EXPANSION OF THE EULER ZIGZAG NUMBERS

GYEONGMIN YANG

ABSTRACT. This article is based on how to look for a closed-form expression related to the odd zeta function values and explained what meaning of the expansion of the Euler zigzag numbers is.

1. INTRODUCTION

Where for $s \in \mathbb{C}$, the Riemann zeta function, the Dirichlet lambda and beta function are defined as

$$\zeta(s) = \sum_{m=0}^{\infty} \frac{1}{(m+1)^s} \qquad \Re(s) > 1,$$
(1)

$$\lambda(s) = \sum_{m=0}^{\infty} \frac{1}{(2m+1)^s} = \left(1 - \frac{1}{2^s}\right)\zeta(s) \qquad \Re(s) > 1,$$
(2)

and

$$\beta(s) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)^s} \qquad \Re(s) > 0.$$
(3)

The gamma function is related to the Riemann zeta function by [3]

$$\Gamma\left(\frac{s}{2}\right)\pi^{-s/2}\zeta(s) = \Gamma\left(\frac{1-s}{2}\right)\pi^{-(1-s)/2}\zeta(1-s).$$
(4)

In addition, we will use the Euler zigzag numbers at the power series of

$$\sec x = \sum_{m=0}^{\infty} \frac{A_{2m}}{(2m)!} x^{2m} \qquad for \ |x| < \frac{\pi}{2},\tag{5}$$

$$\tan x = \sum_{m=0}^{\infty} \frac{A_{2m+1}}{(2m+1)!} x^{2m+1} \qquad for \ |x| < \frac{\pi}{2}.$$
 (6)

Then, A'_{2m} would be specified instead of A_{2m} in this article. According to this suggestion, the sec x is represented by

$$\sec x = \sum_{m=0}^{\infty} \frac{A'_{2m}}{(2m)!} x^{2m} \qquad for \ |x| < \frac{\pi}{2}.$$
(7)

Lemma 1. For all $n \in \mathbb{N}$,

$$\lambda(2n) = \beta(1) \frac{A_{2n-1}}{(2n-1)!} \left(\frac{\pi}{2}\right)^{2n-1},\tag{8}$$

$$\beta(2n-1) = \beta(1) \frac{A'_{2n-2}}{(2n-2)!} \left(\frac{\pi}{2}\right)^{2n-2}.$$
(9)

Lemma 2. For all $n \in \mathbb{N}$ and $0 < x < \frac{\pi}{2}$,

$$\ln\left(\cot x\right) = 2\sum_{m=1}^{\infty} \frac{\cos\left((4m-2)x\right)}{2m-1}.$$
(10)

Proof. We consider [2]

$$\ln(\sin x) = -\ln 2 - \sum_{m=1}^{\infty} \frac{\cos(2mx)}{m}$$
(11)

which was studied by Euler. The (11) is replaced by

$$\ln\left(\cos x\right) = -\ln 2 - \sum_{m=1}^{\infty} \frac{(-1)^m}{m} \cos\left(2mx\right).$$
(12)

To subtract the (11) from the (12) is

$$\ln\left(\cot x\right) = 2\sum_{m=1}^{\infty} \frac{\cos\left((4m-2)x\right)}{2m-1}.$$

Lemma 3. For all $n \in \mathbb{N}$ and $|x| < \pi$,

$$\int_0^x \frac{x^n}{\sin x} dx = \left(\frac{\pi}{2}\right)^{n+1} \sum_{m=0}^\infty \sum_{l=0}^n \frac{(-1)^l A'_{2m}}{(2m+l+1)(2m)!} \binom{n}{l} x^{2m}$$
(13)

the binomial coefficient is defined by the next expression

$$\binom{n}{l} = \frac{n!}{(l)!(n-l)!}.$$

Lemma 4. For all $n \in \mathbb{N}$, [1]

$$\sum_{m=0}^{\infty} \frac{(-1)^m E_{2m}}{2(2m+2n)!} \left(\frac{\pi}{2}\right)^{2m+2n} = (-1)^{n-1} \sum_{l=1}^n \frac{(-1)^{l-1}\beta(2n-2l+2)}{(2l-2)!} \left(\frac{\pi}{2}\right)^{2l-2},\tag{14}$$

$$\sum_{m=0}^{\infty} \frac{(-1)^m E_{2m}}{2(2m+2n+1)!} \left(\frac{\pi}{2}\right)^{2m+2n+1} = (-1)^n \lambda (2n+1) + (-1)^{n-1} \sum_{l=1}^n \frac{(-1)^{l-1} \beta (2n-2l+2)}{(2l-1)!} \left(\frac{\pi}{2}\right)^{2l-1}$$
(15)

where E_{2m} is the Euler number.

