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Although the classical theory of lumped mechanical systems employs the viscous friction 

mechanisms (dashpots), the loss factors of most solid structures are largely controlled by 

hysteresis.  This paper presents new relationships for the dynamics of 2-DOF in-series systems 

with hysteresis damping. The most important among them is a close-form equation for the critical 

loss factor that was derived as the marginal condition for the degenerate case where the higher-

frequency resonance peak fully vanishes in the vibration spectrum of the second mass. The 

critical loss factor can take values between 0 and 2-3/2 ≈ 0.354 and depends on the ratio of the 

natural frequencies of 2-DOF system: the closer the undamped natural frequencies, the lower the 

critical loss factor.  The equation may help to interpret the vibration spectra for the second mass 

in the real 2-DOF systems, in particular on sweep-sine shaker tests.  The single resonance peak in 

the degenerate case for a 2-DOF grows up notably as the natural frequencies get close to each 

other. By a formal analogy with 1-DOF systems, the peak magnitude can be reduced by 

increasing the loss factor. But in 2-DOF systems, the vibration can be effectively attenuated for 

the same loss factor by making the natural frequencies more different from each other (in 

particular, via increasing the stiffness of the second spring).          
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 1. INTRODUCTION 

The resonances of 1-DOF and 2-DOF mechanical systems are well studied in the classical case of 

viscous friction [1-4].  However, most solid structures exhibit non-viscous damping mechanisms 

resulted from hysteresis, structural losses (caused by looseness of joints, internal strain, energy 

leaks to the adjacent structures, etc.), and coulomb friction [5-13].  All the damping mechanisms 

can be simulated using the loss factor η  calculated from energy considerations.  This parameter 

is linearly proportional to the vibration frequency in case of viscous friction, does not depend on 

the frequency for the hysteresis damping mechanism, and tends to reduce with the frequency 

because of the energy leaks to the adjacent structures. The assumption of hysteresis damping is 

reasonably valid if the loss factor does not vary notably in the important frequency range.  

The close-form relationship between the resonance (damped natural) frequency and undamped 

natural frequency was derived for 1-DOF system with an arbitrary loss factor 1η   [12].  

Under forced vibration, the frequency response of every 1-DOF system with viscous friction has 

one resonance peak that can vanish in the degenerate case (when the damping ratio exceeds its 

critical value). The magnitude of the resonance peak for the 1-DOF system with hysteretic 

friction reduces with the loss factor but does not vanish. Every 2-DOF in-series system has two 

undamped natural frequencies but the higher-frequency resonance peak may vanish entirely, in 

particular for the second mass.  This effect is of practical interest because the vibration of 

multiple solid structures can be often simulated using the simplified 2-DOF in-series models with 

hysteresis damping:  in particular for the cars or trucks where the auxiliary cooling module (the 

second mass) is attached to the main radiator (the first mass); the appropriate sets of vibration 

isolators play the role of the first and second springs, and the car frame serves as the vibrating 

base. The goal of this paper is to obtain clear analytical relationships that can helpful for the 

engineers working in the areas of noise and vibration control. 
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2. GENERAL MATHEMATICAL MODEL  

2.1. Basic equations for the 2-DOF in-series system made of two 1-DOF subsystems 

Consider the 2-DOF in-series system incorporating two rigid bodies and two springs with 

hysteresis dampers (Fig. 1).  The masses of the bodies are 1m and ,m2 the spring constants are 

1k and .k2  Hence, the partial natural angular frequencies are given by the equations 

11p1 mkω  and 22p2 mkω  .  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 2-DOF in-series system with the hysteresis damping (the lowest body simulates a shaker, 

the dampers are not shown). 

 

The system is attached to a rigid base vibrating harmonically with the angular frequency  ω and 

displacement amplitude  , y0 so the vibration displacement of the base can be defined as 

Y0 

Y1 

Y2 

m1 

m2 

k2 ,  2 

k1 ,  1 
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  t)ω i (- exp yY 00  where 1-   i  is the imaginary unit.  The vibration 

displacements of the first and second bodies can be expressed in the form 

  t)ω i (- exp yY 11  and ,  t)ω i (- exp yY 22   where  y1 and 2y  are the 

displacement amplitudes. The complex spring constants are defined as  p111 η i1 kK    

and   p222 η i1 kK   where p1η  and p2η  are the partial loss factors associated with 

the first and second springs [8, 11]. Therefore, the differential equations of motion can be written 

in the form 

  

 

 









0.YYKYm

,YKYYKYKYm

12222

012121111





                (1) 

