Convergence of the Newton-Kantorovich Method for the Gram Points

BY STEPHEN CROWLEY stephencrowley214@gmail.com Dec 14, 2016

Abstract

Some conjectures and corollaries regarding the convergence of the iterates of Newton's method $\lim_{m\to\infty}\left\{N_{\vartheta_n\left(\tilde{y}_n^{(+)}\right)}^{om}\right\}$ with starting points $\tilde{y}_n^{(+)}=\frac{(8n-7)\pi}{4W\left(\frac{8n-7}{8e}\right)}$ to the Gram points $g_n=y_n^{(+)}$ where $\vartheta_n(t)=\vartheta(t)-(n-1)\pi$ and $\vartheta(t)$ is the Riemann-Siegel vartheta function are given.

The Hardy Z function

$$Z(t) = e^{i\vartheta(t)} \zeta\left(\frac{1}{2} + it\right) \tag{1}$$

is isomorphic to the Riemann ζ function

$$\zeta(t) = e^{-i\vartheta\left(\frac{i}{2} - it\right)} Z\left(\frac{i}{2} - it\right) \tag{2}$$

where

$$\vartheta(t) = -\frac{i}{2} \left(\ln \Gamma \left(\frac{1}{4} + \frac{it}{2} \right) - \ln \Gamma \left(\frac{1}{4} - \frac{it}{2} \right) \right) - \frac{\ln(\pi) t}{2} \tag{3}$$

is the Riemann-Siegel theta (aka vartheta) function and $\ln\Gamma$ is the principal branch of the logarithm of the Γ function which is the analytic continuation of the factorial, $\Gamma(s+1)=s!=1\cdot 2\cdot 3\cdot ...\cdot s.$ [6] The n-th Gram point's [2, 6.5] location $y_n^{(+)}$ is approximated very well by

$$\tilde{y}_n^{(+)} = \tilde{g}_n = \frac{(8n-7)\pi}{4W\left(\frac{8n-7}{8e}\right)} \tag{4}$$

where W is the Lambert W function which is derived by replacing $\tilde{\vartheta} \to \vartheta(t)$ with its asymptotic expansion

$$\tilde{\vartheta}(t) = \frac{1}{2}t\ln\left(\frac{t}{2\pi c}\right) - \frac{\pi}{8} = \vartheta(t) + O(0.05) \forall t \geqslant 1$$
(5)

and using the fact that equation

$$\tilde{\vartheta}(t) = y \tag{6}$$

is invertible having a unique solution given by $t = \frac{\pi + 8y}{4W(\frac{\pi + 8y}{8\pi e})}$ so that

$$\tilde{\vartheta}\left(\frac{\pi+8y}{4W\left(\frac{\pi+8y}{8\pi e}\right)}\right) = \frac{1}{2} \frac{\pi+8y}{4W\left(\frac{\pi+8y}{8\pi e}\right)} \ln\left(\frac{\frac{\pi+8y}{4W\left(\frac{\pi+8y}{8\pi e}\right)}}{2\pi e}\right) - \frac{\pi}{8} = y \tag{7}$$

and the derivative of $\tilde{\vartheta}(t)$ is given by

$$\tilde{\dot{\vartheta}}(t) = \frac{1}{2} \ln \left(\frac{t}{2\pi e} \right) + \frac{1}{2} + O(0.1) \forall t \geqslant 1$$
(8)

[3, Eq. 163]¹[8] Newton's method for solving $\vartheta(t) = (n-1)\pi$ is guaranteed to converge if started from a point $t \in B(\tilde{y}_n^{(+)}, r_n^*)$ within the closure(inside or on the boundary) of ball of radius r_n^* , to be derived below, centered at $\tilde{y}_n^{(+)}$. The Gram points have the property that the imaginary part of ζ on the critical line vanishes at their locations, that is

$$\operatorname{Im}\left(\zeta\left(\frac{1}{2} + iy_n^{(+)}\right)\right) = 0\tag{9}$$

 $[\]overline{}$ 1. The authors notation leads to the impression that \tilde{g}_n is actually the n-th Gram point, rather than a very good approximation to it

