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The problem on the existence and smoothness of the Navier—Stokes equations is solved.
1. Problem description

The Navier-Stokes equations are thought to govern the motion of a fluid in R?, see [1].
Letu = u(x,7) € R3, p = p(x,7) € R, and f = f(x,7) € R? be the velocity, pressure, and
given externally applied force respectively, each dependent on position x € R? and time
t > 0. The fluid is here assumed to be incompressible with constant viscosity v > 0 and
to fill all of R3. The Navier—Stokes equations can then be written as

ou

E+(u-V)u=vV2u—Vp+f, (1)
V-u=0 (2)
with initial condition
u(x,0) = ug 3)
where ug = uy(x) € R3. In these equations V = (%, 8672, 6673) is the gradient operator and

V2 = Zg P is the Laplacian operator. When v = 0, equations (1), (2), (3) are called

;:1 8x,-2

the Euler equations. Solutions of (1), (2), (3) are to be found with
u(x +ej) =up(x), f(x+ej, 1) =1Ff(x,1) for 1 <j<3 4)

where e; = (1,0,0), ex = (0,1,0), e3 = (0,0, 1). The initial condition ug is a given C*
divergence-free vector field on R? and

|8g&ff| < Copy(1 +1t)7” on R3 x [0, 00) for any a,f,7y. (5)
A solution of (1), (2), (3) would then be accepted to be physically reasonable if
ux +ej;,0) =u(x, 1), p(x+ej,t)=pxt) on R*x[0,00) for I<j<3  (6)

and
u, p € C¥(R? x [0, 0)). (7)

I provide a proof of the following statement (D), see [2].
(D) Breakdown of Navier—Stokes Solutions on R3/Z3.

Take v > 0. Then there exist a smooth, divergence-free vector field uy on R? and a smooth
f on R? x [0, 00), satisfying (4), (5), for which there exist no solutions (u, p) of (1), (2),
(3), (6), (7) on R? X [0, c0).



2. Proof of statement (D)

Herein I take f = 0. I seek an approximation of the form

Z Z B;UIL li=0 I e, ®)

L=-1 /=0
LSS dp, A ikLx
— l
p—L_ZI; =07 ©)

to the solution of (1), (2), (3), (4), (5), (6) in light of Theorem 1 and Theorem 2 in the
Appendix. Here uy, = up,(¥), pL = pL(®), i = V-1 , k =2m, and Z{I:_H denotes the sum
over all L € Z3 with -H < L ; < H. Herein the smooth divergence-free initial condition
ug on R3 is chosen to be

uy = Z L x (L x Dady, yze'™™ (10)
L=-1

where 1 = (1,1, 1), 6; ; is the Kronecker delta defined by

(1, 0=
5,,,_{0’ i) (11)

and ay, are constants that are chosen such that ug € R3.
Method 1

Let .
= o rleog (12)

— o t
p=> Fos. (13)

Substituting (12), (13) into (1) and equating like powers of ¢ in accordance with Theorem
1 yields

al+1 amu 1 al al
Tl Z(a,m -0 V)i 0( )—vv IR ST

where

l I
A

Substituting (12) into (2) and equating like powers of ¢ in accordance with Theorem 1
yields
o
V-—l=0=0. 16
70 (16)
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Applying V X VX to (14) and using the identities

VxVxa=V(V-a)-Va, (17)
VxVa=0 (18)
along with (16) gives
(’)l“ VxV v d"™u [ V4(')lu {
amho— X XZ(almzo Y=ol |+ STl (19)

Applying the inverse Laplacian V=2 to (19) gives

/

al+l 5 al my am / 6
o VXVXZ<azm 0 V)T 0( ) WD+ @ (20)

where ®; must satisfy the Laplace equation
Vi@, = 0. (21)

