtains that

1

2
|x− z|+

∣∣∣∣y − x+ z

2

∣∣∣∣ ≤ |x− y|+ |z − y|
for
∣∣y − x+z

2

∣∣ ≥ |x− z|. This splits the integral into two parts as follows

e−
1
2 min{κ,ρ}|x−z|

∫
|y− x+z

2 |≥|x−z|
e−min{κ,ρ}|y− x+z

2 | dy+ e−min{κ,ρ}|x−z|
∫
|y− x+z

2 |≤|x−z|
dy

and this may further be bounded by

2π2

(
6

(min{κ, ρ})4 e
− 1

2 min{κ,ρ}|x−z| +
1

4
e−min{κ,ρ}|x−z| |x− z|4

)

where 2π2 equals the volume of the three dimensional unit sphere with radius
one. These functions obiously belong to the same class as xne−κx ≤ ae−ζx for
some a > 0 and 0 < ζ < κ for all n. The same technique can be applied to an
arbitrary number of points x, z, . . . in the integral as the reader may easily verify
for himself. The bound above is slightly inconvenient because of the division of
min{κ, ρ} by a factor of two in the exponential; this can however be repaired
by noticing that

|x− z|+
∣∣∣∣y − x+ z

2

∣∣∣∣ ≤ |x− y|+ |z − y|
for
∣∣y − x+z

2

∣∣ ≥ 3
2 |x− z| which would only change the coefficients in the poly-

nomial. Hence, we are completely set for perturbative finiteness and hopefully
also for nonperturbative finiteness.

We proceed now with the computation of the two point functionWµ,κ(x, x′; Λ, α)

7Although the proof of convergence of the series is more involved as we will see later on.
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in the cosmological vacuum for x′ in the causal future of x where we have in-
cluded both momentum dependent friction on the creation and annihilation of
particles as well as momentum independent friction on the propagation of infor-
mation. Denoting by ~σ(x, x′; Λ, α) = (σi(x, x

′; Λ, α)), where the i index refers
to the spatial part of the vierbein and not to the space components of σµ, and
correspondingly

|~σ(x, x′; Λ, α)| =
√∑

i

σi(x, x′; Λ, α)2

we arrive, after some algebra, to

Wµ(x, x′; Λ, α) =
1

8π2

∫ ∞
0

dk
k√

k2 +m2

∫ k

−k
dze−i

√
k2+m2σ0−µ(1+cosh2(γ))(k2+m2)

e
−µ sinh2(γ)

(
z+
(

cosh(γ)
sinh(γ)

√
k2+m2+i

|~σ|
2µ sinh2(γ)

))2

e
µ sinh2(γ)

(
cosh(γ)
sinh(γ)

√
k2+m2+i

|~σ|
2µ sinh2(γ)

)2

where we have surpressed all dependencies upon x, x′,Λ, α in the right hand
side and, as mentioned previously, this expression only holds for x′ in the causal
future of x. At this point, it is instructive to give some comment about the
general structure of the integral. The µ surpression terms we included are suf-
ficient for our purposes just as it is the case for Minkowki. This property is
rather independent of the behavior of γ which we have shown to converge to
an asymptotic, finite negative value in the limit of the parameter time towards
plus infinity for future timelike related events. It may be better to replace the
(Vak

a)2 surpression term by a habk
akb surpression where hab is, as before, the

Riemannian metric determined by the timelike vectorfield. The relevant esti-
mates for Wµ will be thighter for this choice and therefore a proof of convergence
for our choice for cosmological spacetimes should automatically result in a gen-
eral theorem about spacetimes with a canonical Wick transform defined on it.
It is immediately seen that the absolute value of Wµ(x, x′; Λ, α) is bounded by a
universal constant proportional to 1√

µ , which is actually sufficient for our proof

of finiteness since we have to take into account the Riemannian surpression term
due to κ. However, we are interested in more detailed properties of this function
and carry on.