3. Proof of a theorem

Theorem 1. For all $n \in \mathbb{N}$,

$$\sum_{m=0}^{\infty} \frac{A'_{2m}}{(2m+n+1)!} \left(\frac{\pi}{2}\right)^{2m} = \frac{A_n}{n!} \cos\left(\frac{n}{2}\pi\right) + \sum_{l=1}^{n} \frac{A'_l}{(l)!(n-l)!} \sin\left(\frac{l}{2}\pi\right).$$
(16)

Proof. Multiplying x^{n-1} and integrating 0 to $\pi/4$ for the both terms of Lemma 2 is

$$\int_{0}^{\frac{\pi}{4}} x^{n-1} \ln\left(\cot x\right) dx = 2 \int_{0}^{\frac{\pi}{4}} \sum_{m=1}^{\infty} \frac{x^{n-1}}{2m-1} \cos\left(\left(4m-2\right)x\right) dx.$$
(17)

When we calculate each integral of the (17), it appears to be (18), (19) and (20) which were

$$\beta(2) = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x}{\sin x} dx,$$
(18)

$$\lambda(2n+1) = \frac{(-1)^n}{2(2n)!} \int_0^{\frac{\pi}{2}} \frac{x^{2n}}{\sin x} dx + \sum_{l=0}^{n-1} \frac{(-1)^l \beta(2n-2l)}{(2l+1)!} \left(\frac{\pi}{2}\right)^{2l+1}$$
(19)

and

$$\beta(2n+2) = \frac{(-1)^n}{2(2n+1)!} \int_0^{\frac{\pi}{2}} \frac{x^{2n+1}}{\sin x} dx + \sum_{l=0}^{n-1} \frac{(-1)^l \beta(2n-2l)}{(2l+2)!} \left(\frac{\pi}{2}\right)^{2l+2}.$$
 (20)

Application of the Lemma 3 for each integral term in (18), (19) and (20) yields

$$\lambda(2n+1) = \frac{\beta(2n+1)}{A'_{2n}} \sum_{m=0}^{\infty} \sum_{l=0}^{n} \frac{(-1)^{l} A'_{2n-2l} A'_{2m}}{(2l+2m+1)(2m)!} {\binom{2n}{2l}} {\binom{\pi}{2}}^{2m},$$
(21)

$$\beta(2n) = \frac{\lambda(2n)}{A_{2n-1}} \sum_{m=0}^{\infty} \left(\left(\sum_{l=0}^{n-1} \frac{(-1)^l A_{2n-2l-1}}{2l+2m+1} \binom{2n-1}{2l} \right) - \frac{(-1)^{n-1}}{2m+2n} \right) \frac{A'_{2m}}{(2m)!} \left(\frac{\pi}{2}\right)^{2m}.$$
 (22)

Application of the Lemma 1 for $\beta(2n+1)$ and $\lambda(2n)$ in each of the (21) and (22) specifies

$$\lambda(2n+1) = \beta(1) \frac{A_{2n}}{(2n)!} \left(\frac{\pi}{2}\right)^{2n},$$
(23)

$$\beta(2n) = \beta(1) \frac{A'_{2n-1}}{(2n-1)!} \left(\frac{\pi}{2}\right)^{2n-1}.$$
(24)

Therefore, A_{2n} and A'_{2n-1} are described as

$$A_{2n} = \sum_{m=0}^{\infty} \sum_{l=0}^{n} \frac{(-1)^{l} A'_{2n-2l} A'_{2m}}{(2l+2m+1)(2m)!} {2n \choose 2l} \left(\frac{\pi}{2}\right)^{2m},$$
(25)

$$A'_{2n-1} = \sum_{m=0}^{\infty} \left(\left(\sum_{l=0}^{n-1} \frac{(-1)^l A_{2n-2l-1}}{2l+2m+1} \binom{2n-1}{2l} \right) - \frac{(-1)^{n-1}}{2m+2n} \right) \frac{A'_{2m}}{(2m)!} \left(\frac{\pi}{2} \right)^{2m}$$
(26)

