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To the undoubted displeasure of very many detractors, this research program has heretofore
focused on aspects of physics so fundamental that many of said detractors do not even acknowledge
the program as physics. This paper responds to detractors’ criticisms by continuing the program in
the same direction and style as earlier work. We present one new quantitative result regarding the
big bang and we find a particularly nice topic from fluid dynamics for qualitative treatment. A few
other topics are discussed and we present quantitative results regarding the fine structure constant
and the differential operator form of M̂3. This paper is somewhat reiterative as it calls attention
to directions for further inquiry and continues to leave the hashing out of certain details to either a
later effort or the eventual publication of results by those who have already hashed it out, possibly
several years ago by now.

“Consider a scattering experiment in which
two particles collide and turn into three par-
ticles. Ignoring internal and spin quantum
numbers, the initial and final states could
be described by wavefunctions ψ(x1,x2)
and ψ(x1,x2,x3). However, it is by no
means obvious what type of time-dependent
Schrödinger equation could allow a function
of two variables to evolve smoothly into a
function of three variables.”

∼ Chris J. Isham

PRELIMINARY

The main bottleneck in big bang cosmology is that
it is difficult to define an evolution operator that can
evolve the non-existent state of the universe, equation
(1), into the current many-particle state that satisfies
equation (2).

|ψ〉 = 0 (1)

〈ψ|ψ〉 = 1 (2)

Equation (3) shows how the quantum mechanical vol-
ume operator V̂ can be used to return the Hubble param-
eter H (or a generalized scale factor a) at some proper
time t.

〈ψ|V̂ (t)|ψ〉 := H(t) (3)

The time dependence in quantum mechanics can
be equally well represented in the operators as in
equation (3) (Heisenberg picture) or the wavefunctions

(Schrödinger picture) so it is natural to include two time
components like chronos and chiros.

Notice the following.
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Equation (4) defines a dual vector.

〈ψ| =
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−i/4

 (5)

Regarding the coefficient 1/8 for the 2̂ term in equa-
tion (4), there is a more obvious connection than that
which was given in reference [1]. The factor 1/8 seems
like it may contract with the well known factor 8πTµν in
Einstein’s equation leaving the term π available for in-
terpretation of Tµν as a description of what happens at
π̂-sites. We previously obtained the factor 1/8 by oper-
ating with the determinant [1] which is commonly un-
derstood as a type of volume operator so there is reason
to expect a deeper connection between the quantum me-
chanical volume operator in equation (3) and the volume
of some manifold holding the dynamics of general rela-
tivity. However, given that 8π appears as the coefficient
for Tµν := f3|ψ; π̂〉 [2, 3] which already has π̂-locatedness
implied in the ket, this may be nothing more than a mi-
rage. After all, 8 is not part of the ontological basis.
Perhaps the factor of π remains unhatted and in wait-
ing for projection back to the quantum picture after the
other hatted π in |ψ; π̂〉 is used in a distinct projection
from the quantum picture into the relativistic. This is
only one of very many issues, such as the connection be-
tween f3 and the energy density of the vacuum, or the
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classical formulation of the advanced potential that gives
the operator ∂3

t , that remain to be treated with rigor,
hopefully by the graduate student(s) of one who has a
grant with which to commission such work.

To make rigorous the connection between equations
(1) and (2), let us make a change in notation. The 5D
wavefunction of the objective universe shall be Ψ and the
4D wavefunction of the observer’s subjective experiences
shall be ψ. We can get the behavior of equation (7) out of
equation (6) by using any of infinitely many 4D subspaces
of Ψ.

|Ψ〉 = 0 (6)

〈ψ|ψ〉 = 1 (7)

Note the pattern of the signs {+−−−±} in 〈Ψ| and
|Ψ〉 and how it is also the metric signature of the de Sitter
spaces Σ± [4, 5]. The metric tensors g±AB for Σ± go as
follows when Aµ and Aν are an electromagnetic potential
vector and a dual vector.

gAB =

(
gµν Aµ
Aν g44

)
(8)

We have previously shown three different ways [2, 3, 6]
to use the golden ratio to derive Einstein’s equation
where the successive levels of ℵ [7] on {ℵ,H,Ω} are enu-
merated by different sequences of Φ that always satisfy
Φn+1 = Φn+Φn−1. Here we will work in the gauge where
n = 1 in the present so it is defined on Φ, the past is de-
fined on 1 and the future is defined on Φ2. The interpre-
tation for the present on Φ will be that we take normal,
symmetric, Fourier-decomposable physics defined within
a periodic domain of 2π and make use of the operation
2̂π = π + π. With two copies of π we can then send
one to Φ with π̂ = ϕπΦ̂ leaving two different but equal
entities: some chronological math on π̂ and some chiro-
logical math on Φ̂. When the observer acts to make a
measurement he selects a point that is currently in the
future and then it becomes his present [6]. Regardless of
the “actual location” of the point, his selection imposes
a gauge condition such that the “chirological interval”
between his moment and the moment of the observation
is Φ as measured along the ξ4 direction [4].

Now we specify the metrics in each of the hyperspaces
{ℵ,H,Ω} which are more or less slices of the hyperspace-
time Σ+∪ Σ−.

gAB

∣∣∣∣
ℵ

=

(
gℵµν Aℵµ
Aℵν −ϕ

)
(9)

gAB

∣∣∣∣
H

=

(
gµν Aµ
Aν 0

)
(10)
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gΩ
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µ

AΩ
ν 1

)
(11)

The chirological phase convention defined above shall
relate to the curvature parameter in the de Sitter spaces
by adding or subtracting Φ so g44 ∈ {−ϕ, 0, 1} ↔ Φn ∈
{1,Φ,Φ2}.

The linearity of quantum mechanics can be connected
to higher order differential equations through the mag-
ical identity Φ2 = Φ + 1. All possible states of Ψ and
ψ must be expressible as linear combinations of Φ̂ and
1̂ taken together with 2̂, π̂, and î, and this also has a
direct application to what must be true about M̂3. In
the process Hi 7→ Ωi 7→ ℵi+1 7→ Hi+1 we start in the
chirological phase denominated with Φ1 and then move
up one level to Φ2 in the future Ω. It is clear that the
future term Φ2 can be decomposed into a 1 term and Φ
term as is required for a periodic behavior in the system:
the phase associated with Ωi is decomposed to give those
associated with ℵi+1 and Hi+1 so that the process can
repeat forever with Φ2 arising periodically on Ωi+1, Ωi+2,
etc.