Coming back to the calculation of Wµ(x, x′; Λ, α), the integral over z is a Gaus-
sian one which cannot be exactly done, but to which we can find a useful upper
bound. In particular, we estimate integrals of the type

F (k, c) =

∫ b(k)

a(k)

dze−a(z+ic)2

for c ≥ 0. Taking the differential of F (k, c) with regards to c results in

d

dc
F (k, c) = i

∫ b(k)

a(k)

d

dz
e−a(z+ic)2

= i
(
e−a(b(k)+ic)2

− e−a(a(k)+ic)2
)
.

Therefore we obtain that

|F (k, c)| ≤
∫ c

0

dzeaz
2
(
e−a b(k)2

+ e−a a(k)2
)

+

√
π

2
√
a
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and upon using our previous results, the latter expression reduces to

|F (k, c)| ≤ 1

acg(
√
ac)

(
eac

2

− 1
)(

e−a b(k)2

+ e−a a(k)2
)

+

√
π

2
√
a
.

For the purpose of asymptotic analysis, we may clearly ignore the constant on
the right hand side, since the resulting expressions converge exponentially fast
in the limit for |~σ| towards infinity, and we obtain that

|Wµ(x, x′; Λ, α)| ∼ 1

4π2 |~σ|

∫ ∞
0

dk
k√

k2 +m2

e−µ(k2+m2)

(
e−µ sinh2(γ)(k+

cosh(γ)
sinh(γ)

√
k2+m2)

2

+ e−µ sinh2(γ)(k− cosh(γ)
sinh(γ)

√
k2+m2)

2
)
.

which shows that Wµ(x, x′; Λ, α) converges to zero in the limit for |~σ| to infinity
for x′ future causally related to x. It is much harder to obtain an estimate in
case |~σ| remains finite but σ0 blows up to plus infinity. The only result I am
able to obtain is that of convergence in σ0 along |~x′ − ~x| = 0 = ~σ and γ = 0 as
1
σ0

.

We now turn our head towards the study of the impact of κ on Wµ,κ(x, x′; Λ, α).
Denote by

E(x, x′; Λ, α, κ) = e−κ
∫ s̃
0

√
hαβ

dxα

ds
dxβ

ds

the exponentiated energy along the timelike geodesic connecting x with x′, then

Wµ,κ(x, x′; Λ, α) = E(x, x′; Λ, α, κ)Wµ(x, x′; Λ, α)

and, in case |~x′ − ~x| = 0, then one has

E(x, x′; Λ, α, κ) = e−κ|t
′−t|.

In order for every subintegral of

α3

∫
dx′e3

√
Λt′ |∆F,µ,κ(x, x′;λ, α)|n

to be finite, it is therefore necessary that κ > 3
√

Λ, a condition which did not
appear in Minkowski spacetime. Regarding the proof of perturbative finiteness,
we will require some other bound to which we will come back to in a short while.
Actually, without any further computation, the reader should realize that our
cosmology behaves very different from ordinary Minkowski; on one side, one has
the existence of all horizons and on the other, one notices that Minkowski can
be conformally compactified while the Friedmann cosmology can’t. The latter
feature causes scattering processes in the future to occur with a higher amplitude
which might ultimately not be surpressed anymore by our geodesic energy terms
E(x, x′; Λ, α, κ). To jump a bit ahead in our terminology, this would forbid Type
III quantum theories but not Type II or Type I; in Minkowski spacetime, there is
no such distinction between the past and the future and therefore, such behavior
is not to be expected. Coming back to our computation, one immediately sees
that ∫

ds

√
hαβ

dxα

ds

dxβ

ds
=

∫ √σ(x,y)

0

ds

√
2

(
dt

ds

)2

− 1
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where
dt

ds
=
v + 1 + (v − 1)e−2

√
Λs

v + 1− (v − 1)e−2
√

Λs

and expression wich decreases from v to 1 at s =∞. In Minkowski Λ = 0, α = 1
and this expression equals