The required solution to (21) is @; = 0 in light of (4), (6). Equation (20) is then solved
for & “|, owhere/=0,1,...,n— 1. Applying V- to (14) and noting (16) yields

orl+!1
26 p l al my oM !
Sl ==V Z( T o V) e 0( ) (22)
m=
Applying V=2 to (22) gives
al ~ al my am /
a_5|t20 =-v? Z(a, S li=0 - V) ——li= 0( )+¢z (23)
where
V2, = 0. (24)
Arbitrary constant ¢; € R is the solution to (24) in light of (4), (6). Equation (23) is then
[
solved for aa—t’,’I,:o where [ = 0,1,...,n — 1. After truncating (12), (13) in their modes,
expressions for (8), (9) from Method 1 are then known in terms of given functions.
Note that for the Fourier series
g=) g (25)
L#0

where Yj .o denotes the sum over all L € Z* with L # 0, the V2 operator is defined

herein as
ikL-x

ikL-x gLe
V- Zg eMLx = Z ST (26)

L+#0



The following is the output from the Maple code in the Appendix where u = (&, v, w) and

x = (x,y,2).

u

_4“].71,716’ik('v_'v_:) _ 2“—1,],—19%(_“"‘_:) _ 2“1,],—l€iku+y_2) _ Za,lflvleik(_x_y*'z) _ 2111,71,]é’ik(x_)'+z)
—da_y D ((12ay g g MO w60y g KO 4 6ay g ROt 6ay g g T

+6ay,_1 1 KO 4120y 4 KON L odita g g yay oy o1e7 20 v asy ag e H R

—a_ppaani 1€ —asy a1 @®0r+ (<18ay 1 MO 290y KO 9qy k)

1

—9a_1 1,1 ok(-xy+2) 901'_]V|e"k("7”3) —18a_y1 oKXy 24d 120i(—272"k)’a_|'_1yla|'_|

—eHa_y pay o+ R aly g gagy o1 + e Faly g gag g VK + @8a_y g 1ay o <1ay o KO
*%“—1.1,—1al.—l.—]”1,1.—leik(x+'v_3:) +48a_y 1 1a 1 ~1a1,1-1eXP 4 %641,71.7101‘71,101.1,71e'k(’%x_y_Z)
+%a-11_1'1a_],11_|a_lvlyleik(’sxﬂ"”) +480-1,-1,1tl—l,l,lal,—l,—leik(ik"'ﬂ)
+%a,]f,vla,u.lalv,lvle”‘"x’)’*m +48a_y 1 _1a_yp1ap g gD
*%“—1.1,—1a—l,l.l"1,1.—leik(_x+3y_:) + %071.71‘1a1.71.71a1,71,1eik(x_’%y")

ik(—xty+2 2 —xhy+3
+48a_y 1,1(a-1 -1 1an1,1 +asggorar o )e R 1 a8a? | ay g KT
+48a3111'1a1y1',1 eKxH3y+D) 48(1,]»,1'1a%'71771 £k=3y=2) 48a_1,1,-1 a%ﬁl'ileik(x—y—f&z)

ik(x-y—2 2 k(x-y+32 2 ik(erdy—z
+48ay 1 _1(amyppani o1 +aco1a1-1)eR T 1480y ga MO 18 gat | HOE

+48a%, _y ay 1, @MV 4a8a? |y g g fFORTONDE w06,

G T B PR G B P e BED PR G )

72a71'1yleik(fx+y+z) + ((6(111,1,,16"‘((*'7"‘71) + lzailvlﬁleik(—x{v—z) + 6a1’1‘71eik(x+y—z) + 6a,1171,16ik(7xiy+z)
+12ay 21 10D 4 6a_y g KDL 4 2diasy g Zyay oy —1e R —aly g a2 €2

+a_i_t1a-y1-1e % —ay _yjay g1+ (<9ay g ROV~ 18a_y g _yeKE)

—9ay 1 7leik(.x+y—z) —9a__; lezk(—x—y+z) —18aj ]eik(x—y+z) —9a_y 1eil((—x+y-¢-z))v2k4

+120i(—e 2 Ra_y ) _yay_y oy + € Fa_y g gay o1 — e ey g yasy g oy + @R ay g gar o e
+(48ay —ypasy g rar 11 O d8a gy yasy g gar g€ O w480y g gay g 0D

ik(ehy—z 2 (=3x-y+2 2 k(=3x+y—2
+48a_ 1 _jay 1 1ay1-1€* D + 4807 | ja_y g M) w80y g ga? | R