If we take the chirological phase as the fundamental
entity and determine the g44 in equations (9-11) by sub-
tracting Φ it makes sense that g44|ℵ is negative. However,
if we start with a tier of curvature parameters that sat-
isfy Φn+1 = Φn+Φn−1 we will never get a negative value
and we will never get the 0 needed to have a flat universe
in the present. It appears that the phase must determine
the curvature and not vice versa but we will have more to
say about this below, and also a few words regarding the
additive factor of Φ when all other instances of Φ have
been multiplicative.

TWO NUMBER LINES

The original idea for a second number line such as that
which appears in this research – chiros as opposed to the
original number line: chronos – came about in a study
of the period doubling cascades that arise in chaotic dy-
namics. For example, consider convective rolls in a finite,
bounded volume of fluid heated from below as in figure 1.
When the temperature gradient in the cell reaches a first
critical value the rolls will become unstable: waves be-
gin to move along the rolls’ axial direction with some
frequency f0. As the heat increases, more waves appear
with frequency f0/2, and then as heating increases more
it will be possible to observe waves with frequency multi-
ples of f0/4, then f0/8, etc., until period doubling exceeds
the resolution of the experimental apparatus and even-
tually the onset of turbulence is complete. See reference
[8].

Consider the case when the heat is only slightly above
the critical value needed to induce instability and there
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FIG. 1. Two convective rolls form in a finite volume of fluid
when it is heated from below. When the heat gradient is very
small, the rolling is laminar but when the gradient is increased
beyond some critical value the rolls become unstable. When
a thermometer is inserted into the cell, it will show that the
temperature at the location of the probe oscillates with some
frequency f0. Figures excerpted from reference [8].

are two wave modes observed on the convective rolls. The
modes have frequencies f0 and f0/2 as shown in the sec-
ond row of figure 2. Furthermore, consider the theoretical
description of the system as a differential equation con-
trolled by a dissipation parameter k and not the physical
system itself. The differential equation describes rela-
tionships between different derivatives of position with
respect to a single number line: chronos. Although it
is irrelevant, for visual purposes we present the example
given in reference [8].

ẍ+ kẋ− x+ 4x3 = A cos(ωt) (12)

We want to consider the critical value of k that led
to the period doubling of the first order instability upon
appearance of the second order mode (figure 2). As we
increase k in small increments we will see the f0/2 mode
decrease in amplitude until the final increment ∆k moves
past the critical value and the period of the oscillation is
halved so that the phase space trajectory returns to the
limit cycle at the bottom of figure 1. The f0/2 peak is no
longer there and the solutions to the differential equation
will have a period only half as much as it was when the
f0/2 mode was arbitrarily small. For describing an actual
physical system with a limited resolution this is fine. For
understanding the dynamics of the transitions into and
out of chaos there is something lacking. It is impossible
to examine the dynamics arbitrarily close to the value
of k where the second order instability occurs because
the existence of the critical value can only be inferred
by examining the solutions when k is above or below it.
What is k’s numerical value at the critical point? We
have no way to know.

Instead of stepping the friction by small increments
∆k, consider the case when k is varied smoothly. Start-
ing again at a value of k when there are two frequency
peaks f0 and f0/2, we begin to increase k in parallel with
an adequately proportional smooth rescaling of the plot
around f0/2 so that the amplitude of the peak appears
unchanged in relation to the viewing window. As k de-
creases smoothly, the peak appears the same and only
the vertical scale changes. This can go on forever and
the peak will not disappear though it may become nec-
essary to rescale the plot infinitely faster than the rate
of change of k. This could never be accomplished on a
finite computer but in principle it illustrates the effect we
are calling attention to. In the purely analytical world of
pen and paper it is trivial to scale the window infinitely
faster than the variation of k by using hyperreal numbers
to describe the rate of change of each.

How can we have a differential equation description
of the system? Differential equations describe smooth
changes but peaks can never disappear or appear out
of nothing in a smooth variation such as that described
above. Either the peak was always there and just very
small or it was never there with amplitude zero and must
retain that amplitude forever. We can analyze the pe-
riod doubling in the experiment with the equation that
describes it but how can we can analyze the behavior of
the descriptive equation around the critical point when
there is no smooth transition from period T0 to period
2T0?

One way to resolve this problem is to define an initial
condition, for example, of a single instability with period
T0 on two number lines. All the oscillating modes are
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FIG. 2. More figures from reference [8] describe the onset of
turbulence through the period doubling cascade. The period
of the oscillations doubles with the appearance of an f0/2. It
doubles again to 4T0 and again to 8T0 as the system becomes
increasingly unstable.

already present but f0 is on the number line that de-
scribes the experiment and the other modes are on the
other one. This is more or less the same idea we used to
describe the state/qubit system in reference [7]. Let the
number lines intersect at the period doubling values of k
in a way such that the appropriate modes transfer from
one number line to the other at each intersection.

This is in perfect keeping with what we have previ-
ously required of chronos and chiros. We have wanted to
evolve solutions beyond timelike infinity at the end of the

universe by using the solution at infinity to reconstruct
the entire universe along with an analytically continued
trajectory from minus infinity which can then be used to
determine that which is expected to happen at the time
that follows the moment in which the observer decided
to make the calculation. Just as the critical values of k
can never be reached, no smooth evolution of a trajectory
in spacetime will ever get to the end of time. We have
suggested that chronos and chiros should intersect at the
critical point where x0 = ∞ and ξ4

+ = Φ2. By moving
the analysis to the other line we can definitely reach the
critical point by smooth variation because Φ2 is a well
defined finite number. Once at the critical point it is
possible to analyze the local neighborhood in a way that
is not possible in an analysis of the neighborhood around
points that are very close to the critical point but in truth
are still separated from it by an uncountable infinity of
other points.