√
2(σ0(x, y))2 − σ2(x, y) = |x−y|; for a cosmological

spacetime this is very different. In general, we have that,∫ √σ
0

ds

√
hαβ

dxα

ds

dxβ

ds
≥
√
σ ∼ |t′ − t|

for |t′ − t| large and |~x′ − ~x| < e−
√

Λt

α
√

Λ
fixed. Moreover, the inequalities and

similarities become equalities in the limit for σ to infinity. Note that σ is
infinite within the lightcone and zero on the lightcone in the limit for t′ towards
∞, but the pathology on the lightcone needs to be studied further. Actually,
one obtains that the energy increases from the symmetrical point |~x′ − ~x| = 0
towards the boundary of the lightcone along the “hyperbola” of constant σ
which is contained within a domain of compact ~x′. We need a finer estimate in
order to obtain conclusive results on convergence; some algebra shows that∫ √σ

0

ds

√
hαβ

dxα

ds

dxβ

ds
≥ 1√

Λ

√
v + 1

v − 1ln

 1 +
√

v−1
v+1

1 +
√

v−1
v+1e

−2
√

Λσ

+ ln

1−
√

v−1
v+1e

−2
√

Λσ

1−
√

v−1
v+1


upon substitution of v by

v =
2e−
√

Λ(
√
σ−(t′−t)) − 1− e−2

√
Λσ

1− e−2
√

Λσ
.

In order to study the σ to zero limit, we only need to take into account the
second term; this one reduces in leading order to

1√
Λ

ln

(
3 + 1

1−e−
√

Λ(t′−t) + 1

e
√

Λ(t′−t)−1
1

1−e−
√

Λ(t′−t) + 1

e
√

Λ(t′−t)−1
− 1

)
meaning that for large |t′ − t| this expression behaves approximately as |t′ − t|+
ln(4)√

Λ
which is all we need. Actually, due to the nature of the Riemannian metric,

we immediately have a lower bound of |t′ − t| on the (Lorentzian) energy and
an upper bound on the Riemannian distance of |t′ − t| + 1√

Λ
; the constant of

ln(4)√
Λ

is the only nontrivial thing in the above formula and the reader can easily

see that this estimate is very accurate. This means that in the limit for σ equal
to zero and |t′ − t| towards infinity, the exponentiated energy goes as

E(x, x′; Λ, α, κ) =
1

(σ0)
κ√
Λ

something which falls quicker off than 1
(σ0)3 given our previous bound on κ.

When integrating over the past lightcone, we have that the |~x′ − ~x| range goes
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as e−
√

Λt′

α
√

Λ
and we have that for for any β < 1, there exists a t̃ < t such that for

t′ < t̃ one has that
√
σ(x, x′; Λ, α) > |t′ − t| for |~x′ − ~x| ≤ β e

−
√

Λt′

α
√

Λ
. This is a

reflection of the fact that all timelike geodesics converge to spacelike∞ for t′(s)
going to −∞. Actually, towards the past, we have that the local energy is an
increasing quantity and

∞ >

√
hαβ

dxα

ds

dxβ

ds
≥
√

2v2 − 1

which means that the energy is larger than√
2(σ0)2 − σ.

Akin to the future timelike case, this lower bound is actually insufficient as in
the limit for t′(s) to infinity, one obtains that

σ0 =
√
σ

1 + e2
√

Λσ

e2
√

Λσ − 1

which converges to 1√
2Λ

in the limit for σ to zero. Just like in the previous case,

one could perform the full integration,∫ 0

−
√
σ

ds

√
hαβ

dxα

ds

dxβ

ds
≥ 1√

Λ

√
v + 1

v − 1ln

1 +
√

v−1
v+1e

2
√

Λσ

1 +
√

v−1
v+1

+ ln

 1−
√

v−1
v+1

1−
√

v−1
v+1e

2
√

Λσ


where

v =
1 + e2

√
Λσ − 2e

√
Λ(t′−t+

√
σ)

e2
√

Λσ − 1

or simply remark that the energy is always greater or equal to |t′ − t|, which is
all we actually need.