+48a_y 1 _1(aoy —1,1a1,1-1 +do11,1@1-1,-1)e T 4 d8ay 1y j(any oy gan 1 +acy g ar-1-)e R

ik(3x—y+z i ), 144 ik(x+y—37
+48a%_71'1alvl',le‘k(l" V+2) +48a1',1'1ai]'ile‘k(l"ﬂ D4 T ”71.1,—1‘11.71.71"1,1.7161,((“) 32)

144 KOy 144 I
TR LIS RTR ST Bry=d 4 T 4-1-114-1 -1 e (Bxay+d)

144 ik(-x-y+3z) , 20 ik(~x+3y-2
T asp-p oy @O 4 TTé-L1-1a-111an 1€ (xedy2)

96 —3yaz P e(x—y-37
7 A0 11 O 1 482 a1 O L d8ay g ety MO0

+48a_y 1 a} _; MO paga? | ay g RN 4 o),

—2ay_; _lcik(kvﬂ) —2a_1, _]eik(ﬂrt\'fz) —day _]eik(ﬂ)'f:) —da_y_, ]eik(ﬁfyﬂ) —2a;_, ]L,ik(ky“rz)

—2a_|1]vleik(7”»v+3) +((6ay,-1,-1 £kOy=2) 4 6a_1,1y_1eik(”‘”73) +12a1 ekOHy=2) 4 ]2a_|,_1_1e"k(""~"+3)

+6ay_11e¥ D 4 6a_y KT+ 24iGay g yay oy o120 —ay )y jay o R
wa_y_pacy 11 20 —ay _yyay g o1 200+ (<9ay _p o €KV —9a_yy _efkE )

~18a; -1 eik(.H_v—z) —18a_;_; lgik(—x—yﬂ) —9a; _; leik(,\'—y+z) —9a_; lgik(—x+,\'+z))y2k4

+120i(—e M a_y _y yay o1+ Paly g yan o — e aly _yjasy oy + R ay g yagy vk
HA8aP| ) acy g @M Ly aP | R L agal | ay O
+43a1,71,1a%yly,le'kmﬂ*‘") +48a_y 1 1(a_y 1 —1a1 11 +a_y11a1-1,-)eRIIH)
+48ay,1 —1(a_1,1~1a1-11 +a_111a1-1-DeX T+ d8a_y _yja_y ) oap o KD
96 ik(xty-37) , 144 ik(3x-y—z 2 ik(x—3y—2
+ 4111411 -1a1 -1 (ry=32) L1411 a1 Gx=0) s 48ay _yga] e FTH
144 ik(=3x+y+z) , 26 ik(=x—y+32 2 ik(x+3y—-2
T Ay -y paoyg-1aoy gD 4 ﬁaflfl,la*l,l.lal,—l.le‘( T 1 48ay y ap KO
144 ik(—x+3y-z) , 144 ik(x=3y+2 2 ik(=x+3y+3)
1 a-pgamgag - @O 4 T 111t 1an e 349 4 4862 | (ay g g KCFHD

+48a2| | ay 1 1@ I dga sy a1 @ O d8ay gy o say o @K

+48a_y 1 1a1 111,11 )2 + 003,

4

@7

(28)

(29)



po= SSasippar-r-1e2® vasy g jar oy o1e® vany a1 v asy g gar g
+a_yoppaog1ore R vy gay g o€+ dasy g a1 O v aly g ay g PR
+a_1,-1,141,-1,1 AT 4 aj,-1,-141,-1,1 K 4 aj—1,-10a1,1,-1 k=2 4 a-1,1,-141,1,-1 2k0=2)y
@8-y 1 1@ -1 -1€7 Y basy g a1 o167 v asy g gagy 1 v ay a2y
+ay o paoy g o€ 2 b ay a1 @) = 24(ay g yany KO v asy g ay )y 2RCE
+a_y o 1a1,-112 % v ay a0 2RO way g a2 F 0D aly g syay g o 2RO
+%i(_”—].—l.l“l,—].—l‘ll,—L] I gy ay g mramy 1M —al ) ay g mrag g o RO
+la_y _y 1oy —1a1-1-1€9 D = Ha_yygay g gay1-1€9 0 —aly g gasg g ey g O
+a_p 1,101 -1,18-1-1,1 €D Ly ay g syag 12168300+ 062, (30)