To determine the sequence r_n^* in (4) let

$$a_n = \left| \frac{\vartheta_n(\tilde{y}_n^{(+)})}{\dot{\vartheta}(\tilde{y}_n^{(+)})} \right| = \left| \frac{\vartheta(\tilde{y}_n^{(+)}) - (n-1)\pi}{\dot{\vartheta}(\tilde{y}_n^{(+)})} \right|$$
(10)

$$b_n = \frac{\begin{vmatrix} \dot{\hat{\sigma}}(\tilde{y}_{(n+1)}^{(+)}) - \dot{\hat{\sigma}}(\tilde{y}_{(n-1)}^{(+)}) \\ \vdots \\ \dot{\hat{g}}(\tilde{y}_{(n+1)}^{(+)} - \tilde{y}_{(n-1)}^{(+)} \end{vmatrix}}{\tilde{y}_{(n+1)}^{(+)} - \tilde{y}_{(n-1)}^{(+)}}$$
(11)

where

$$r_n^* = \frac{1 - \sqrt{2a_n b_n}}{b_n} \tag{12}$$

then, by applying [4, Theorem 3] or the more general [1, Theorem 2.2.4], it can be shown that the Newton-Kantorovich method[7] defined by the iteration function

$$N_{\vartheta_n}(t) = t - \frac{-\frac{i}{2} \left(\ln \Gamma \left(\frac{1}{4} + \frac{it}{2} \right) - \ln \Gamma \left(\frac{1}{4} - \frac{it}{2} \right) \right) - \frac{\ln(\pi)}{2} t - n\pi + \pi}{\frac{1}{4} \left(\Psi \left(\frac{1}{4} - \frac{it}{2} \right) + \Psi \left(\frac{1}{4} + \frac{it}{2} \right) \right) - \frac{\ln(\pi)}{2}}$$
(13)

which, when applied applied to itself repeatedly, converges to a solution $\vartheta_n(y_n^{(+)}) = 0$ if the initial point of the iteration is within $B(\tilde{y}_n^{(+)}, r_n^*)$, the closure of a ball of radius r_n^* centered at $\tilde{y}_n^{(+)}$, that is

$$y_n^{(+)} = \lim_{m \to \infty} N_{\vartheta_n}^{\circ m} (\tilde{y}_n^{(+)}) \subset \overline{B(\tilde{y}_n^{(+)}, r_n^*)}$$

$$\tag{14}$$

if

$$h_{n} = a_{n} b_{n} = \left| \frac{\vartheta_{n} \left(\tilde{y}_{n}^{(+)} \right)}{\dot{\vartheta} \left(\tilde{y}_{n}^{(+)} \right)} \right| \left| \frac{\dot{\vartheta} \left(\tilde{y}_{(n+1)}^{(+)} \right) - \dot{\vartheta} \left(\tilde{y}_{(n-1)}^{(+)} \right)}{\dot{\vartheta} \left(\tilde{y}_{n}^{(+)} \right)} \right| = \left| \left(\frac{\vartheta_{n} \left(\tilde{y}_{n}^{(+)} \right)}{\dot{\vartheta} \left(\tilde{y}_{n}^{(+)} \right)} \right) \left(\frac{\dot{\vartheta} \left(\tilde{y}_{(n+1)}^{(+)} \right) - \dot{\vartheta} \left(\tilde{y}_{(n-1)}^{(+)} \right)}{\dot{\vartheta} \left(\tilde{y}_{n}^{(+)} \right)} \right) \right| \leq \frac{1}{2} \forall n \geqslant 1$$

$$(15)$$

and furthermore the solution $y_n^{(+)}$ is unique within the interior of a ball centered at the same location $\tilde{y}_n^{(+)}$ of radius

$$r_n^{\star \star} = \frac{1 + \sqrt{2a_n b_n}}{b_n} > r_n^{\star} \tag{16}$$

that is

$$\left\{ \operatorname{Im} \left(\zeta \left(\frac{1}{2} + it \right) \right) \neq 0 : t \in B\left(\tilde{y}_{n}^{(+)}, r_{n}^{**} \right) \setminus B\left(\tilde{y}_{n}^{(+)}, r_{n}^{*} \right) \right\}$$

$$(17)$$

If $h_n = a_n b_n = \frac{1}{2}$ then $r_n^* = r_n^{**}$ and the solution both exists and is unique within the same ball, a situation which would be denoted by

$$\left\{\operatorname{Im}\left(\zeta\left(\frac{1}{2}+it\right)\right)=0:t\in B\left(\tilde{y}_{n}^{(+)},r_{n}^{*}=r_{n}^{**}\right)\right\} \tag{18}$$