Similar convergence properties apply for spacelike geodesics, as the reader may
want to verify for himself which finishes the discussion of this section. The
only important conclusion is that the energy is always larger that the t′ dis-
tance travelled which is sufficient to obtain convergent integrals. There remains
something to be said about the Riemannian metric hαβ associated to our cosmo-
logical spacetime: it is a metric of constant negative sectional curvature −Λ and
therefore, balls in this metric have a volume which blows up at most exponen-
tially fast in the radius due to a well known theorem in Riemannian geometry.
Our Riemannian space has constant sectional curvature but is again not maxi-
mally symmetric; this behavior of balls in the Riemannian metric poses however
no problem for our Type II quantum theory as the volume of the past lightcone
blows up linearly in −t′ for t′ towards minus infinity in opposition to the volume
of the future lightcone which blows up exponentially in

∣∣t̃− t∣∣ and the t < t′ < t̃
slice of the lightcone contains the intersection of the future lightcone with the∣∣t̃− t∣∣ ball which reaches above the t̃− t− 1√

Λ
slice and therefore has a volume

scaling as e3
√

Λ(t′−t) which shows indeed exponential scaling of the balls for late
times t′.
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6 Finiteness of Feynman diagrams and the in-
teraction series.

Prior to embarking upon the easy proof that Feynman diagrams are finite and
the somewhat more involved argument that the series in terms of the coupling
constant is analytic, let us repeat some of the crucial definitions for a spin zero
bosonic theory made in [3]. There, we defined quantities similar to the r-point
functions in quantum field theory as follows. Consider n points xi in spacetime
which are spacelike separated to one and another8 and likewisem points yj which
are not to the relativistic past of xi. The xi form an IN state |INxi, i = 1 . . . n〉
while the yj constitute an OUT state |OUT yj , j = 1 . . .m〉 and the only quantity
we are interested in computing is the potentiality 〈OUT yj , j = 1 . . .m|INxi, i =
1 . . . n〉 for the IN state to evolve into the OUT state. In [3], we came up
with rougly speaking three definitions which we labelled as Type I, II and III.
The distinction is a deep philosophical one and stems from the fact that, in a
general evolving cosmology, it is impossible to define an instantaneous vacuum
state as has been explained in [2]. In our formalism, we do not speak about
states, operators and so on so we look at things from a different vantage point
of view, which opens new possibilities and lines of thought. Let me explain
these differences again, the proofs in this section we will provide for do not
depend upon them and are universal amongst all types. Apart from a local
physical arrow of time, every quantum theory needs a notion of instantaneous
existence, by which I mean the following: I exist now, what kind of other stuff
in the universe exists at this point? From the point of relativity, this question
seems to be abundant since everything is deterministic and the future exists in
a sense we exist right now. In quantum theory, this is not the case, however,
given that the future of spacetime and matter is not fixed but uncertain and
therefore, it is impossible to speak about it in a sense which would imply that
it exists right now. Hence, we have to complement our situation exlained so
far with an initial SI and final SF spatial hypersurface associated to the IN
state and OUT state, meaning that they contain xi and yj respectively and are
disjoint. Associated to two hypersurfaces, one can define the sandwished region
R(SI , SF ) as the set of events x such that every curve emanating from x either
remains within R(SI , SF ) or leaves it by crossing SI ∪SF ; hereby, it is assumed
that any inextendible past oriented causal curve leaves R(SI , Sf ) at SI and
any inextendible future oriented causal curve leaves R(SI , SF ) at SF . Note that
this definition is framed as such that closed timelike curves are allowed for given
that we did not demand the hypersurfaces to be achronal; moreover, SI , SF are
chosen such that R(SI , SF ) is nonempty. In a classical theory of the universe,
one can speak about the realized past as a classical spacetime to the past of SI ;
this is not so in a quantum theory where the past consists out of measurements
made and those do not constitute a classical spacetime at all since spacetime
is rather unknown when no measurement occurs. In that regard, for classical
spacetime theories, we defined a quantum theory to be of type II when all events
past to SF have to be taken into account in the computation of the transition
amplitude 〈OUT yj , j = 1 . . .m|INxi, i = 1 . . . n〉. In a sense, this would mean
that the recorded spacetime history plays a role in the behavior of elementary
particles when evolving to the future: this is not a silly idea but one remniscent

