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Abstract  
 

This paper shows that the theoretical correlation between Alice’s and Bob’s measurements 

in a simulated Bell’s Inequality experiment with local hidden variables is – cos θ.  That is 

without the need for detection loopholes nor missing data.  Instead of putting all the onus on 

the particles to embody randomness on detection, this paper transfers at least some of this 

onus onto the magnets.  The randomness caused by the magnets implies that ‘counterfactual 

definiteness’ is inappropriate for simulations of Bell’s inequality experiments. 

 

Introduction 
 

The unsurprising result that correlation (A, B) = – cos θ is derived from first principles.   It is a 

very reasonable result because cos θ is a standard form for the correlation between two 

vectors differing in direction by angle θ, but nevertheless it is important to derive it in the 

current case.  

A model of the electron including the local hidden variable for electron spin is required.  Also, 

a structure for a detector magnet is required, including a discussion of what is meant by 

setting a magnet at a given angle.   

 

Spin in entangled pairs, local hidden variables and magnets 
 

The obvious candidate for the local hidden variable of an electron is its chiral handedness.  

The left-handed (LH) chiral electron has spin - 0.5 while the right-handed (RH) chiral electron 

has spin + 0.5.  A LH electron can emit a photon with spin -1 and change form to become a RH 

electron.  Spin is conserved by the interaction as the total spin before and after the interaction 

in -0.5.  Likewise, a RH electron can emit a photon with spin +1 and change form to become a 

LH electron.  And similarly for LH and RH positrons.  A chiral left-handedness indicates a 

difference in structure from the right-handed form.  This is different from a left-handed 
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helicity for observer 1, which may simultaneously take on a right-handed appearance for 

observer 2.  Chiral ‘left’ is permanently chiral ‘left’, although observers observe a particle’s 

helicity with the chirality being hidden or inferred. 

The spin of an electron is nominally about an axis.  The orientation of the axis is always 

unknown in practice although it can be assumed to be known in a local hidden variable 

simulation of an experiment.  The most information in practice that is available about spin is 

that for paired particle creation, say for an electron and positron, arising from an interaction 

where the incoming total spin was zero, then the outgoing particles have equal and opposite 

spins, summing to zero angular momentum.  The directions of the axes are also the same for 

both particles: that is, treating the axes as vectors with the arrowheads removed, or ignoring 

the signs of the axis vectors. 

If a small, free-standing macro magnet is brought close to a powerful magnet, then it may 

precess and radiate away energy until it lines up with the direction of the stronger magnet.  

Electrons do not behave like this.  Instead, if they do undergo an interaction, they emit one 

photon, as described above, and completely reverse chiral handedness.  This can be repeated, 

for the same magnet orientation, but the electron is now stable and will not flip again.  The 

electron may flip if brought near a differently oriented magnet, but the outcome is that the 

electron never changes the direction of its axis during the course of the experiment (and far 

beyond the experiment).  The vector of the electron spin axis changes from s to – s and back 

to s in repeated interactions but instead of calling that a change in vector spin direction the 

electron is given an N or S pole label like the macroscopic magnet, and the label flips from N 

to S to N in successive interactions while the axis stays constant (ignoring the vector sign). 

It needs to be illustrated more clearly what it means for an individual electron to receive a 

label N or S and to do this requires some discussion of randomness.  There is no reason to 

assume that any one incoming electron has its spin axis pointing in any particular direction, 

although it is true [making the assumption that local hidden variables exist] that an incoming 

pair of particles will have the same axis and one will be an N and the other an S during their 

times of flight.  In quantum mechanics, on the other hand, the pair of particles share a 

common entangled state of 0.5 |S> + 0.5 |N> until one of them interacts, which is an approach 

which eschews individual particles’ local hidden variables. 

