
EXPANSION OF THE EULER ZIGZAG NUMBERS

GYEONGMIN YANG

Abstract. This article is based on how to look for a closed-form expression related to the odd

zeta function values and explained what meaning of the expansion of the Euler zigzag numbers

is.

1. Introduction

Where for s ∈ C, the Riemann zeta funtion, the Dirichlet lambda and beta function are

defined as

ζ(s) =

∞∑
m=0

1

(m+ 1)s
<(s) > 1, (1)

λ(s) =

∞∑
m=0

1

(2m+ 1)s
=

(
1− 1

2s

)
ζ(s) <(s) > 1, (2)

and

β(s) =
∞∑

m=0

(−1)m

(2m+ 1)s
<(s) > 0. (3)

The gamma function is related to the Riemann zeta function by [3]

Γ
(s

2

)
π−s/2ζ(s) = Γ

(
1− s

2

)
π−(1−s)/2ζ(1− s). (4)

In addition, we will use the Euler zigzag numbers at the power series of

secx =

∞∑
m=0

A2m

(2m)!
x2m for |x| < π

2
, (5)

tanx =

∞∑
m=0

A2m+1

(2m+ 1)!
x2m+1 for |x| < π

2
. (6)

Then, A′2m would be specified instead of A2m in this article. According to this suggestion,

the secx is represented by

secx =

∞∑
m=0

A′2m
(2m)!

x2m for |x| < π

2
. (7)



2. Basic properties

Lemma 1. For all n ∈ N,

λ(2n) = β(1)
A2n−1

(2n− 1)!

(π
2

)2n−1
, (8)

β(2n− 1) = β(1)
A′2n−2

(2n− 2)!

(π
2

)2n−2
. (9)

Lemma 2. For all n ∈ N and 0 < x <
π

2
,

ln (cotx) = 2
∞∑

m=1

cos ((4m− 2)x)

2m− 1
. (10)

Proof. We consider [2]

ln (sinx) = − ln 2−
∞∑

m=1

cos (2mx)

m
(11)

,

which was studied by Euler. The (11) is replaced by

ln (cosx) = − ln 2−
∞∑

m=1

(−1)m

m
cos (2mx). (12)

To subtract the (11) from the (12) is

ln (cotx) = 2
∞∑

m=1

cos ((4m− 2)x)

2m− 1
.

�

Lemma 3. For all n ∈ N and |x| < π,∫ x

0

xn

sinx
dx =

(π
2

)n+1
∞∑

m=0

n∑
l=0

(−1)lA′2m
(2m+ l + 1)(2m)!

(
n

l

)
x2m (13)

the binomial coefficient is defined by the next expression(
n

l

)
=

n!

(l)!(n− l)!
.

Lemma 4. For all n ∈ N, [1]

∞∑
m=0

(−1)mE2m

2(2m+ 2n)!

(π
2

)2m+2n
= (−1)n−1

n∑
l=1

(−1)l−1β(2n− 2l + 2)

(2l − 2)!

(π
2

)2l−2
, (14)

∞∑
m=0

(−1)mE2m

2(2m+ 2n+ 1)!

(π
2

)2m+2n+1
= (−1)nλ(2n+ 1)

+ (−1)n−1
n∑

l=1

(−1)l−1β(2n− 2l + 2)

(2l − 1)!

(π
2

)2l−1 (15)
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where E2m is the Euler number.

3. Proof of a theorem

Theorem 1. For all n ∈ N,

∞∑
m=0

A′2m
(2m+ n+ 1)!

(π
2

)2m
=
An

n!
cos
(n

2
π
)

+
n∑

l=1

A′l
(l)!(n− l)!

sin

(
l

2
π

)
. (16)

Proof. Multiplying xn−1 and integrating 0 to π/4 for the both terms of Lemma 2 is∫ π
4

0
xn−1 ln (cotx)dx = 2

∫ π
4

0

∞∑
m=1

xn−1

2m− 1
cos ((4m− 2)x)dx. (17)

When we calculate each integral of the (17), it appears to be (18), (19) and (20) which were

β(2) =
1

2

∫ π
2

0

x

sinx
dx, (18)

λ(2n+ 1) =
(−1)n

2(2n)!

∫ π
2

0

x2n

sinx
dx+

n−1∑
l=0

(−1)lβ(2n− 2l)

(2l + 1)!

(π
2

)2l+1
(19)

and

β(2n+ 2) =
(−1)n

2(2n+ 1)!