The characteristic equation of this linear dynamic system  

 
 0  )η i-(1 )η i-(1 ω ω

 μ)(1 )η i-(1 ω )η i-(1 ω  ω-ω mm

p2p1

2

p2

2

p1

p2

2

p2p2

2

p1

24

21





 (2) 

is quadratic relative to the unknown quantity 
2ω  and has two roots  

  η i1 ω  ω~ maxmin,

2

max  min,

2

max min,       (3) 

where the undamped natural angular frequencies of the 2-DOF system  

  }{D Re ωω max min,p1max min,        (4) 

and the loss factors  

 

 
 

 . 
D  Re

D  Im
η

max min,

max min,

max min,                                            (5) 

Here, the dimensionless parameters       
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


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ω

ω
p
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

         (8) 

.
m

m
μ

1

2          (9) 

2.2. Calculation of the relative displacements in the 2-DOF system  

Using Eqs (1) - (3), calculate the ratios of the displacement amplitude 2y  to the displacement 

amplitude 0y : 

  
 

Ψ(ω)

η i1 η i1 
  

y

y maxmin

0

2 
       (10) 

where the polynomial 

      ].η iωω-[1  ]η iωω-[1 Ψ(ω) max

2

maxmin

2

min   (11) 

It is noteworthy that Eqs (10) are also valid if the base does not move, the vibrating force 

  t)ω i (- exp FF 0 is applied to the first body, and .K/F y 100    

3. DEDUCTION OF IMPORTANT CLOSE-FORM RELATIONSHIPS 

3.1. The relationship between the 2-DOF system loss factors and partial loss factors 

Applying the Vieta's formula [14] for quadratic equations to Eq. (2) and using Eq. (3), obtain the 

equality      maxmin

2

max

2

minp2p1

2

p2

2

p1 η i1 η i1 ω ω  η i1 η i1  ω ω           
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that can be approximated (after neglecting the small values p2p1ηη  and maxminηη ) to the form 

. )]η(η i[1 ω ω )]η(η i[1  ω ω maxmin

2

max

2

minp2p1

2

p2

2

p1          (12) 

Comparing the imaginary parts on both sides of Eq. (12), obtain:      

 .ηηηη maxminp2p1           (13)  

As Eq. (13) indicates, provided that all the loss factors are small, the sum of the partial loss 

factors equals the sum of the loss factors of the 2-DOF system.  

3.2. The affinity state for the undamped natural frequencies of 2-DOF in-series system 

Using Eqs (4) and (6)-(9), express the ratio of the undamped natural frequencies  ωmin and 

 ωmax as  

 1
r

1
   

r

1

r11

r11
    

ω

ω
   q

max

min 



     (14)  

where the parameter 

. 
μ)](1 p [1 

μ)(1 p 4
  

μ  1

1
r

22

2






       (15) 

In line with the well-known inequality  2uvv)(u 2  for the positive values u  and , v  the 

the parameter r  attains its maximum  

1    
μ  1

1
rmax 


         (16) 

on the condition that 

 ,  
μ  1

1
pp aff


        (17) 

or in terms of mass and stiffness, 
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.  
mm

km
 k

21

12
2


         (18) 

Calculate the first derivative of function q(r) given by Eq. (14): 

 . 0    1
r1

1
  

r 2

1
   

dr

q d
3/2












       

Hence, the parameter q  monotonically grows with the value r and attains the maximum value 

μ μ 1   qmax            (19) 

at the maximum value of the parameter r  defined by Eq. (16).  

The relationships between the parameters maxmin /ωω  q   and p1p2/ωω  p   for various 

values of the parameter 12/mmμ   are plotted in Fig. 2. 

Therefore, for the parameters 1m , 2m and 1k  given, the undamped natural frequencies of the 

2-DOF system get most close to each other if the second spring constant 2k  fits Eq. (18).  

Let’s define the case described by Eqs (17) or (18) as the “affinity state” for the undamped 

natural frequencies of a 2-DOF in-series system. 

In the affinity state, after neglecting the small value maxmin ηη ,  Eq. (6) can be reduced to the 

form  

 















    

μ1

μ
      1   η i1 D max min,       (20) 

where  

.
2

η η
ηηη 

p2p1

maxmin


       (21) 
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As follows from Eq. (21), in the affinity state the 2-DOF system loss factors are similar, even if 

the partial loss factors are not identical.  It should be noted that Eq (21) is in agreement with the 

more general Eq. (13). 

 

 Fig. 2. Relationships between the parameters maxmin /ωω  q   and p1p2/ωω  p   for various 

values of the parameter 12/mmμ  . 

 

3.3. The degenerate case: no higher-frequency resonance for the second mass 

Let’s analyze the vibration of the second mass. 

Using Eqs (10) and (11), calculate the transmissibility 

   
.  