If two electrons are prepared pointing say north in the 2D space of the laboratory floor, this 

does not mean that their spin axes are parallel and it also does not mean that their axes are 

pointing exactly north.   Their spin axes are unknown.  Say for electron 1 an N label is put at 

one end of its spin axis and an S label at the other end.  Ditto for electron 2.  To prepare the 

electrons, the electrons are interrogated each to see if it is the N label or the S label which is 

nearer the north wall of the laboratory.  If the N label is to be nearer the North wall, it may 

require a switch of the N and S labels to achieve this.  If the labels do need to be switched, 

then an ‘interaction’ is required to effect the switch.  This corresponds to Alice or Bob making 

a measurement of +1.  If no switch of labels is required, this is equivalent to Alice or Bob 
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making no measurement.  However, in practice, Stern-Gerlach detectors can circumvent this 

lack of a measurement and instead turn that into an actual interaction, recorded as -1.  So 

there is an interaction recorded for every particle with no inefficiency by wastage of 

information. 

So now there are two electrons prepared with their labels appropriately adjusted with their 

N labels nearer to the North wall than their S labels.  Say it is now required to simulate 

preparing the two electrons to point towards the West wall of the laboratory.  Without 

changing their spin axes each particle is tested to flip, or not as necessary, their N and S labels 

so the two N labels are nearer the West wall than are the S labels.  In practice this requires 

also putting a magnet against the West wall aligned in an East-West direction.   As these two 

electrons are not entangled there is no expectation that both electrons will interact in the 

same way.  So even though both electrons were originally prepared pointing northwards, 

there is no knowing which one, if any, was already also pointing west.  For two entangled 

electrons, if one electron needed a switch of labels to point West [or any chosen new 

direction], the other electron would not need a switch to point West.  This is because 

entangled spin axes are parallel and oppositely labelled.   

 

Structure and angle settings for the detector magnets and derivation of 

r (A, B) = – cos θ from first principles 
 

Magnets obtain and keep their magnetism mainly via angular momentum of their atoms, 

rather than from the intrinsic spins of their electrons. For this paper it is simplest to describe 

a magnet as a ‘bar’ magnet in the shape of a sphere.  A useful analogy for some of this 

discussion is sunlight reflected off the moon.  A full moon can represent a magnetic N pole so 

that light is associated with N pole atoms and dark is associated with S pole atoms within the 

moon-shaped magnet.  The moon is seen as if it were a flat plane, despite it being a sphere.  

If the moon rotated by say 30 degrees then a gibbous moon with more light than dark would 

be seen.  In this section the exact illuminated area on the moon’s projected flat plane is 

calculated for various angles of rotation.  It gives away no secrets that this relationship is 

obviously given by cos θ, where θ is the angle that the moon has rotated.  

There would be no randomness of outcome of an interaction if one knew which atom in the 

magnet was initiating photon emission and what was the label of that atom was, N or S.  One 

does not even need to know any axis direction to be certain of the outcome for an individual 

interaction if one knows the N of S state of the incoming electron and detecting atom.  Under 

these conditions the use of ‘counterfactual definiteness’ would be permissible as there is no 

chance in the outcome.  This information really derives from the case where two detector 

atoms in the magnets have an identical axis, that is, they are aligned in parallel.  The 
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experiments, however, use magnets for which the N and S labels are not known for individual 

atoms in the magnet pole and the facing area of the magnet can contain a mixture of N and S 

facing atoms. This uncertainty prevents the usage of ‘counterfactual definiteness’. 

Alice’s magnet is chosen to point with vector zero degrees.  The magnet therefore shows its 

face as completely covered with all atoms aligned as N poles facing the incoming electrons 

(Figure A).  Bob’s magnet will receive all the entangled partner particles (Figure B). 

Figure A:  Alice’s detector magnet in elevation: analogous to a full moon 

 

 

 

Alice’s magnet detector is represented in Figure A as a full moon in elevation, completely 

illuminated, where ‘illumination’ is analogous to atoms with N poles facing the incoming 

electrons.  The totality of electrons detected as +1 by Alice are now post-selected, in this 

procedure, as it is known that they all were originally presenting their N faces to the detector.  