$$A_{2n} = \sum_{m=0}^{\infty} \left(\left(\sum_{l=0}^{2n} \frac{A'_{2n-l}}{2m+l+1} \binom{2n}{l} \cos\left(\frac{l}{2}\pi\right) \right) + \frac{\sin\left(n\pi\right)}{2m+2n+1} \frac{A'_{2m}}{(2m)!} \left(\frac{\pi}{2}\right)^{2m}, \quad (27)$$

$$A'_{2n-1} = \sum_{m=0}^{\infty} \left(\left(\sum_{l=0}^{2n-1} \frac{A_{2n-l-1}}{2m+l+1} \binom{2n-1}{l} \cos\left(\frac{l}{2}\pi\right) \right) + \frac{\cos\left(n\pi\right)}{2m+2n} \frac{A'_{2m}}{(2m)!} \left(\frac{\pi}{2}\right)^{2m}.$$
 (28)

Application of the (23) and (24) for $\beta(2n-2l+2)$ in Lemma 4 becomes

$$\sum_{m=0}^{\infty} \frac{A'_{2m}}{(2m+2n)!} \left(\frac{\pi}{2}\right)^{2m} = \sum_{l=1}^{n} \frac{(-1)^{l+n} A'_{2n-2l+1}}{(2l-2)!(2n-2l+1)!},\tag{29}$$

$$\sum_{m=0}^{\infty} \frac{A'_{2m}}{(2m+2n+1)!} \left(\frac{\pi}{2}\right)^{2m} = \frac{(-1)^n A_{2n}}{(2n)!} + \sum_{l=1}^n \frac{(-1)^{l+n} A'_{2n-2l+1}}{(2l-1)!(2n-2l+1)!}.$$
(30)

Finally, the (29) and (30) are summarized as

$$\sum_{m=0}^{\infty} \frac{A'_{2m}}{(2m+n+1)!} \left(\frac{\pi}{2}\right)^{2m} = \frac{A_n}{n!} \cos\left(\frac{n}{2}\pi\right) + \sum_{l=1}^{n} \frac{A'_l}{(l)!(n-l)!} \sin\left(\frac{l}{2}\pi\right).$$

4. Other explicit fomulas

The value of the Dirichlet lambda function at even positive integers and the Dirichlet beta function at odd positive integers appear by the next expressions

Corollary 1. For all $n \in \mathbb{N}$,

$$\frac{1}{n!} = \frac{A'_n}{n!} \cos\left(\frac{n}{2}\pi\right) + \sum_{l=1}^n \frac{A_l}{(l)!(n-l)!} \sin\left(\frac{l}{2}\pi\right),\tag{31}$$

Corollary 2. For all $n \in \mathbb{N}$,

$$\frac{1}{\Gamma(n)} = \sum_{l=1}^{n} \left(\frac{A_l}{\Gamma(n-l)\Gamma(l+1)} + \frac{A'_{l-1}}{\Gamma(n)\Gamma(l-n+1)} \right) \sin\left(\frac{l}{2}\pi\right),\tag{32}$$

Corollary 3. For all $n \in \mathbb{N}$,

$$\frac{1}{(n-1)!} = \frac{A_{n-1}}{(n-1)!} \sin\left(\frac{n}{2}\pi\right) + \sum_{l=0}^{n-1} \frac{A_l}{(l)!(n-l-1)!} \sin\left(\frac{l}{2}\pi\right).$$
(33)

Corollary 1 is not defined at A'_0 . To define the A'_0 , corollary 2 is used by the gamma function. Otherwise, corollary 3 is defined without distinguishing the symbol of A' and A which they specified for (5) and (6).

Conjecture 1. By the theorem 1, an infinite series

$$\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \frac{A'_{2m}}{(2m+n+1)!} \left(\frac{\pi}{2}\right)^{2m}$$
(34)

converges to 1.

References

- [1] JeonWon Kim. Functional equations related to the dirichlet lambda and beta functions. arXiv preprint arXiv:1404.5467, 2014.
- [2] Shin-ya Koyama and Nobushige Kurokawa. Euler's integrals and multiple sine functions. Proceedings of the American Mathematical Society, pages 1257–1265, 2005.
- [3] Eric W Weisstein. Riemann zeta function. 2002.