If the critical value of k is an irrational number it will
be impossible to find it with a computerized solution to
the equation. It will be impossible to find the behavior
around the critical values of k by taking limits because
we don’t know what we need to take as the limit that
k should go to. However, we do know the critical value
exists and we can say that it marks the intersection with
another number line at the value Φ. The onset of chaos fi-
nally arrives after infinitely many period doublings bring
the period of the instability up to T = 2∞T0 (figure 3) so
we must further require that the two number lines inter-
sect at Φn infinitely many times, on and on, until chaos
starts at Φ∞.

This is the inverse of the cosmological system. Here
the last finite critical value of k meets the other number
line at chirological infinity whereas in the cosmological
setting the first discrete value on chiros meets the other
number line at chronological infinity. Interesting.

In the cosmological system, the trajectory of particle
comes from the past into the next moment so the ge-
ometry of spacetime should be brought forward as well.
Perhaps when the phase Φ2 on Ω is decomposed into two
phase components Φ and 1, each of those terms will carry
a sector. 1 is well suited to propagate a unitary quantum
theory and since we are relying on the definition of the
Einstein tensor |ψ; Φ̂〉 7→ Gµν [2, 3] it makes sense that Φ
will propagate the geometry. If that is so, there should be
a quadrupole moment tensor appearing somewhere near
Ω 7→ ℵ, and perhaps the splitting of Φ2 generates it along
with an electromagnetic field strength tensor.

General relativity is a theory about points in space-
time but no states in Hilbert space have their location
specified as a point. Just as the period doubling values
of k can only be specified within some range, quantum
theory never gives the probability of finding a particle
at a certain place. The standard workaround to obtain
definite position states is to introduce the Gelfand triple
{ℵ,H,Ω}. The vector space Ω does admit states that are
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FIG. 3. The period doubling cascade.

located at spacetime points and its corresponding mani-
fold Ω is where we expect chronos and chiros to intersect.

We have no way to know exactly when the phase space
of the convective system changes between any of the cy-
cles shown in figures 1 and 2, and in general relativity we
have no way to know when the phase space of a particle
falling into a black hole changes to deny any future access
to positions beyond the event horizon [1]. The systems
are strikingly similar.

There are many other issues in physics well-suited to
treatment with two number lines when a single number
line leaves too many unanswered questions. How can a
free neutron (a wavefunction of ~x) suddenly decay to a
proton, an electron, and a neutrino (a wavefunction of ~x1,
~x2, and ~x3)? How can classical electromagnetic field lines
break off to form propagating waves when such lines are
not allowed to cross or have sharp kinks? If dynamics on
the one traditional number line are inherently symmet-
ric, how can those dynamics possibly describe a natural
world that is not symmetric under time conjugation? Re-
garding this final question, when the observer flips the
dynamics on chronos to make a prediction for time re-
versed behavior, he will inevitably proceed to a higher
level of ℵ in chiros so that his formalism never predicts
symmetry under time reversal. For example, if he knows
what happened at ti on the level of Φi and evolves that
to ti+1 at Φi+1, and then reverses mathematical time to
test for symmetry, the answer to that calculation will give
the expectation for ti at Φi+2 which says nothing about
a hypothetical reverse evolution back to ti at Φi.

Note a further connection between the seemingly ar-
bitrary example of convective rolls used in this section
and the most general system in the modified cosmologi-
cal model (MCM) [9, 10]. As concerning the first row of
figure 1, the perfect cylinders in figure 4 are an approxi-
mation to the real observation but there should be some-
thing that can be learned about one system by studying
the other. Instead of a temperature probe at an arbitrary
location within the convective cell, the MCM describes

an observer with an arbitrary probe fixed in the center
of the cosmological cell. With convection we are able to
start at low heat and view the transition to chaos but
when the universe is the system, the observer starts with
chaos and wants to dig order out of it. This is a much
more difficult problem.

When the geometry of the two universes seen in figure
4 is perturbed by matter-energy it should be possible
to understand the effect of the perturbation, at least in
part, as the superposition of instabilities on the past and
future. In figure 1, the left and right cells are symmetric
and all the derivatives on one side must connect smoothly
with all the derivatives on the other side. In figure 4, the
two rolls are expected to be disconnected by a topological
obstruction in the center [1, 4] and we expect some subtle
discontinuity somewhere such as that needed to generate
the anti-gravity effects of mechanical precession [2].

Just as it is impossible to define a stable framework for
analysis around the critical values of k without adding
a second number line, it has been impossible to define
a stable theory of everything that will describe all the
aspects of Nature. We propose that a second number line
is the missing conceptual component causing the ongoing
theoretical failure and that it intersects the observer’s
proper timeline at the center of figure 4 in the direction
perpendicular to the plane of the figure.

We have stated that the entropy of the cosmos is con-
stant because the present is always the superposition of
positive and negative time universes that increase and de-
crease in entropy in equal proportion [9]. Figure 4 shows
two universes with two pasts and two futures but the
cosmological unit cell in figure 5 only gives one past and
one future. If we consider the two universe system there
is no requirement that the chirological phase Φn specify
the curvature parameters g44 but never vice versa. We
can find a negative sign associated to g44|ℵ because it is
taken from a parallel but reversed system. Similarly we
can get g44|H = 0 by taking a superposition of positive
and negative values.

More evidence for two number lines appears in a well
known process for obtaining numerical solutions to sec-
ond order differential equations. The observer separates
the equation into a system of two first order equations so
there is room for improving the motivations behind what
is currently an ad hoc process. Since both formulations
below give the same answer, we should not be too quick
to say which is the fundamental one.

ẍ =
F

m
7→


ẋ = v

v̇ =
F

m

(13)

Note the velocity v is directly connected to the momen-
tum p and that it is always possible to solve a system of
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FIG. 4. The modified cosmological model defines the observ-
able universe as the superposition of two unobservable uni-
verses moving in opposite directions through time.

two equations in two unknowns. To solve for more in-
formation than that which appears in quantum theory
as x̂ and p̂, a third equation is needed to supplement the
Schrödinger equation and boundary conditions that spec-
ify unique solutions. The same can be said for p and q
in Hamiltonian theory; to solve for more information we
need another equation. A first idea is to add a new com-
ponent of time which will give a new equation, possibly
something along the lines of M̂3ψ = M̂3Ψ [2, 3].