8The definition we make can be extended to the case that they are not spacelike separated.
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of Einstein causality. Type I is the most logical one in the sense that elementary
particles do not care about the future nor about the past and all computations
have to occur within R(SI , SF ). Type III is the opposite of Type II meaning
that the potential (deterministic) future of SI beyond SF plays a role in the
determination of the relevant amplitudes; the computations in quantum field
theory are of Type II and III in the sense that the entire spacetime is taken into
account. My personal guess is that nature works according to Type I principle
but in all proofs below we shall make absolute norm estimations of scattering
amplitudes meaning that we only have to show absolute convergence in that
sense for the mixed Type II and III, in either the standard situation. From a
philosophical point of view, Type I is the cleanest principle, while Type II and
III are somewhat more far fetched but possible nevertheless; only nature knows
the true answer in this regard. For this mixed type, the transition amplitude in
φ4 theory is given by

〈OUT yj , j = 1 . . .m|INxi, i = 1 . . . n〉 =
∑
D

(−iλ)V

s(D)

 V∏
j=1

∫
M
dzj

√
g(zj)

 ∏
E

∆F,µ,α(E)

where D denotes a diagram with V internal vertices all connected to some exter-
nal point, E denotes an edge of the diagram and ∆F (E) the Feynman propagator
attached to the edge. Finally s(D) is a symmetry factor of the diagram which
equals the number of graph isomorphisms leaving the external points fixed9.

We now investigate wether, on the backgrounds considered, every Feynman dia-
gram gives a finite result. Here, it will be important to obtain thight bounds in
order to be able to investigate analycity of the perturbation series in a suitable
range of our constants κ,Λ, µ. As mentioned previously, we will show perturba-
tive finiteness for Minkowski concerning the most general mixed Type (II and
III) and for the Friedmann universe for Type II; here, we will argue that Type
III is potentially troublesome regarding diagrams with many vertices. In gen-
eral, our local Wick rotation preserves the spacetime volume and therefore, a
desired property would be that for any x, we have that∫

M
P (d(x, y))e−κd(x,y)

√
h(y)dy < R(P, κ)

for any κ > 0, polynomial P and some R(P, κ) > 0. Here R(P, κ) is supposed to
go to zero in the limit for κ to plus infinity. Such Riemannian spaces are called
exponentially finite; Euclidean spacetime, the Wick rotation of Minkowski, is
exponentially finite but the Wick rotated Friedmann cosmology is not so when
considering the entire asymptotic future. It is however exponentially finite to-
wards the geodesic past of every point x restricted to a region t ≤ t̃ and it is
this result we will use in our exposition. In other words, the exponential blow
up in the radius r for balls B(x, r) poses no problem when considering the inter-
section with the region contained within the Lorentzian horizon of x restricted
to that slice, since for large r the intersection of the ball with that region blows
up linearly in r as opposed to the short scale r4 behavior. Hence, from now on,

9A graph isomorphism is a permutation of internal vertices and edges leaving all relations
fixed.
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we switch over to Riemannian geometry, the behavior of

Wµ(x, x′; Λ, α)

only being important by means of its upper bound of

c(m,µ) =
e−µm

2

8
√
µπ

3
2

for as well Minkowski as the Friedmann cosmology. Actually, this constant is
universal as it does not depend upon the details of the geometry but only on µ
and m; therefore, everything we say holds for spacetimes with an exponentially
finite Wick rotated Riemannian geometry. Let us start by mentioning an obvious
equation which is that

V − I = C − L

where V is the total number of internal vertices of a Feynman diagram, I its
number of internal lines, hereby excluding the legs towards the external points,
and L is the number of loops. Finally, C is the number of components of a
graph; for a φ4 theory and for connected diagrams C is bounded by

C ≤ n+m

2

where n,m are the number of IN and OUT vertices respectively. We will also
assume that our Riemannian manifold satisfies a volume bound for the ball of
radius r around x by

Vol4(B(x, r)) ≤ Kr4

for some metric dependent constant K. Likewise, we will uphold a bound of
this kind on the spheres of radius r; that is

Vol3(S(x, r)) ≤Mr3.