For convenience of calculation, only acute angles of detectors are treated here and, further, 

rather than showing that the correlation between Alice’s and Bob’s measurements are – cos θ 

it is to be shown that the correlation would be +cos θ if the partner pairs were identical rather 

than exactly opposite in nature.  So it is assumed that the exactly same electrons are sent to 

Bob, rather than the exactly opposite positrons. 

Next the proportion of N versus S atoms in Bob’s ‘gibbous moon’ detector need to be 

calculated (Figure B and Tables 1 and 2). 
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Figure B: Bob’s detector magnet in elevation (left) and plan (right): analogous to a 

gibbous moon 

 

 

The equator line OD for Alice’s detector (Figure A, ELEVATION diagram) corresponds to the 

line OD in Bob’s detector PLAN diagram (Figure B).  In Bob’s detector, OD has swept through 

an angle θ from its starting position at OF.  {Electron spin axes cannot be rotated through any 

angle other than 180o.  The atoms in magnets can, however, be rotated through angles. One 

can hold a bar magnet and point it’s North pole in any direction.} 

For the horizontal line COEF in Bob’s ELEVATION diagram, CO and OE are illuminated (N) 

whereas EF is in shadow (S). CO is arbitrarily assigned unit length.  In Bob’s PLAN diagram, OD 

also has unit length as it is the radius of the same circle of which CO is also a radius.   By simple 

trigonometry, OE = cos θ and EF = 1 - cos θ.  So in Bob’s ELEVATION diagram, the illuminated 

length of line COEF is 1 + cos θ and the shadow part of the line is of length 1- cos θ. 

The total area illuminated/shaded can be built up by summing over many infinitesimal-width 

horizontal lines parallel to COEF. Assume one of these parallel lines is C’O’E’F’.  Assume also 

that C’O’ has length α.  By the same arguments as above the illuminated length of line C’O’E’F’ 

is α + α cos θ and the shaded length is α - α cos θ.  For all horizontal lines, therefore, the 

illuminated and shadow lengths are in the ratio:  (1 + cos θ) to (1 - cos θ).  Thus the illuminated 

area of the gibbous moon relative to the area in shadow also has the same ratio: 

(1 + cos θ) to (1 - cos θ).   

Next in this procedure, a set of particles identical to those recorded as +1 (N for these 

particles) by Alice are sent to Bob’s detector.  All those interacting with the illuminated area 

(N in the magnet) are recorded by Bob as +1; all those interacting with the area in shadow (S 
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in the magnet) are recorded by Bob as -1.   It is not actually known in practice in which region 

any particular particle interacts, so these simulated measurements also are made to depend 

likewise on chance outcomes. 

Likewise, a set of particles identical to those recorded as -1 (S for these particles) by Alice are 

sent to Bob’s detector.  All those interacting with the illuminated area (N in the magnet) are 

recorded by Bob as -1; all those interacting with the area in shadow (S in the magnet) are 

recorded by Bob as +1.    Again, it is not known in which region any particular particle interacts. 

From these measurements a 2x2 table of Alice’s (A) and Bob’s (B) outcomes can be 

constructed (Table 1). 

Table 1: 2x2 table of results for Alice’s and Bob’s measurements 

 B = 1 B = -1 Total 

A = 1 1 + cos θ 1 - cos θ  2 

A = - 1 1 - cos θ  1 + cos θ 2 

Total 2 2 4 

 

The correlation between A and B outcomes is cos θ is calculated in Table 2. 

Table 2: Workings for calculation of correlation between Alice’s and Bob’s 

measurements 

A B AB A2 (=B2) f (=freq.) fA fA2 (=fB2) fAB 

1 1 1 1 1 + cos θ  1 + cos θ  1 + cos θ  1 + cos θ  

1 -1 -1 1 1 - cos θ  1 - cos θ  1 - cos θ  -1+cos θ  

-1 1 -1 1 1 - cos θ  -1+cos θ  1 - cos θ  -1+cos θ  

-1 -1 1 1 1 + cos θ  -1- cos θ  1 + cos θ  1 + cos θ  

    Σ= 4 Σ= 0 Σ= 4 Σ=4 cos θ  

        