Letting n=1, we see that

$$a_1 = \left| \frac{\vartheta_1(\tilde{y}_1^{(+)})}{\dot{\vartheta}(\tilde{y}_1^{(+)})} \right| = 0.002236840082... \tag{19}$$

$$b_1 = \begin{vmatrix} \frac{\dot{\sigma}(\tilde{y}_{(2)}^{(+)}) - \dot{\sigma}(\tilde{y}_{(0)}^{(+)})}{\dot{\sigma}(\tilde{y}_{(2)}^{(+)} - \tilde{y}_{(0)}^{(+)}} \end{vmatrix} = 0.06201224977...$$
(20)

so that

$$h_1 = a_1 b_1 = 0.0001387114859 \le 0.5$$
 (21)

and thus convergence is assured so that

$$y_1^{(+)} \subset \overline{B(\tilde{y}_1^{(+)}, r_1^*)}$$
 (22)

where

$$r_1^* = 15.85725376... (23)$$

and furthermore the solution is unique within the larger ball centered at the same location of radius r_1^{**} , that is

$$\left\{ \operatorname{Im} \left(\zeta \left(\frac{1}{2} + it \right) \right) \neq 0 : t \in B(\tilde{y}_{1}^{(+)}, r_{1}^{**}) \setminus B(\tilde{y}_{1}^{(+)}, r_{1}^{*}) \right\}$$
(24)

where

$$r_1^{**} = 16.39443856...$$
 (25)

Conjecture 1. The sequence a_n is monotonically decreasing, $a_n < a_{n-1} \forall n \ge 1$

Conjecture 2. The sequence b_n is monotonically decreasing, $b_n < b_{n-1} \forall n \ge 1$

Conjecture 3. Let \tilde{a}_n and \tilde{b}_n be the sequences obtained by replacing $\vartheta(t)$ and its derivative $\dot{\vartheta}(t)$ with their asymptotic expansions $\tilde{\vartheta}(t)$

$$\tilde{a}_{n} = \left| \frac{\tilde{\vartheta}_{n}(\tilde{y}_{n}^{(+)})}{\dot{\tilde{\vartheta}}(\tilde{y}_{n}^{(+)})} \right| = \left| \frac{\tilde{\vartheta}_{n}\left(\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}\right)}{\ddot{\tilde{\vartheta}}\left(\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}\right)} \right| = \left| \frac{\left(\frac{1}{2}\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})} \ln \left(\frac{\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}}{2\pi e}\right) - \frac{\pi}{8}\right) - (n-1)\pi + O(0.05)}{\left(\frac{1}{2}\ln \left(\frac{\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}}{2\pi e}\right) + \frac{1}{2}\right) + O(0.1)} \right|$$

$$\tilde{b}_{n} = \begin{vmatrix} \frac{\tilde{i}}{\tilde{v}} \left(\frac{(8(n+1)-7)\pi}{4W \left(\frac{8(n+1)-7)\pi}{8e} \right) - \tilde{i}} \left(\frac{(8(n-1)-7)\pi}{4W \left(\frac{8(n-1)-7)\pi}{8e} \right)} \right) \\ \frac{\tilde{i}}{\tilde{v}} \left(\frac{(8(n-1)-7)\pi}{4W \left(\frac{8(n-1)-7}{8e} \right)} \right) \\ \frac{(8(n+1)-7)\pi}{4W \left(\frac{8(n+1)-7}{8e} \right) - \frac{(8(n-1)-7)\pi}{4W \left(\frac{8(n-1)-7}{8e} \right)}} \\ \begin{vmatrix} \frac{1}{2} \ln \left(\frac{\frac{(8(n+1)-7)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.05) \right) - \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.05) \right) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} + O(0.1) \\ \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac{(8(n-7)\pi)\pi}{4W \left(\frac{8(n-7)\pi}{8e} \right)}}{2\pi e} \right) + \frac{1}{2} \ln \left(\frac{\frac$$

then it can be shown that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \tilde{a}_n = 0 \tag{28}$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \tilde{b}_n = 0 \tag{29}$$

using the fact that

$$W\left(\frac{xt\pm n}{xe}\right) = W\left(\frac{t}{e}\right) + O\left(\frac{1}{t}\right) \tag{30}$$

and

$$\ln(t) - \ln(\ln(t)) < W(t) < \ln(t) \tag{31}$$

[5]