Minkowski and our cosmological spacetimes, for the restrictions of the balls to
the region within the geodesic region past to the slice of constant t̃, satisfy this
property. With these conventions, we have that the absolute value of every
Feynman diagram is bounded by

c(m,µ)I+n+m

∫
dz1

√
h(z1) . . .

∫
dzV

√
h(zV )

∏
internal lines (zi,zj)

e−κd(zi,zj)
n∏
i=1

e−κd(xi,z(xi))
m∏
j=1

e−κd(yj ,z(yj)).

Moreover, for φ4 theory, one has that

I +
n′ +m′

2
= 2V

where 0 ≤ n′ ≤ n and 0 ≤ m′ ≤ m so that the prefactor may be exactly written
as

c(m,µ)2V+n+m
2

and

2V − n′ +m′

2
≥ L = V + C − n′ +m′

2
≥ 0
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so that V ≥ n′+m′

4 . Here n′,m′ denote the number of IN or OUT vertices which
are connected to an internal vertex. Before we proceed, let us mention some
easy to see fact about the Friedmann cosmology; if z is within the geodesic
horizon of x and y, then it is in the geodesic horizon of the midpoint of x
and y in the Riemannian metric10. This observation is most convenient in
the following estimates which constitute a straightforward generalization of our
previous inequalities. Consider n points zi and take the integral∫

M
dz
√
h(z) e−κ(

∑n
i=1 d(zi,z))

then, as previous, this may be bouded by

e−
κ
n−1

∑
i<j d(zi,zj)(∫

y; ∃zi,zj :d(y,
zi+zj

2 )< 3
2d(zi,zj)

√
h(y)dy +

∫
y; ∀i,j d(y,

zi+zj
2 )≥ 3

2d(zi,zj)

dy e
− κ

2(n−1)

(∑
i<j d(y,

zi+zj
2 )

)√
h(y)

)
.

Note here the factor of 2 in the denominator of the exponential in second inte-
gral; this originates from the fact that in a general Riemannian space

d(x, y) + d(y, z) ≥ d(x, z) +
1

2
d(y,

x+ z

2
)

for d(y, x+z
2 ) ≥ 3

2d(x, y) whereas in Euclidean space this factor 1
2 is not present.

The latter formula can again be estimated by

e−
κ
n−1

∑
i<j d(zi,zj)

(3

2

)4

K
∑
i<j

d(zi, zj)
4 +R

(
1,

κ

2(n− 1)

)
and the only thing the reader should notice is the division of κ through n − 1
which lowers convergence for diagrams with multiple internal vertices. We will
not apply the above estimate consistently but look for a finer estimate which
will provide one with better convergence properties. Actually, we will be set
with a Kirchoff diagram where the flow is given by some rational proportion
of κd(xi, zj) or κd(yj , zk); at any instant of the computation, these proportions
add up to one. The optimal way of spreading around is by ensuring that the
you do not subdivide into smaller portions; in that way, the surpression factor
at the vertex remains constant κ. Homogeneous fractalizing is the worst that
can happen since it lowers κ substantially after a few vertices have been run
through. Loops make no difference whatsoever, in case we have a loop and there
are three external vertices, two with current κ and one with current 2κ then we
obtain that κ does not get renormalized, nor at the vertex nor at the legs. Also,
in case we have a loop with only two external points each with current κ, there
is no lowering of κ neither at the vertex nor at the legs.

