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Abstract

Some conjectures and corollaries regarding the convergence of the iterates of Newton’s method

,~5l+) :4(37(57177):) to the Gram points g, = yif) where 9, (¢t)=9(t) —
8e

(n —1)m and 9(t) is the Riemann-Siegel vartheta function are given.
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The Hardy Z function
Z(t) =e?® C(%—i—it) )
is isomorphic to the Riemann ¢ function
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where
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is the Riemann-Siegel theta(aka vartheta) function and InI" is the principal branch of the logarithm of the I' function \Evh)ich
+) .

is the analytic continuation of the factorial, I'(s + 1) =s!=1-2-3 ... - 5. [6] The n-th Gram point’s2, 6.5] location y,,"’ is
approximated very well by
. _ 8n —7)m
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where W is the Lambert W function which is derived by replacing 9— J(t) with its asymptotic expansion
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and using the fact that equation
d(t)=y (6)
is invertible having a unique solution given by ¢ :% so that
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and the derivative of 9(t) is given by
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[3, Eq. 163]![8] Newton’s method for solving ¥(¢) = (n — 1)7 is guaranteed to converge if started from a point ¢t € B(gﬁf)
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within the closure(inside or on the boundary) of ball of radius r};, to be derived below, centered at § The Gram points

have the property that the imaginary part of ¢ on the critical line vanishes at their locations, that is

Im(C(%Hyfﬁ )) —0 ©)

1. The authors notation leads to the impression that g, is actually the n-th Gram point, rather than a very good approximation to it



To determine the sequence r}; in (4) let
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then, by applying [4, Theorem 3| or the more general [1, Theorem 2.2.4], it can be shown that the Newton-Kantorovich method|[7]
defined by the iteration function

4 2 4 2
G- D)o

(+)
n

Ny, (t) =t— (lnr(l—i_ﬁ)_lnr<l_ﬁ>>_¥t—nﬂ+ﬂ

(13)

which, when applied applied to itself repeatedly, converges to a solution ﬁn(y ) = 0 if the initial point of the iteration is

within B (g,(f), r;i), the closure of a ball of radius r}, centered at gj,(:r), that is
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is unique within the interior of a ball centered at the same location gff) of radius

PrF = 1++2anbn

and furthermore the solution y

= LV 2anbn (16)
n
that is
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If hy, = anbn, = % then r;, = r;;* and the solution both exists and is unique within the same ball, a situation which would be
denoted by
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Letting n =1, we see that
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b= —m | = 0.06201224977... (20)
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so that
h1=a1 b1 =0.0001387114859 < 0.5 (21)
and thus convergence is assured so that
ui e B(a ) (22)



where

ri =15.85725376... (23)
and furthermore the solution is unique within the larger ball centered at the same location of radius r1*, that is
1 . -~ % %k it
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where
ri*=16.39443856... (25)

Conjecture 1. The sequence a, is monotonically decreasing, an < an—1¥n >1

Conjecture 2. The sequence b,, is monotonically decreasing, b, < b, _1¥n >1

Conjecture 3.
expansions ¥(t)

Let G,, and b, be the sequences obtained by replacing d(t) and its derivative 19(t) with their asymptotic
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then it can be shoun that
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using the fact that
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and
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[5]
Conjecture 4. The sequence hy, is monotonically decreasing, hy < hnp—1Yn >1
Let
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then it can be shown that

lim A, = Lm d,b, =0 (33)
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Corollary 5. If Conjecture 4 is true and h,, is monotonically decreasing then h, < %Vn > 1 since h; = 0.001387114859... >

(+)

hpVn > 1 which means that the nth Gram point y ezists and is a unique and well-defined number ¥Yn > 1 since Theorem

n
3 wn [4] proves that the accumulation point ysf) of the Cauchy sequence generated by repeated application of Ny, [9, 3.10]
converges quadratically to a well-defined and unique point

{357, No (550), N, (N, (557)), No, (No, (No, (557)), -} = i € B(3SD, ) (34)
since gﬁf) is a good starting point converging to y,E;r)Vn >1.
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