The Fourier transform also shows how we already use
two number lines and here the distinction between the
line of smooth changes and the line of discrete elements
is less subtle. A sinusoid wave that spans position space
is a delta function in momentum space. Consider what
Wikipedia has to say about the Fourier transform [11]
and note the emphasis on the connection between fre-
quency and angular frequency which is integral to our
derivation of general relativity [2, 3].

“In mathematics, one often does not think
of any units as being attached to the two vari-
ables t and ξ. But in physical applications,
ξ must have inverse units to the units of t.
For example, if t is measured in seconds, ξ
should be in cycles per second for the for-
mulas here to be valid. If the scale of t is
changed and t is measured in units of 2π sec-
onds, then either ξ must be in the so-called
‘angular frequency’, or one must insert some
constant scale factor into some of the formu-
las. If t is measured in units of length, then
ξ must be in inverse length, e.g., wavenum-
bers. That is to say, there are two copies
of the real line: one measured in one set of
units, where t ranges, and the other in in-

verse units to the units of t, and which is the
range of ξ. So these are two distinct copies
of the real line, and cannot be identified with
each other. Therefore, the Fourier transform
goes from one space of functions to a differ-
ent space of functions: functions which have
a different domain of definition.

“In general, ξ must always be taken to
be a linear form on the space of ts, which is
to say that the second real line is the dual
space of the first real line. [sic] This point
of view becomes essential in generalizations
of the Fourier transform to general symmetry
groups, including the case of Fourier series.

“That there is no one preferred way (of-
ten, one says ‘no canonical way’) to compare
the two copies of the real line which are in-
volved in the Fourier transform – fixing the
units on one line does not force the scale of
the units on the other line – is the reason for
the plethora of rival conventions on the defi-
nition of the Fourier transform. The various
definitions resulting from different choices of
units differ by various constants. If the units
of t are in seconds but the units of ξ are in an-
gular frequency, then the angular frequency
variable is often denoted by one or another
Greek letter, for example, ω = 2πξ is quite
common.”

Where canonical methods of Fourier analysis make use
of position and frequency spaces in an alternating fash-
ion, we want to redesign the process so that both domains
are important the whole time. Since we have only used
half of figure 4 to describe the position space in figure 5,
the other half is available for carrying information about
momentum space.

Often the definition of the integrals to and from the
frequency domain are prefaced with (2π)−1/2 to suppress
the factor of 2π that shows up in one Fourier integral but
not the other. Also recall that in reference [12] we found
Wick rotation can be avoided with the Lorentz signature
{+ − −−} but the phase doesn’t work out correctly if
{− + ++} is used. This preference for one sign conven-
tion over the other and the appearance of 2π in the non-
unitarity preserving Fourier transform give us some clues
about the direction, or ordering, of processes that must
be assembled into an all-purpose algorithm for solving
problems with the correct theory of everything, and also
about the unresolved sign convention in our reanalysis of
Bell’s inequality [13].

In reference [1] we asked in a certain way, “Why should
a dual vector be available for computational conjuring
when specific creation operators are needed for the orig-
inal vector?” If two number lines are the base system,
obviously we should always have two vectors. If we begin
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FIG. 5. This figure describes the cosmological neighborhood
around H but since the left boundary is not the same as the
right boundary it will not serve an illustration a primitive
cosmological cell. For that purpose, we must consider the
space between two Hs which includes the space between Ω
and ℵ (if there is any). The directions to the right and left
are ξ4+ and ξ4− respectively. The length of ξ4 in Σ+ has been
redefined to 1 from the previous value Φ so that the total
chirological interval between instances of H is |− iϕ|+ 1 = Φ.

with only a vector but not a dual vector then a presup-
posed two number line system will be improperly speci-
fied. Since the quantum theory does, in fact, rely on the
permanent coexistence of vectors with dual vectors, that
is another small shred of evidence in favor of the theory
of infinite complexity.

QUANTUM THEORY

Chronos has a characteristic value: the speed of light.
It shows up as x0 ≡ ct. Since it has units of meters per
second, c is not a good guess for the most general charac-
teristic value of the most general system on two number
lines. If the Fourier transform is already scratching the
surface of the most general structure, we should expect
to have some dimensionless quantity that does fix the
scaling relationship between the two number lines. This
should be understood as “the ontological scale” and an
obvious choice for the dimensionless parameter is the fine
structure constant.

αQED =
e2

4πε0~c
(14)

αMCM =
1

2π + (Φπ)3
(15)

We want to ignore ~ but it is good that the fine struc-
ture constant relates so many other characteristic values
such as 4π and c and ε0, and that c itself is defined by ε0
and µ0 or vice versa, and that in certain units ε0 = 1/4π
or µ0 = 4π × 10−7.

The speed of light tells us how fast something can move
along the chronological line but things don’t “move”
along chiros, they translate discretely. We have previ-
ously defined the characteristic value associated with that
translation as αMCM [2]. Anything described by a regu-
lar set of discrete translations has an associated lattice
and the most notable difference between a crystal lattice
and the cosmological lattice is that the latter does not
satisfy the Bravais f(~r + ~R) = f(~r). A Bravais lattice
has an additive periodicity but the cosmological lattice
has a multiplicative periodicity.

The consecutive cosmological cells should grow in size
in some way related to Φ [4, 7] and it remains to define
precisely how a vector ~r in one level of ℵ is related to the
same vector at a later time ~r′. Since the forward direc-
tion is a spiral, the lattice vectors that set the framework
for modified parallel transport need to be pretty com-
plicated. Considering that the lattice of π̂-sites are the
points in hyperspacetime where observations are made,
there may be further lattice structure that is distinct
from what has been treated already. Since we have only
used π̂ and Φ̂ to describe the electromagnetic and gravi-
tational sectors, lattice structure associated with the vec-
tors 2̂ and îmay be useful in an eventual attempt to crank
the hypercharge crank or toggle the isospin nozzle. Not-
ing a further divergence from the normal lattice models
of solid state physics, we point out that the duality of ℵ
with Ω, as opposed to that of H with itself, implies that
the reciprocal of the cosmological reciprocal lattice will
not be the direct cosmological lattice.

While aspects remain unclear, what is clear is that
observation, prediction, waiting, and then observation
again is a regular process that can be modeled on a lat-
tice even if the familiar Bravais lattice is not the right
one. Regardless of what is going on in other directions,
π̂ seems to point in the direction of the arrow of time and
Φ̂ is a vector that starts on one π̂-site and ends on the
next one.