Let us reason why homogeneous spreading is a bad idea; in case any of the
currents associated to a leg consists out of several pieces, then a lowering of κ
will occur, but such lowering will always be less than is the case for a vertex

10This follows most easily from the convexity of the horizon of z in the Riemannian metric
d which the reader may prove as an exercise.
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with four external currents associated to four distinct graph points. We will
now determine the maximal contribution of homogeneous fractalizing: start at
any vertex zi, then the most severe contribution regarding the integral comes
when no loop is present and likewise, this situation divides κ through the largest
number three. Pick now any neighboring vertex, then again, the largest division
occurs again when there are three other external legs, dividing the 1

3 leg into 3
times 1

9 and the remaining 2
3 per other leg by two which gives 1

3 and yields the
surpression factor of κ

6 on the second vertex. In the third step, the worst that
can happen is that a leg of the first and second vertex meet since that would
cause maximal diversification. The leg from the first vertex contains two factors
1
3 and 3 factors 1

9 and the same for the leg coming from the second vertex.
Therefore, diversification would lead to 4 times 1

6 and 6 times 1
18 on the other

two legs, giving a surpression of κ
12 at the third vertex. Clearly, this reasoning

is catastrophic and we now turn our head towards no fractalizing.

This case is easy and one can partition the set S = {xi, yj} into pairs (α2i−1, α2i);
with these reservations, the quantitative result reads

c(m,µ)2V+n+m
2 P (d(α2i−1, α2i) ; i = 1 . . .

n′ +m′

2
)e−κ

∑n+m
2

i=1 d(α2i−1,α2i)

where P is a polynomial of degree 4V and the highest order coefficient is
bounded by (

3

2

)4V

KV
(
24
)V (V−1)

2 .

It is the behavior of this last coefficient which makes our bound on the series
nonanalytic. The above formula is always true for any diagram as the reader may
wish to show by induction on the number of internal vertices, by integrating out
a vertex without altering the connectivity properties11, and does not hinge upon
special features of the diagram such as the property that there exists a partition
of the edges into paths, connecting the exterior points, and loops such that no
internal vertex belongs to two loops. It is always possible to cover a graph by
means of curves connecting the exterior points and loops but sometimes it is
the case that two loops always intersect12. The reader might wonder wether
the above estimate is not too crude given that we do not rely upon the details
of Wµ(x, x′) at all. Also, we replaced the Lorentzian geodesic energy by the
inferior Riemannian distance, wich is an approximation as well. My answer is a
resounding no: these approximations will not significantly influence the result
for the following reasons. RegardingWµ, only very slight falloff behavior towards
infinity can be shown which effectively can be minorized by means of a slight
renormalization of κ (increasing its value a bit). Concerning the replacement of

11Such a vertex always exists as the following reasoning shows: start at an exterior vertex
and go in the diagram. On the first vertex one meets, there is another edge which can be
connected to a different exterior vertex given that every vertex is connected to at least two
different exterior vertices. Suppose now that the remaining two edges are part of a loop, then
one can integrate this vertex out and connect the remaining vertices without changing the
connectivity properties of the diagram. Suppose, otherwise, that the remaining edges cannot
be joined by a loop; then any vertex connected by exactly one the two remaining edges must
have another edge which is connected to an exterior point. Therefore, we can integrate out
this vertex and connect the remaining vertices in such way that the connectivity properties
are preserved.

12The reader may easily find an example of such diagram.
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the energy term by the Riemannian distance; not much is to be expected here
since they coincide in Minkowski given that the geodesics of both metrics are
the same. Therefore, in a general analysis, these details should not matter.