In Method 1, these results are truncated onto the modes with -1 <L; < 1.
Method 2

Let

i szx (31)

1
p= ) p™ (32)
L=-1

Substituting (31), (32) into (1) and equating like powers of e in accordance with Theorem
2 yields

9
= Z(uL M - ikM)uy; = vk |Luy, — ikLpy.. (33)

Substituting (31) into (2) and equating like powers of e in accordance with Theorem 2
yields
L-u, =0. (34)

Applying L x Lx to (33) and noting the vector identity

ax(bxc)=(c-ab-(b-a) (35)

along with (34) yields
L 2‘9“L Z L x (L x (ug,_y - ikMuy) — vi*L{*uy.. (36)

Equation (36) implies
a“L Z L. x (£ x (ug_y - ikM)uy) — viZILPuy, (37)

where the right hand side of (37) is 0 when L = 0 and L. = L/|L| is the unit vector in the
direction of L. Applying L- to (33) and noting (34) gives

ikILPpr, = - Z(UL—M - kM) (uy - L) (38)
M



implying that A A
= (- E)uy - 1) (39)
M

where pg € R is an arbitrary function of 7. Let

= o t
ug, = ; — o7 (40)

n=l 4 I
0 PL t
pmg — =07y 1)
Substituting (40) into (37) and equating like powers of ¢ in accordance with Theorem 1
yields

al+luL
atl+l

- Mua o'
ZZLx(Lx( g -ikM) =M 0)( ) VEILE = s (42)
m=0 M

Equation (42) is then solved for a;%l,:o where [ = 0,1,...,n—-1and -1 < L; < L.
Substituting (40), (41) into (39) and equating like powers of ¢ in accordance with Theorem
1 yields

d'pr “Mag-m a" uM
- The0 = ZZ( =0 D o L) (43)
m=0 M
Equation (43) is then solved for %II:O where [ = 0,1,...,n—-1and -1 < L; < L

Expressions for (8), (9) from Method 2 are then known in terms of given functions.
At = 0in (42) it is found that

ou
= 0 = Z L x (£ x (ur,-mli=o - ikM)unmli=0) = vK*|L{ug |i=o. (44)

In (44) with 1 < |LJ* < 3, uml=o = 0 unless IM|* = 3 and ur,_ml—o = 0 unless |L — M|2 =
3. With |[L|> = 3 and [M]> = 3 the equation [L. — M|> = 3 then implies 2L - M = 3
which is not possible as an even number can not be equal to an odd number. Likewise,
with [L|> = 1 and [MJ> = 3 the equation [L — M|?> = 3 then implies 2L - M = 1 which
is not possible as an even number can not be equal to an odd number. With [L|> = 2 and
IMJ?> = 3 the equation |L - MJ? = 3 then implies L. - M = 1 which is not possible as in this
instance |L - M| € {0,2} when -1 < L; < 1,-1 < M; < 1. Therefore
allL

5 =0 = ~3k*vug | o (45)

At O(2), I find that Method 2 gives the same result for (8) as given by Method 1.
At =11n (42) it is found that

(9211L
o2 li=0

A ouy,— ou
D Lox (L (5 limo - kM)l + (UL-ntl - kM) = |=0)
M

2 auL

—Vi*|L| =, =0 (46)



By a similar argument as that applied to (44) it is found in Method 2 that

ou
li=0 = —3k2v8—f|t=o = 9k2uy | =o. (47)

In fact for [ > 0 it is found in Method 2 that

8l+1llL

lezo = (=3k*v)"hay | (48)

With Method 1 for v = 0, I find that uy|,~o # 0 when truncated onto the modes with
—1 < L; < 1. Therefore at O(?), the approximation (8) found from Method 1 is different
to the approximation (8) found from Method 2. Because of this nonuniqueness at least
one of the assumptions used was invalid. The only assumptions I have used that could
have been invalid are those required for use of Theorem 1 and Theorem 2. Therefore the
only way statement (D) could not be true is if the smoothness of u can break down at an
x € R3 where ¢ € C but with ¢ ¢ [0, o). Based on this premise I then assume statement
(D) is not true and seek a contradiction.