Consider that before a QFT software suite performs
the final number crunching operation that returns a real-
valued probability, the form of the mathematical entity
in the computer’s memory will be an expansion in the
fine structure constant αQED up to order N . We want
to show that it is possible to generate such power series
in αMCM by accounting for effects in cosmological cells
adjacent to the observer’s present where the effects from
the N th nearest cell are scaled by αN .

Why do terms like 137−N appear in these series but
never terms like 137N? Perhaps the quantum mechan-
ical part only attaches from the past so that the larger
cells in the future going as 137N don’t contribute. The
past has been described as the unitary component so this
is a consistent explanation. If the future component is
not unitary then it must augment the existing classical
theory and not be one of the traditional unitary compo-
nents. Also consider that there are two pasts in the MCM
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implying two such unitary components and perhaps the
coefficients of αN in the power series are determined from
both.

The formal definition of the lattice can be arbitrarily
complicated but it is bound to contain the periodicity
H 7→ Ω 7→ ℵ 7→ H so we know it is in some way regular.
With that settled, at the end of the day, waves moving to
the right will look like eix and waves moving to the left
will look like e−ix. When the waves get to the end of the
regular unit there will be some transmission coefficient T
and a reflection coefficient R that tell us everything we
need to know.

A 1D plane wave looks like eix but the cosmological
lattice needs solutions in very many dimensions so we
should consider plane wave expansions of periodic func-
tions in more than one dimension and we point the reader
to page 762 of reference [14] where one finds a remarkable
footnote. In the case of a function f on a Bravais lattice
satisfying f(~r+ ~R) = f(~r), the function can be expanded

as follows when ~K are reciprocal lattice vectors and f ~K
are the Fourier coefficients.

f(~r) =
∑
~K

f ~K e
i ~K·~r (16)

f ~K =
1

V

∫
C

d~r e−i
~K·~rf(~r) (17)

The integral
∫
C
d~r is over one unit cell and in the case

of the cosmological lattice that should be understood as
a modification of figure 5. For these purposes the unit
cell is defined as the space between two instances of H
but figure 5 only illustrates the neighborhood around one
instance of H. In equation (17), V is the volume of the
unit cell in the Bravais lattice of additive periodicity and
when the above is adapted to the cosmological lattice of
multiplicative periodicity we can expect a series of terms
V −N exactly like the analytical form of perturbative ex-
pansions in QFT. It only remains to show how the vol-
ume could be 2π + (Φπ)3 when volumes typically look
like (Φπ)3 without the π and the other π added.

In references [2, 6] we outlined how the balling and
unballing of the domain of quantum theory C2 into the
Riemann sphere can be used to describe lattice trans-
lations. The observer starts at a π̂-site: the origin of
C2 where the real and imaginary number lines intersect.
Since quantum states only describe 3D spatial slices of
constant proper time, to select a point in the future he
picks a bulk point not planar on C2. The Riemann sphere
is constructed conformally so that π̂i is at the origin on
one pole while both real and imaginary infinity go to
the other pole. Since all vectors in Hilbert space are
required to go to zero at infinity, there is an information-
preserving map between flat C2 and the surface of the

sphere that is unaffected by the two-to-one map on infin-
ity. Since the observer will never observe anything at the
tip of the vector that points to his own position, there
is a further information-preserving inversion operation
that will swap the Riemann sphere’s poles allowing the
observer to reconstruct the plane of C2 at the previous
location of the null point. By this process the observer
carries information about his environment from one mo-
ment to the next but if there are qubits attached to the
end of the real and imaginary lines at the beginning of
the process there is no guarantee that the same qubits
will appear at the end of it.

The cosmological unit cell is defined between two in-
stances of H centered on distinct π̂-sites: π̂1 and π̂2 that
were located at the poles of the Riemann sphere. Since
the poles holding ontological vectors are in some way dif-
ferent than every other point on the sphere we can assume
that the density function in the volume integral over the
sphere is different at those points. Consider the volume
of an ordinary sphere O of radius 1 where the density has
a constant value ρ = 1 everywhere in the sphere.

V =

∫
O
ρ dV =

4π

3
(18)

Now consider the case when the density is different at
the two polar points.

ρ =

{
1, θ 6= 0, π

γ, θ = 0, π
(19)

For a piecewise density we need to split the volume
integral up into pieces.

V ′ =

∫
O′
dV +

∫
θ=0

γ dV +

∫
θ=π

γ dV (20)

The first term in equation (20) will be equal to V be-
cause we have constructed O′ by subtracting two points
with zero volume from O. Regarding the other two in-
tegrals, we have defined the object which describes the
observer in the theory as a delta function [2] and the π̂-
sites are the locations of the observer. Therefore γ should
take the form of a delta function which allows an integral
over a single point to be non-zero. Since those points are
π̂-sites, let us say that the integral over γ returns π. If the
cells are not to overlap then O must be missing one po-
lar point so that consecutive Os can be stacked without
overlapping, i.e., O is the Riemann sphere. In that case
the integral over γ should give 2π which is also a good
value since it is the starting point for the 2̂π = π + π
process mentioned above. However, the non-overlapping
condition that is rigorously enforced on an additive lat-
tice may be relaxed on a multiplicative lattice to allow
the overlap of a single point.
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The volume of the cosmological cell includes the two
π̂-sites but the volume is not limited to that of the sphere
that carries the quantum sector from one moment to the
next. The volume in question is everything that lies be-
tween the original location of C2 and its location after
it has been folded, inverted, and then unfolded at π̂i+1.
This at least gives us the sense of a rectangular volume
element xyz as opposed the spherical volume 4π3/3 that
does not have the form of (Φπ)3. Furthermore, in precise
mathematical terms, only balls have substantial volume;
the Riemann sphere is only the surface of a ball.

Since the volume should be dimensionless, chiros is the
only real option and conveniently we have already defined
three components for chiros [5] that can used to assem-
ble a dimensionless timecube between adjacent moments
of chronological time as measured in units of spacetime
interval.