ξ(ω)

η1   η1  
   

y

y
) (ωT

2

max

2

min

0

2
2


     (22) 

where  
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    . }η]ωω-[1 { }η]ωω-[1 {Ψ(ω)ξ(ω) 2

max

22

max

2

min

22

min

2
  (23) 

The damped natural frequencies fit the minimums of the function  . ξ(ω)  

 

 

Fig. 3. Transmissibility  ) (ωT2 as a function of the dimensionless frequency minω/ω at 

various loss factors η  (0.07, 0.138, and 0.27) and q = 0.8. 

 

Consider that both loss factors are similar:  

. ηηη maxmin           (24) 

This assumption is strictly valid only for the affinity state or if  η η  η p2p1   but can also be 

applied if such conditions are approximately valid.   

Using Eq. (24), transform Eq. (23) to a simpler form 
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    ]ηβx1 [ ] ηx1[ξ(ω) 2222
      (25) 

with the dimensionless parameter        

2

max

min2

ω

ω
qβ 










         (26) 

and dimensionless independent variable  

2

minω

ω
x 








          (27) 

From the necessary condition of minimum 0, Φ(x) 4β
 xd

ξ d 2   derive the general equation 

for the resonance (undamped natural) frequencies

 

. 0   
2β

)η1 ( 1)β (
   x 

2β

η 1)β (2β1)β (
  

x
2β

1)β ( 3
xΦ(x)

2

2

2

222

23











 







   (28) 

In the “no-friction” case 0,η   Eq. (28) has three real roots: 

                 . 
β

1
  x, 

β

1
1

2

1

2

xx
  x1,x 3

31
21 











     (29) 

Here, the first and third roots represent two undamped natural frequencies, and the second root 

defines the anti-resonance frequency (located in the middle between the two resonance peaks) at 

which the transmissibility ) (ωT2 attains its minimum.  

3.4. Critical loss factor of 2-DOF in-series system with hysteretic friction  

As seen in Fig. 3, if the loss factor exceeds some critical value, the degenerate case occurs: the 

higher-frequency resonance peak interacts with the anti-resonance dip and vanishes.  

Let’s derive a general equation for the critical loss factor.  
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Substituting Tartaglia’s substitution [14]  

 
β 2

1β
zx


                                       (30) 

into Eq. (28), obtain a more simple cubic equation 

            0Q 2z P 3 z3                                                    (31)  

with the coefficients 

           
 

.  
β 8

η β)(1 β)(1
Q

, 
β 12

η )β(1 2β)(1
P

3

22

2

222



















   (32) 

Of great importance is the parameter   

            
23 QPW                  (33) 

because in line with the classical theory [14]:  

(1) if 0,W  then all roots are real and unequal (there should be resonance peaks and one anti-

resonance dip in the vibration spectrum), 

(2) if 0,W  then all roots are real, at least two of them being are equal,  

(3) if 0,W  then one root is real and two other roots are complex conjugates (just one 

resonance peak is available).  

Hence, the transition from two resonance peaks to one resonance peak occurs if 0W  . Using 

Eqs (32) and (33), express this condition in the form  

             
β 8

η β)(1 β)(1

β 12

η )β(1 2β)(1
2/3

3

2

cr

2

2

2

cr

22








 



                     (34)  

where the value crη is the critical loss factor. Introducing the auxiliary variable 

https://proofwiki.org/wiki/Definition:Root_of_Polynomial
https://proofwiki.org/wiki/Definition:Real_Number
https://proofwiki.org/wiki/Definition:Root_of_Polynomial
https://proofwiki.org/wiki/Definition:Real_Number
https://proofwiki.org/wiki/Definition:Root_of_Polynomial
https://proofwiki.org/wiki/Definition:Real_Number
https://proofwiki.org/wiki/Definition:Complex_Conjugate
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              ,
η

β1
y 

2/3

cr









 
     (35)  

convert Eq. (34) to the form 

               0Q 2y P 3y 11

3                                                   (36)                     

with the coefficients 

              










).β(1 Q

,)β-(1  P

2

1

2/32

1

             (37) 

Here, the important parameter of the cubic equation 

              .04β)β(1  )β-(1 QP W 222222

1

3

11                 (38) 

Applying the theory [14] to Eqs (37) and (38), calculate the only real root of Eq. (36)  

                .β)(1β)(1WQ- WQy 2/32/33
11

3
11        (39) 

Equating the right parts of Eqs. (35) and (39) and using Eq. (26), calculate the critical loss factor 

               3/22/322/32

2

cr
])q(1)q[(1

q1
 η




    (40) 

where the parameter   . 
ω

ω
   q

max

min   

As follows from Eq. (40), the critical loss factor approaches its maximum 2-3/2 ≈ 0.354 if  q  0 

(that is, for max min ωω  ) and approaches 0 if  q 1.  Applying the Maclaurin series 

expansions, reduce Eq. (40) to the approximate form                 

                 . q1 0.354 η 2

cr     (41) 

The accurate (40) and approximate (41) relationships for the critical loss factor are graphically 

compared in Fig. 4. As seen, the difference between the two plots is little.  
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 Fig. 4. Critical loss factor crη  as a function of the ratio of the undamped natural frequencies, 

plotted using the accurate Eq. (40) and approximate Eq. (41). 