Conjecture 4. The sequence h_n is monotonically decreasing, $h_n < h_{n-1} \forall n \ge 1$

Let

$$\tilde{h}_{n} = \tilde{a}_{n}\tilde{b}_{n} = \left(\frac{\left(\frac{1}{2} \frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})} \ln \left(\frac{\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}}{2\pi e} \right) - \frac{\pi}{8} \right) - (n-1)\pi}{\frac{1}{2} \ln \left(\frac{\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}}{2\pi e} \right) + \frac{1}{2}}{\frac{1}{2} \ln \left(\frac{\frac{(8n-7)\pi}{4W(\frac{8n-7}{8e})}}{2\pi e} \right) + \frac{1}{2}}{\frac{1}{2} \ln \left(\frac{\frac{(8n-1)-7)\pi}{4W(\frac{8n-7}{8e})}}{2\pi e} \right) + \frac{1}{2}} \right)} \right)$$

$$(32)$$

then it can be shown that

$$\lim_{n \to \infty} \tilde{h}_n = \lim_{n \to \infty} \tilde{a}_n \tilde{b}_n = 0 \tag{33}$$

Corollary 5. If Conjecture 4 is true and h_n is monotonically decreasing then $h_n \leq \frac{1}{2} \forall n \geq 1$ since $h_1 = 0.001387114859... > h_n \forall n \geq 1$ which means that the nth Gram point $y_n^{(+)}$ exists and is a unique and well-defined number $\forall n \geq 1$ since Theorem 3 in [4] proves that the accumulation point $y_n^{(+)}$ of the Cauchy sequence generated by repeated application of N_{ϑ_n} [9, 3.10] converges quadratically to a well-defined and unique point

$$\{\tilde{y}_{n}^{(+)}, N_{\vartheta_{n}}(\tilde{y}_{n}^{(+)}), N_{\vartheta_{n}}(N_{\vartheta_{n}}(\tilde{y}_{n}^{(+)})), N_{\vartheta_{n}}(N_{\vartheta_{n}}(N_{\vartheta_{n}}(\tilde{y}_{n}^{(+)})), \ldots\} \to y_{n}^{(+)} \in \overline{B(\tilde{y}_{n}^{(+)}, r_{n}^{*})}$$
(34)

since $\tilde{y}_n^{(+)}$ is a good starting point converging to $y_n^{(+)} \forall n \ge 1$.

Acknowledgments. The author would like to thank Professor Argyros for proof-reading this paper and encouraging/helpful remarks and Professor LeClaire for putting up sporadic and somewhat messily composed emails over the past year or two and providing the transcendental equation criteria for the Riemann Hypothesis.

Bibliography

- [1] Ioannis K Argyros. Convergence and applications of Newton-type iterations. Springer Science & Business Media, 2008.
- H.M. Edwards. Riemann's Zeta Function. Academic Press & Dover, 1974.
- [3] Guilherme França and André LeClair. A theory for the zeros of riemann zeta and other l-functions. ArXiv preprint arXiv:1407.4358, 2014.
- [4] JoséM Gutiérrez. A new semilocal convergence theorem for newton's method. Journal of Computational and Applied Mathematics, 79(1):131-145, 1997.
- [5] Abdolhossein Hoorfar and Mehdi Hassani. Approximation of the lambert w function and hyperpower function. http://rgmia.org/ papers/v10n2/lambert-v2.pdf.

 [6] A. Ivić. The Theory of Hardy's Z-Function. Cambridge Tracts in Mathematics. Cambridge University Press, 2013.
- [7] LV Kantorovich and GP Akilov. Functional Analysis. Pergamon Press, Oxford, 1982.
- [8] Davide A Marca, Stefano Beltraminelli, and Danilo Merlini. Mean staircase of the riemann zeros: a comment on the lambert w function and an algebraic aspect. ArXiv preprint arXiv:0901.3377, 2009.
- [9] Walter Rudin. Real & Complex Analysis. Tata McGraw-Hill, 3rd edition, 2006.