ξ4 ≡ ξ4
− ⊗∅⊗ ξ4

+ (21)

For our purposes we will replace ∅ with ξ∅ and note
that Σ± aren’t separated by nothing. Separated by noth-
ing means “not separated” but we do want them to be
separated by the thickness of one brane: H. In the hy-
perreal number system that we are now using routinely,
we don’t need to take the thickness ofH to be zero. How-
ever, consider that figure 4 contains slightly more than
two copies of figure 5. Since Σ± do not contain their
boundaries at ξ4 = 0, there will be two planes left over
when two copies of figure 5 are constructed from figure
4. Since we have defined H as a type of null space, or a
soliton, between Σ± it is possible that we need to redefine
so that the two extra planes go into the two empty slots
H. Another option is that this is an innate asymmetry
of the cosmos that leads to an effect such as the non-zero
baryon number of the universe.

Regarding the unresolved value (Φπ)3, consider that
when using hyperreal numbers, the timecube should have
an interpretation as a 3D delta function. π̂ and Φ̂ are
collocated on the observer pointing in the directions of
chronos and chiros so it is easy to envision (Φπ)3 result-
ing from an integration over a 3D delta. Another option
is that the timecube is the cosmological unit cell of inte-
gration in equation (17) and it has three delta functions
at the tips of the three vectors that define the cube: two
1D deltas for chronos and chiros (or the past and future)
and a 3D delta for the three dimensions of space. There
are a lot of possibilities.

Consider the symmetry or anti-symmetry of a wave-
function. States in Hilbert space go to zero at infinity
(finite probability) and at the origin (MCM condition),
and thus half-planar waveforms can be rearranged by dis-
connecting them at the origin and reconnecting them at
infinity without disturbing the original symmetry or anti-
symmetry. By dealing with each half of the wavefunc-
tion separately, there exists some sufficiently complex

representation where all wavefunctions are symmetric.
By discretizing the topological components of the MCM
it should be possible to recover anti-symmetric fermion
wavefunctions from operations on halves of symmetric
wavefunctions.

An obvious mechanism for the rearrangement is found
in figure 4. Perhaps the observer understands his own
timeline, which is full of the anti-symmetric wavefunc-
tions of all the matter particles, as either the upper piece-
wise timeline moving to the right or the lower one mov-
ing to the left. We proposed that the negative sign in
equation (9) might come from taking half of the left roll
together with half of the right one and a negative sign is
exactly what distinguishes an anti-symmetric wavefunc-
tion from a symmetric one. Perhaps difficult-to-describe
fermion fields in the present can be more easily described
with separate bosonic fields on the left and right tempo-
ral rolls. (As an aside, note that a piecewise function
of the form describing either the upper or lower timeline
is used as an example in reference [15].) Also consider
that if there are two copies of the 14D system in figure 5
joined on chronos and chiros then their union will have
28− 2 = 26 spacetime dimensions as was expected in an
early formulation of bosonic string theory.
M̂3 needs two instances of the wavefunction so it can

return ω3 when it operates on the chronological wave-
function and iπΦ2 when it operates on the chirologi-
cal one. We have previously relied on the waving of
hands to avoid the implication that only one frequency
ω =

3
√
iπΦ2 is allowed but now we have a better option

with ω3|ψ〉 = iπΦ2|Ψ〉.
Let us consider chronological and chirological gauges.

Note how easy it is to add arbitrary gauge freedom to
the plane waves that are the solution to everything. If
we have a solution of the form eix we can also use a
solution of the form eiβx by rescaling everything else in
the theory. It does not matter what β is. Zee presents
gauge invariance as follows in reference [16] .

“We are now ready for one of the most
important observations in the history of the-
oretical physics. Behold, the Lagrangian is
left invariant by the gauge transformation

ψ(x)→ eiΛ(x)ψ(x) (22)

and

Aµ(x)→ Aµ(x) +
1

e
∂µΛ(x) (23)

which implies

Fµν(x)→ Fµν(x)” (24)
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When considering dynamics governed by the La-
grangian for quantum electrodynamics, the field strength
tensor Fµν remains invariant under these types of trans-
formations. We are free to make them. In fact while
“gauge” theory might be slightly hard to understand for
laypersons, in reference [17] – coauthored by no less than
Jackson – it is pointed out that “scale” is a better trans-
lation of the original German name for the theory. It is
very easy to understand when the main result of “scale
theory” is that we can rescale everything in the theory
without breaking physics given that we always make a
balancing rescaling elsewhere.

Given this fortuitous freedom, the following will be a
solution to any problem that is solved by eix when we
say Λ = −iξβ.

ψ = eixξβ (25)

Gauge freedom allows us to hide the other variable
when working with either chronos or chiros. We want to
develop a new method for solving problems that requires
us to alternate gauge between β = 1/ξ and β = 1/x.
This is completely normal and all that is required is to
change the other objects in the theory when we do it.

Eigenstates of a Hamiltonian will have the form e−iωt

so with this added complexity those eigenstates will look
like e−iωtξ. We are only considering the values of ξ4

where it is equal to Φn so we have a tier of frequencies
ωn = Φnω. This was described as the solution to the in-
terpretation of the double slit experiment in reference [7].

If M̂3 returns ω3 from the chronological wavefunction
then M̂ is just ∂t and it doesn’t need too much motivation
when the wavefunction looks like e−iωt.

∂3
t e
−iωt = iω3e−iωt (26)

A more difficult question is how the operator shall re-
turn iπΦ2 in the form ∂3

ξ? First note that since ξ4 is

not a continuous line like t, the operator ∂3
ξ is not well

defined. To fix that we will use definition (21).

∂3
ξ ≡ ∂ξ+∂ξ∅∂ξ− (27)

Now consider a wavefunction e−iβG.

G ≡ (ωt)(C+ξ4
+)(C∅ξ4

∅)(C−ξ4
−) (28)

Take the convention that when we want the ∂ξ+ deriva-
tive we have to work in the β+ gauge as follows.

β+ ≡
1

(ωt)(C∅ξ4
∅)(C−ξ4

−)
(29)

∂ξ+e
−iβ+G = ∂ξ+e

−iC+ξ4+ (30)

= −iC+e−iβG (31)

Since the coefficients C are constants, all second and
third derivatives appearing in the chain rule expansion
of ∂3

ξ e
−iβG will vanish leaving only one surviving term.