It is found that (u(x — Qr,1) + , p(x — Qt,1)) is a solution to (1), (2), (3), (4), (5), (6)
if (u(x, 1), p(x, 1) is a solution to (1), (2), (3), (4), (5), (6) where Q € R? is a constant.
There is at least one point x = E; € R3,7 = T, which is a breakdown point of u(x, t)
and there is at least one point x = @; € R3,¢# = k; which is a breakdown point of
ex,t) =ux-QN+Qandx = O = E + Q1,1 = p is a breakdown point of e(x, ?) if
X = E,t = p is a breakdown point of u(x, ).

If there is only one breakdown point of u(x,#); x = E;,¢ = T then there is only one
breakdown point of €(x,1); X = O = E; + QT,t = T, therefore T| € R.

If there is two breakdown points of u(x, #); x = E;,¢ = T and x = Z,,t = T, then there is
two breakdown points of €(X,1); x =0 =21 + QT ,t =Ty and X = Oy = Ey + QT t =
Tr,orx=0, =5, +QT,t=Tiandx=0; =5, + QT»,t =T». Butifx =E5;,t =T}
is a breakdown point of u(x, ) then x = Zy,7 = Ty is also a breakdown point of u(x, t) by
Theorem 3 in the Appendix, therefore 7' € R.

If there is 7 breakdown points of u(x, 1); (x, 1) € {(E;, T})i=1.,...,} then by Theorem 3 there
is 7 breakdown points of €(x,#); X = 0, = E; + QT,t = T,Xx = O, = E| + QT,,t =
T, X=0) =EA+QT,t =T, x =0y = 54+ QT t = Te,...,X = O, = E,+QT,, 1 =
T,. Therefore Z. — E; = Q(TC — T.) and since the direction of E. — = is independent
of Q this implies 7, € R. Notice here that at an x € R3 the breakdown time of €(x, f)
with smallest modulus must be real valued. However at an x € R3 the breakdown time of
u(x, #) with smallest modulus may be complex valued.

Furthermore, since a breakdown point is due to the integrand of P(u, ¢*%X) not being
smooth over x € [0, 1]? this implies that there exists a finite time of breakdown ¢ € R.
Therefore the smoothness of u can then break down at an x € R where 7 € R is finite.
For v = 0, it is found that (Cu(x, {7), £ p(x, (1)) is a solution to (1), (2), (3), (4), (5), (6) if
(u(x, 1), p(x, 1)) is a solution to (1), (2), (3), (4), (5), (6) where { € R is a constant, so if
the smoothness of u breaks down at 7 < 0 where ug = Uy € R? then the smoothness of u
breaks down at # > 0 where uy = —Uy € R>. Therefore statement (D) is true when v > 0



is replaced with v = 0.

For v > 0, when applying Method 1 for n = 2 and Method 2 for all n € N, it is found that

the governing equation for u is effectively

‘2—'; = V2V XV X((u-Vu)+viu

where 1 = —3k?. Equation (49) implies
4 —vAt -2 —vat
g(ue )=V VXV X ((u-Vime .

Then a change of variables

or
u(X, t) - V(X> T)E

yields
0
N V29X VX ((v-V)V).
or
Equation (2) becomes
V.-v=0,
the initial condition (3) becomes
v(x,0) = =
& Vﬂ 2

and the spatially periodic boundary conditions (4), (6) imply

v(x+e;,7) = v(x,7) for 1 <j<3.