 

3.5. Resonance frequencies of 2-DOF system in the critical degenerative case  

Using the method [14] and Eqs (32) and (40), calculate the roots of Eq. (31) in the critical case: 

       




















 . 
2

z
  z

,
β)(1β)(1

)β(1
 

β

1)-(β
    Q  2 z

1
2,3

2/32/3

1/32

3
1

                          (43)                                

Substituting the first of Eqs (43) into Eq. (30), calculate the first root of Eq. (31) and estimate its 

first approximation using Maclaurin series expansions:                                                                                         

 .
9

β)(1 β
1

β)(1β)(1

)β(1
 

β

1)-(β

2β

1β
   x

2/32/3

1/32

1cr










      (44) 
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Using Eqs (26), (27) and (44), obtain 

1.014.
72

1
1

18

)q(1q
1

9

)q(1q
1

9

β)β(1
1

ω

ω 2222

min

1cr 








      (45) 

As follows from Eq. (45), in the critical case the fundamental damped natural frequency is very 

close to the fundamental undamped natural frequency (the relative deviation does not exceed 

2%).  The numeric calculations by Eqs (22) and (23) also indicate (see the plots in Fig. 3) that the 

difference between the fundamental damped and undamped frequencies is commonly minor. On 

the contrary, if the loss factor grows, the higher-frequency resonance for the second mass may 

notably shift to the lower frequencies and disappear in the degenerate case. 

4. POTENTIAL APPLICATIONS FOR VIBRATION CONTROL 

The vibration of the second mass of 2-DOF in-series systems may become severe if its natural 

frequencies are close together.  In the practically important case  , ηηη maxmin  using Eqs (22) 

and (23), calculate the transmissibility at the fundamental resonance frequency   

  22 2

2

min2

ηq1  η

η1
  ) (ωT




       (46) 

Here, we employ the fact that the fundamental damped resonance frequency all but coincide with 

the fundamental undamped natural frequency minω . 

From Eq. (46), the transmissibility for the second mass significantly grows if the parameter 

1,  q  that is, the natural frequencies minω and maxω  get close to each other. 

In this case, the resonance vibration of a 2-DOF in-series system can be notably reduced just by 

making the natural frequencies more different (in particular, via replacing the second spring with 

a stiffer one). In the degenerate case, the engineer could suggest that the second mass (in 

particular, an auxiliary cooling module attached to a car radiator) vibrates as a 1-DOF mechanical 

system. As a result, he might look for the vibration isolators with a much higher loss factor.  In 
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practical cases, this decision may not be practical. As shown in Fig. 5, the resonance peak in the 

degenerate case ( q = 0.8 and η = 0.138 ) can be notably attenuated (1) via halving the ratio q  

of the natural frequencies from 0.8 to to 0.4 for the same loss factor, or (2) by doubling the lost 

factor value from 0.138 to 0.27 for the same parameter q = 0.8. The first method looks more 

effective. 

  

Fig. 5. The transmissibility calculated using Eq. (46) for three different cases. 

 

5. CONCLUSIONS 

The new relationships describing the dynamics of 2-DOF in-series systems with hysteresis 

damping and vibrating base were deduced. 

(1) Eq. (13): The sum of the loss factors of the 2-DOF system equals the sum of the partial loss 

factors. 
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(2) Eq. (21): In the so-called affinity state (where the undamped natural frequencies of the 2-DOF 

system are most close to each other) defined by Eq. (17), the loss factors of the 2-DOF system get 

similar and equal to the arithmetic average of the partial loss factors. 

(3) Eq. (40): A close-form equation for the critical loss factor was derived as the marginal 

condition of the degenerate case (when the higher-frequency resonance peak fully vanishes in the 

frequency response for the second mass).  The critical loss factor can take values between 0 and 

2-3/2 ≈ 0.354 and depends on the ratio of the natural frequencies of 2-DOF system: the closer the 

natural frequencies, the lower the critical loss factor.   

(4) Eq. (41): The accurate equation for the critical loss factor was reduced to the approximate 

form. The difference between the values computed by Eqs (40) and (41) is little but Eq. (41) has a 

much simpler form. 

The presented theory can help the practical engineers to understand if the real single-resonance 

system vibrates like the 1-DOF model or 2-DOF model in the degenerate case. For the first 

option, the main way to reduce the peak magnitude is to increase the loss factor. For the second 

option, the vibration can be effectively reduced for the same loss factor by making the natural 

frequencies more different from each other (in particular, via increasing the stiffness of the 

second spring).                
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