∂3
ξ e
−iβG = iC+C∅C−e−iβG (32)

Given the structure of the objects in question it is not
difficult to envision three chirological gauges which give
the following, and which diverge from previous means of
deriving the critical value iπΦ2 [2, 3].

C+ = Φ (33)

C∅ = π (34)

C− = −Φ (35)

We have chosen equation (35) as −Φ instead of ϕ be-
cause the derivative of a state in the present with respect
to the past has to have the opposite sign to the same
derivative take with respect to the future.

∂3
ξ e
−iβG = −iπΦ2e−iβG (36)

Thus we only have to require that M̂3 employs the
correct gauge behavior and that the chronological gauge
is such that βtG = ωt before we can use equations (26)
and (36) to write the following.

−ω3|ψ; π̂〉 = πΦ2|Ψ; π̂〉
= πΦ|Ψ〉π̂ + π|Ψ〉π̂ (37)

We employ the familiar identities ω = 2πf , π̂ = ϕπΦ̂,
and π̂ = −iπî to write the following.

−8πf3|ψ; π̂〉 = |Ψ; Φ̂〉 − i|Ψ; î〉 (38)

This fourth derivation of general relativity demon-
strates the exceptionally robust character of the result
reported in reference [2].

−f3|ψ; π̂〉 7→ Tµν (39)

|Ψ; Φ̂〉 7→ Gµν (40)

−i|Ψ; î〉 7→ gµνΛ (41)

8πTµν = Gµν + gµνΛ (42)

We hope the topological decomposition in equation
(38) be used to describe processes other than gravita-
tion such as the splitting of a phase space trajectory with
period T0 into a similar one with period 2T0.



11

PERIOD THREE

Reference [15] gives proof that period three implies
chaos. The proof deals with sequences of numbers that
can be written in the form xi+1 = F (xi) where F is a map
from J to J . A point p ∈ J is periodic with period n if n
and k are integers such that p = Fn(p) and p 6= F k(p) for
1 ≤ k < n. Chaos is implied because the authors prove
that the existence of points in J with period three im-
plies the further existence of an uncountably infinite set
of other points S ∈ J which are not even asymptotically
periodic – which is to say that they iterate chaotically.

The Feynman path integral doesn’t have an obvious
non-trivial periodicity but it does basically take the cor-
rect form xi+1 = F (xi). The value of ψ is a functional of
the previous value of ψ [18].

ψ(xk+1, t+ ε) =
1

A

∫
e

[
iS(xk+1,xk)/~

]
ψ(xk, t)dxk (43)

A founding element of the theory of infinite complexity
is the assumption that Feynman has already developed
the mathematical framework needed to derive equations
of motion in the MCM system [9]. Above, instability in
the present was compared to summed effects of instabili-
ties on a set of convective fluid rolls and we also expect to
model similar contributions from higher order trees and
loops in Feynman diagrams which need not be left-right
symmetric.

Feynman’s original paper [18] is one of the greatest
papers of all time (and is worth a reread even if only to
note how easy it will be to bring those ideas forward into
the present framework) and even so, we call attention to
an inadequacy of the original formalism that Feynman
himself pointed to [18].

“The formulation here suffers from a se-
rious drawback. The mathematical concepts
needed are new. At present it requires an un-
natural and cumbersome division of the time
interval to make the meaning of the equations
clear.”

While we continue to neglect any actual equations of
motion, we do give heavy treatment to the issue of the
division of the time interval. Consider Feynman’s further
words from reference [18].

“Actually, the sum [S =
∑
i S(xi+1, xi)],

even for finite ε is infinite and hence meaning-
less (because of the infinite extent of time).
This reflects further incompleteness of the
postulates. We shall restrict ourselves to a
finite but arbitrarily long time interval.”

It is with this simplifying condition that Feynman de-
rives equation (43) and our goal is to complete his pos-
tulates rather than to recompute them. Also note that

regarding the odd instance of an additive factor of Φ con-
necting the chirological phase with the cosmological cur-
vature, when S is expressed as a sum the corresponding
amplitude will be a product.

We already have quantum evolution equations and
geodesics that tell us where test particles will go so M̂3

isn’t giving us that information. M̂3 tells us how to con-
nect geometry to the quantum sector. To connect the
objects of one theory with the other, note that the reso-
lution of the identity which was used to expand the scalar
value in equation (4) into a vector can also be used to
expand a vector into a tensor.

ψ =


ψπ
ψΦ

ψ2

ψi

 =



ψπ
4π

ϕψπ
4

ψπ
8
− iψπ

4
ψΦ

4π

ϕψΦ

4

ψΦ

8
− iψΦ

4
ψ2

4π

ϕψ2

4

ψ2

8
− iψ2

4
ψi
4π

ϕψi
4

ψi
8
− iψi

4


(44)

The symmetry group of experimental particle physics
relates to the MCM with SU(2) in the past, U(1) in the
present, and SU(3) in the future [2] so we can expect
some operation that cycles through the three forms of
ψ given in equation (44). As a proxy for that complex
process, define a lattice translation operator F that acts
on chirological phase in the interval J = [1,Φ2]. Using
the phase convention defined above, Φ is a periodic point
with period three.

F3 : Φ 7→ Φ2 7→ 1 7→ Φ (45)

Φ = F3(Φ) (46)

Feynman ran into a problem when time is chronolog-
ically infinite but here it is chirologically finite and we
have proposed to integrate over the infinite interval in
a finite way when F is a hidden sub-sector of equation
(43). Since F is multiplicative but constrained by a corre-
sponding additive connection to the curvature Φn ↔ g44,
we expect that the stable physics of Φ = F3n(Φ) as
n → ∞ will explode if the input to F is replaced by
any “non-golden” value like Φ± ε.

Note that it is only at the cosmological lattice sites rep-
resented by {ℵ,H,Ω} where gAB has to have the form of
a 4D metric tensor taken together with g44 and some po-
tential vectors that form a coherent electromagnetic nar-
rative across {ℵ,H,Ω}. These are the points in J with
period three. We have not required that the components
which represent potential vectors describe a valid electro-
magnetic potential when those components are sampled
from the bulk.
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Consider the interpretation of psychic powers as an ob-
server’s ability make observations away from π̂-sites such
as, for example, the act of keeping tabs on what will hap-
pen about 0.7 seconds in the future or listening to what
someone else was thinking 0.7 microseconds ago. (Is it
more likely that telepaths are in their targets’ minds in
real-time or that they are consuming information that
the target has left on his past light cone?) Since there is
an uncountably infinite number of points in J that aren’t
even asymptotically periodic [15], by sampling away from
π̂-sites the observer risks disrupting the stability of pe-
riod three p = F 3(p) by bringing in another perturbative
operator F ∗ such that p 6= F (F ∗(F (p))).