(49)

(50)

(5D

(52)

(53)

(54)

(35)

(56)

Equations (53), (54), (55), (56) define an Euler problem. Therefore from the scaling with
¢ for v = 0, if the smoothness of v breaks down at an x € R? with finite 7 € (-1, 0)
dependent on ug € R3, then the smoothness of u can break down at an x € R3 with finite

t > 0. Therefore statement (D) is true. O

Appendix
Theorem 1

Providing that the Maclaurin series

n [ 1 n [ A l

N It IR 1
A= lon = Y oy
=073 £ or =073

of the exact general solution to a Q™ order partial differential equation

9%A

ore

8

(57)

(58)



exists, it will solve the coefficients of # forall [ = 0,1,...,n — Q in (58) with A = A
provided ¥|, _x is expandable in Maclaurin series as
Wiaox = )~ o (59)

=0
where m > n. Here all of the partial derivatives of A with respect to ¢ are defined at r = 0.

Proof of Theorem 1

Since the Maclaurin series of A exists and all of the partial derivatives of A with respect to
t are defined at r = 0, one can integrate (58) Q times with respect to ¢ and then substitute
the result into (57) to find

(60)

) Zn: al—Q\ll| i i 6lfQ‘I’dt|A:A /
B A A TR R |

where f ¥ dt denotes the Q™ integral of ¥ with respect to z. Substituting A = A into the
residual r of (58) then gives

9o, _ =Y -2 S N
r= Z - IZ(; =075 (61)

or-2 (l— 0)! or!

providing W[, _x is expanded in Maclaurin series as in (59). Collecting like powers of 7 in
(61) yields

=ty N Z’"Zal\mA:Ii /

r= Qg =077 — li=0 (62)
/ l |
o or I = or [
which shows that Theorem 1 is true. O
Theorem 2
Providing that the Fourier series
A — Z P(A, elkL'X)elkL'X — Z P(A, elkL~X)elkL~X (63)
L=-N L=-N
of the exact general solution to a Q" order partial differential equation
9%A
— =Y 64
50 (64)

exists, it will solve the coefficients of e*I'X for all -N < L; < N in (64) with A = A
provided ¥|,_z is expandable in Fourier series as

M

TlA:A — Z P(\P|A:A’eikL-X)eikL-X (65)
L=-M

where M > N. Here A is spatially periodic and smooth for all x € R3, k > 0 is a constant,
and P(h, ¢**) denotes the projection of h onto eI-X,

9



Proof of Theorem 2

Since the Fourier series of A exists where A is spatially periodic and smooth for all x € R3,
one can integrate (64) Q times with respect to ¢ and then substitute the result into (63) to

find
A Z P(f‘l’d[ elkLX) ikL-x —

P(f \I’dllA ke lkL X) lkLX (66)
L=-N L=-N

Substituting A = A into the residual r of (64) then gives

90 X M : ,
atQ P(f ‘I’dllA ke lkL X)elkLX Z P(‘IIIAzAv elkL~X)elkL~X (67)
L—— L=-M
providing |, _z is expanded in Fourier series as in (65). Equation (67) can be written as

N M

r = Z P(TlA:A, eikL-X)eikL-X _ Z P(TlA:A, eikL-X)eikL-X (68)
L=-N L=—M

which shows that Theorem 2 is true. O
Theorem 3

A function f(z) € R for all z € [0, R] has singularities at z = a € C and z = a € C such
that |a| = R where R is the radius of convergence of the Maclaurin series of f(z).

Proof of Theorem 3

From Taylor’s theorem it is known that if f(z) is analytic inside a circle C with centre at
z = 0 then there is always one and only one power series for all z inside C

(o)

lf Zl
f@) = Z l=ogy for ll <R (69)

where the radius of convergence R is the distance from z = 0 to the nearest singularity
location of f(z). If z = a € C is a singularity location of f(z) with |a| = R then