∫ π
2

0

x2n+1

sinx
dx+

n−1∑
l=0

(−1)lβ(2n− 2l)

(2l + 2)!

(π
2

)2l+2
. (20)

Application of the Lemma 3 for each integral term in (18), (19) and (20) yields

λ(2n+ 1) =
β(2n+ 1)

A′2n

∞∑
m=0

n∑
l=0

(−1)lA′2n−2lA
′
2m

(2l + 2m+ 1)(2m)!

(
2n

2l

)(π
2

)2m
, (21)

β(2n) =
λ(2n)

A2n−1

∞∑
m=0

((
n−1∑
l=0

(−1)lA2n−2l−1
2l + 2m+ 1

(
2n− 1

2l

))
− (−1)n−1

2m+ 2n

)
A′2m

(2m)!

(π
2

)2m
. (22)

Application of the Lemma 1 for β(2n+ 1) and λ(2n) in each of the (21) and (22) specifies

λ(2n+ 1) = β(1)
A2n

(2n)!

(π
2

)2n
, (23)

β(2n) = β(1)
A′2n−1

(2n− 1)!

(π
2

)2n−1
. (24)

Therefore, A2n and A′2n−1 are described as

A2n =
∞∑

m=0

n∑
l=0

(−1)lA′2n−2lA
′
2m

(2l + 2m+ 1)(2m)!

(
2n

2l

)(π
2

)2m
, (25)

A′2n−1 =
∞∑

m=0

((
n−1∑
l=0

(−1)lA2n−2l−1
2l + 2m+ 1

(
2n− 1

2l

))
− (−1)n−1

2m+ 2n

)
A′2m

(2m)!

(π
2

)2m
(26)
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or

A2n =
∞∑

m=0

((
2n∑
l=0

A′2n−l
2m+ l + 1

(
2n

l

)
cos

(
l

2
π

))
+

sin (nπ)

2m+ 2n+ 1

)
A′2m

(2m)!

(π
2

)2m
, (27)

A′2n−1 =
∞∑

m=0

((
2n−1∑
l=0

A2n−l−1
2m+ l + 1

(
2n− 1

l

)
cos

(
l

2
π

))
+

cos (nπ)

2m+ 2n

)
A′2m

(2m)!

(π
2

)2m
. (28)

Application of the (23) and (24) for β(2n− 2l + 2) in Lemma 4 becomes

∞∑
m=0

A′2m
(2m+ 2n)!

(π
2

)2m
=

n∑
l=1

(−1)l+nA′2n−2l+1

(2l − 2)!(2n− 2l + 1)!
, (29)

∞∑
m=0

A′2m
(2m+ 2n+ 1)!

(π
2

)2m
=

(−1)nA2n

(2n)!
+

n∑
l=1

(−1)l+nA′2n−2l+1

(2l − 1)!(2n− 2l + 1)!
. (30)

Finally, the (29) and (30) are summarized as

∞∑
m=0

A′2m
(2m+ n+ 1)!

(π
2

)2m
=
An

n!
cos
(n

2
π
)

+
n∑

l=1

A′l
(l)!(n− l)!

sin

(
l

2
π

)
.

�

4. Other explicit fomulas

The value of the Dirichlet lambda function at even positive integers and the Dirichlet beta

function at odd positive integers appear by the next expressions

Corollary 1. For all n ∈ N,

1

n!
=
A′n
n!

cos
(n

2
π
)

+
n∑

l=1

Al

(l)!(n− l)!
sin

(
l

2
π

)
, (31)

Corollary 2. For all n ∈ N,

1

Γ(n)
=

n∑
l=1

(
Al

Γ(n− l)Γ(l + 1)
+

A′l−1
Γ(n)Γ(l − n+ 1)

)
sin

(
l

2
π

)
, (32)

Corollary 3. For all n ∈ N,

1

(n− 1)!
=

An−1
(n− 1)!

sin
(n

2
π
)

+

n−1∑
l=0

Al

(l)!(n− l − 1)!
sin

(
l

2
π

)
. (33)

Corollary 1 is not defined at A′0. To define the A′0, corollary 2 is used by the gamma function.

Otherwise, corollary 3 is defined without distinguishing the symbol of A′ and A which they

specified for (5) and (6).

Conjecture 1. By the theorem 1, an infinite series

∞∑
n=1

∞∑
m=0

A′2m
(2m+ n+ 1)!

(π
2

)2m
(34)

converges to 1.
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