DISCUSSION

The term “pre-science” has been introduced to pejora-
tively diminish (sometimes rightfully) the contributions
of people who write papers that aren’t filled with math
that cannot be fully appreciated with a cursory optical
inspection in the manner in which the neighboring words
and (hopefully) sentences can. We want to offer another
frame of reference.

In software development, tasks are divided between ar-
chitects and coders. Architects get paid a lot more than
coders. Offers of junior coding employment are made to
those with little experience but any help wanted listing
for an architect will insist that the candidate has very
many years of experience. Once in the architecture role,
the architect does not have to remember the minutiae of
the syntax of the language that his subordinate coders
will use to implement his software solutions. To be an
architect, it is only required to know that code exists
and what the inputs and outputs for a task should be;
it is mostly irrelevant what language the coder uses and
whether it accepts fancy apostrophes or not.

The critic will surely ask, “If the architect is so master-
ful, why doesn’t he go ahead and write the code to prove
himself right in the face of so many nay-sayers?” For that
we will devolve into the first person. I did prove it al-
ready. It is proven with code. The simplicity and brevity
of the proof is surely embarrassing to many who are infat-
uated with their own genius but it is proof nonetheless.

I haven’t applied my concept to any “bigger” problems
than I have for a number of reasons. I don’t have a power-
ful computer so doing a lot of simulations is impractical.
Even if I did, I don’t know which software suite does what
or how to install it or what to type at the command line
to make it prove my theory. I haven’t tried to crank out
any solutions to big problems like Navier-Stokes or the
Yang-Mills mass gap because I don’t have a chalk board
and my humongous, terrible handwriting is ill-suited to
solving big problems on paper. Furthermore, I prefer to
write in pen and ink doesn’t erase the way pencil does so
that is another big bottleneck to making long, involved

calculations. About 90% of the theory of infinite com-
plexity was worked out in my head.

I don’t really know the closed form of whichever big
problems are “the test” for a new theory being officially
awesome or not. I could try to find what I think are
the closed analytic forms of the unanswered questions
that are the official test cases (and I did actually, that’s
what most of my papers were about) but how likely is
it that I would select the correct mega-problems from a
vast sea of uninteresting, mundane, self-referential tech-
nical literature that is often intentionally obfuscated by
the peer-reviewing editorial process and unrelated self-
aggrandizing exaggerations? I could have tried but I have
chosen not to do so because, at best, it would take me
hundreds or thousands of times longer to find the offi-
cial condition for success on my own than it would take
someone else who already knows what it is to explain it
to me.

It has been a very biblical seven years since I submit-
ted my first paper to that website in September 2009 and
everyday since then I have woken up hoping to see myself
in the news for dandily doing in a few pages what very
many of the other smartest people on Earth were un-
able to do despite a century of considerable funding and
concerted effort. It is true that if I had started looking
into the complicated stuff then, I probably would have
gotten it by now, but each day I don’t do it the condi-
tion remains that someone else who already knows could
explain it to me thousands of times faster than I could
figure it out on my own, and I’m still hoping that will
happen before I would finish if I started now.

I’m not saying, “Do the work for me.” I’m saying, “Tell
me what they are talking about at those conferences.”
Perhaps one asks, “Why should you expect success if
you’re not willing to do the work?” To that I would
respond with great zeal, “I did do the work. Why are
you ignoring it?” Since I have won the game of physics,
I believe it is the place of the other physicists to seek me
out and not vice versa. Why should I seek them out?
What have they done except been told the information
that no one told me?

So yes... I feel like I probably could have done some-
thing along those lines or gotten into an approved journal
if I had been working on it the whole time for seven years
but I have other interests such as abolishing the federal
government of the United States of America and I just
can’t bring myself to invest months or years on something
that someone else could explain to me in an hour or a day.
I’m not talking about the solution to the problem; I don’t
even know which are the simple yet intractable problems
that when solved, everyone will say, “Yes. There has been
a breakthrough.” In fact, I am still totally mystified that
the paper I wrote in 2012 [2] wasn’t exactly that, and
neither were the two that followed in 2013 [4, 5]. What
was Eric Weinstein’s big accomplishment that year?

Relating again to the idea of “pre-science” (which
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hopefully was not invented to describe this research), I
have done the hard part that no one else could do and
there are literally tens of thousands of other people out
there who can add the details they want to see, and who
are getting paid to do that while I work in a field that
requires absolutely no genius because Georgia Tech ex-
pelled me over some fucking bullshit, none of the very
many publications of APS, IOP, and AIP to which I sub-
mitted manuscripts would peer-review me like they are
supposed to, and the government has apparently decreed
it a criminal act to point out that I did do a good job.
Since they were unable to assassinate me in the years
following their decree, this was not so much a policy er-
ror for them as it was an egregious blunder, hopefully a
mortal one.

Regarding publishing in peer-reviewed journals, that
is absolutely not required by the scientific method. Pub-
lishing in peer-reviewed journals and jumping through
hoops for their editors is part of the bullshit you have
to do for a career as a professional physicist and to keep
your department’s human resources lady off your back. I
am not a professional physicist. If publishing in PRL will
help your career then good for you but my boss doesn’t
give a fuck what my citation count is. My job already
has its own bullshit so why I am going to go out of my
way to put myself through the bullshit from your job too?
If clicking the PDF button on viXra is too burdensome
for you compared to clicking it on another website then
don’t do it. The fact is that even as a non-professional
amateur physicist, I am still the most successful living
physicist. As such the other physicists should embrace
me but they are not and such are their prerogatives. The
losing side of history must look good from over there.

The scientific method only says that I have to commu-
nicate my results and I have. The less successful physi-
cists can continue to claim that since I haven’t published
in the venue that pleases them, that means I haven’t yet
published at all, but if that was true what are you reading
right now and why are you reading it?
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