As always, one has to be careful about what I mean with the fact that no better
estimate would be possible: what I meant is that it would not be possible to
obtain a better bound on the asymptotic behavior of the amplitude when some
particles are far away from one and another. In general, it is possible to obtain
a bound which does not depend at all on the details of the interaction vertices
as well as on the distances between the exterior vertices. It is simply given by

c(m,µ)2V+n+m
2 (max{1, R(1, κ)})V

which is most easily proved by induction on the number of internal vertices V .
If V = 0, then the bound is easily seen to hold since e−κd(α,β) < 1 for every leg
joining two external vertices. Suppose now the bound is true for V ≥ 0, we will
prove it for V +1. Take any internal vertex connected by one edge to an exterior
vertex α and remove it; the effect is that we obtain a diagram with four extra
external vertices (we copied four times the internal vertex) but with one internal
vertex less. Remove the edge to α from the diagram, then the remaining part
is bounded by

(max{1, R(1, κ)})V−1
.

Now there remains to identify the four vertices again and perform the remaining
integration over this vertex; the latter gives an extra factor of R(1, κ) because
we still have the leg to α which proves the result. This shows that the diagram
blows up in a suitable way, but there remains of course the “entropy” factor
associated to all Feynman diagrams with V internal vertices and n IN and m
OUT vertices. The latter remains to be investigated but it is very well possible
that unitarity may have to be given up to make the series analytic. What lesson
to learn from this? I know of many field theorists who would say that our series
determines a C∞ function, but such line of reasoning is quite silly since it would
only determine that function in an infinitesimal neighborhood of zero in the
coupling constant λ which is desastrous. Our theory would be virtually empty
if I were to believe that; only with some slight handsight could one say that the
first few terms give a good indication for the behavior of the true function in
some unknown neighborhood of λ = 0. I think such line of reasoning is simply
demented: a theory is a theory and then it is well formulated or it is none. To
my liking, it indicates that for large V we might need heavier surpression terms
in the series: coming back to our original definition, there was indeed no good
reason why the coefficient should be

(−iλ)V

s(D)
.

Every physicist knows of course it comes from unitarity, but we already came to
the conclusion we had to dispell unitarity in the free theory when defining the
two point function. I would see the eventual failure of perturbative finiteness,
or analycity, as another failure of unitarity, even on Minkowski.

31



7 Conclusions.

In this paper, we have proved perturbative finiteness of our recently proposed
quantum theory [1, 3] for a general type of backgrounds; a result which has no
precedent in the physics literature. No strings or extended objects were needed
for this result and no distinction between renormalizable and non-renormalizable
theories exists. We have shown that our result is actually generic within the
class of exponentially finite Riemann spaces and therefore, our line of thought
was directly amenable to general analysis. Of course, the sceptic may argue
that we did not include particles of nonzero spin in the picture but this is not
going to change anything to our results as only two properties are crucial: the
exponential falloff in the Riemannian metric of the two point function and the
removal of the singular structure. I must emphasize that I have not “merely”
introduced any regularization scheme of any kind: all our parameters have a
physical significance and there is no violation of Lorentz invariance whatsoever.
It is so that our notion of Lorentz invariance makes a lot of more sense than the
overly rigid, and rather unphysical, notion in standard particle theory. Much
remains to be done about this construction and we postpone further generaliza-
tions towards higher spin and an even wider variety of backgrounds towards the
future. I cannot, but emphasize again, that a few lessons had to be learned here:
(a) unitarity is dead, burried once and for all, it does not make any sense when
combined with a generally covariant spacetime language (b) the idea of partial
differential equations is a dead one too, as turned out, the features associated
to “viscous friction” were the most important ones to make the idea work out.
Therefore, pure wave propagation does not hold and is only part of the story.

It would be desirable, if necessary, to find novel physical principles to guide
us in how to modify the defining series for the interacting theory such that it
becomes analytic in all physical parameters λ, κ, µ. We postpone such quest for
the future and content ourselves with the very idea that it can be done in a
way which is faithful to experimental results. Our analysis also pointed in the
direction that Type III quantum theories should not be taken into account, at
least not in the way it is done now. In a forthcoming publication we shall point
out that a Type III theory is nevertheless possible for our vacuum cosmology
but that in that case only the

c(m,µ)2V+n+m
2 (max{1, R(1, κ)})V

bound can be shown for general diagrams. To me, Type I remains preferrable
and we will say more about this in forthcoming publications.
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