Correlation * = ΣfAB / 

ΣfA2 

= cos θ    

*  Corrrelation formula for the special case where the means are zero and the standard 

deviations are equal. 
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To restore the actual correlation of – cos θ, merely flip the labels of + 1 and – 1 for Bob in 

Table 1 and re-calculate the correlation.  A further tidying is to make the total number of pairs 

one instead of four by dividing the terms by four.  So the cells in Table 1, which is based on 

pairs of exactly identical particles, can be rearranged to be filled with terms 0.25 (1 –cos θ) 

and 0.25 (1 + cos θ) as appropriate.  Calculation of the new correlation between A and B gives 

– cos θ for particles with exactly opposite properties. 

 

Discussion 
 

The construction of outcomes of A and B in Table 1 used local hidden variables (Ref. 1) but 

did not use ‘counterfactual definiteness’.  The term ‘counterfactual definiteness’ can be taken 

to mean that “we may think of outcomes of measurements that were not actually performed 

as being just as much part of reality as those that were made” (Ref. 1).  In simulations of Bell’s 

Experiment, the term is taken to mean that if Alice’s magnet was aligned at angle θ and Bob’s 

magnet was also aligned at angle θ, then if Alice measured +1 for one entangled particle, Bob 

would with certainty measure -1 for the partner entangled particle.   

Each particle presented an N or S face to the detector magnets, and the detector magnet was 

divided into two regions where the magnet atoms were assumed to be known as N or S.  The 

measurements A and B were assumed using the logic that like poles repel and would require 

a photon emission which indicates a +1 measurement.  Unlike poles attract and so they are 

in a relatively stable positions, which indicates no photon emitted which is convertible by an 

efficient detector into a -1 measurement.  In these calculations it was assumed that Bob’s 

angled magnet introduced a random element into measurements.   Bob’s measurements 

were calculated with some uncertainty for each individual particle.  The measurements could 

have been calculated without randomness, but there was no purpose in taking that extra step 

because there is no way in practice to choose the particular atom in a magnet with which to 

interact.  In practice, it is impossible to know which atom, and its spin axis vector, an incoming 

particle will interact with.   Also, it is the randomness of measurement inherent in the 

superposition of N and S atoms in the magnet which allows the –cos θ correlation to arise; 

using counterfactual definiteness would prevent the - cos θ result. 

It is normal in quantum mechanics to assume a superposition of opposite spin states for an 

entangled pair of microscopic particles.  In this paper, however, it is the macroscopic magnet 

which is behaving as if its facing pole was a superposition of N and S states.  When the angle 

is set at θ, Bob’s magnet, nominally acting as a north pole, acts with a superposition of N and 

S states as follows: 

Bob’s magnet’s supposition of magnetic states = | 0.5 (1 + cos θ)  N >  +  | 0.5 (1 - cos θ) S > 
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It is this superposition which allows the correlation between A and B of - cos θ to occur.  The 

result of this paper cannot be verified experimentally as being caused by Bob’s physical 

magnet’s superimposed states as Bell’s experiments have already been taken supposedly to 

confirm the particles’ entangled states.   

The model of the magnet used here is maybe a throwback to a pre-Rutherford toy atom: a 

spherical blob, with N and S magnetic poles.  The macroscopic magnet used here reflects the 

shape of the individual toy atoms in the magnet.  It is easiest to visualise the toy model for 

rotated magnets with θ = 0o, 90o and 180o.  For these three angles, Bob’s magnet presents 

the states: |N>, | 0.5 N >  +  | 0.5 S >  and |S>  respectively, to the incoming particles.  And 

using these three angles as a firm basis it is maybe not so difficult to visualise interpolating 

between these three positions using a generalised superposition for angle θ:   

| 0.5 (1 + cos θ)  N >  +  | 0.5 (1 - cos θ) S >. 

Instead of putting all the onus on the particles to embody randomness on interaction with 

the detector magnet, this paper transfers at least some of this onus onto the magnets 

themselves. 
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