. a
fla)l = |Z = A n (70)
and since f(z) € R for all z € [0, R],
7
_ dl al
/@ >|—|Z o o—I_IZ e Ti=co an
which shows that Theorem 3 is true. O
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Maple code

restart;

curlprok:=proc(V)

return Array([diff(V[3],y)-diff(V[2],z),diff(V[1],z)-diff(V[3],x),diff(V[2],x)-diff(V[1],y)1);

end proc:

laplacianprok:=proc(S)

return diff(S,x,x)+diff(S,y,y)+diff(S,z,2z);

end proc:

crossprodprok:=proc(Va,Vb)

return Array([Va[2]*Vb[3]-Va[3]*Vb[2],-Va[1]*Vb[3]+Va[3]*Vb[1],Va[1]*Vb[2]-Va[2]*Vb[1]]);

end proc:

divergeprok:=proc(V)

return diff(V[1],x)+diff(V[2],y)+diff(V[3],2);

end proc:

invLs:=proc(Q)

local q, expset, ans, egn, egns, soln:

q:=combine (expand(Q),exp);

expset:=indets(q, function);

ans:=add(c[J]*expset[J],]=1..nops(expset));

eqgn:=combine(eval (laplacianprok(ans)-q),exp);

eqgns:={seq(coeff(eqn,expset[K],1),K=1..nops(expset))};

soln:=solve(eqns, {seq(c[J],J=1..nops(expset))});

return subs(soln,ans);

end proc:

invLv:=proc(V)

return Array([invLs(V[1]),invLs(V[2]),invLs(V[3])]);

end proc:

for q from -1 to 1 do

for r from -1 to 1 do

for s from -1 to 1 do

if abs(q)+abs(r)+abs(s) <> 3 then

a[q,r,s]:=0:

end if:

end do:

end do:

end do:

u®:=add(add(add(crossprodprok (Array([L,M,N]),crossprodprok(Array([L,M,N]),Array([a[L,M,N],a[L,M,N],a[L,M,N]])))*exp(I*k*(L*x
MEy+N*z)),L=-1,.1) ,M=-1..1) ,N=-1..1):

n:=2:

DD:=1->proc() option remember;

if 1=-1 then

return uf;

else return -invLv(curlprok(curlprok(add(crossprodprok(Array([args[m+1][1],args[m+1][2],args[m+1][3]]),curlprok(Array([args[
1-m+1][1],args[1-m+1][2],args[1-m+1][3]]1)))*binomial(1l,m),m=0..1))))+nu*Array([laplacianprok(args[1+1][1]),laplacianprok(arg
s[1+1][2]),laplacianprok(args[1+1]1[31)1);

end if:

end proc:

fun:=proc(l) option remember;

if 1=0 then

return eval(u®);

else return DD(1-1) (seq(fun(m),m=0..1-1));

end if;

end proc:

U:=add(fun(1)*((t"1)/(11)),1=0..n):
P:=add((-invLs(eval(subs(t=0,diff(divergeprok(Array([U[1]*diff(U[1],x)+U[2]*diff(U[1],y)+U[3]*diff(U[1],2),U[1]*diff(U[2],x)
+U[2]*diff(U[2],y)+U[3]*diff(U[2],2),U[1]*diff(U[3],x)+U[2]*diff(U[3],y)+U[3]*diff(U[3],2)1)),[t$11)))))*((t"1)/(1!)),1=0..n
-1

simplify(diff(U[1],x)+diff(U[2],y)+diff(U[3],2)); #returns O as a check

for j from ® to n-1 do
simplify(subs(t=0,diff(diff(U[1],t)+U[1]1*diff(U[1],x)+U[2]*diff(U[1],y)+U[3]1*diff(U[1],2z)-nu*laplacianprok(U[1]1)+diff(P,x),[
t$310));
simplify(subs(t=0,diff(diff(U[2],t)+U[1]*diff(U[2],x)+U[2]*diff(U[2],y)+U[3]1*diff(U[2],2)-nu*laplacianprok(U[2])+diff(P,y),[
t$310));
simplify(subs(t=0,diff(diff(U[3],t)+U[1]1*diff(U[3],x)+U[2]*diff(U[3],y)+U[3]1*diff(U[3],2)-nu*laplacianprok(U[3])+diff(P,2z),[
t$310));

end do; #returns 0’s as a check

collect(collect(collect(U[1],nu),k),t);

collect(collect(collect(U[2],nu),k),t);

collect(collect(collect(U[3],nu),k),t);

collect(collect(collect(P,nu),k),t);
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