On the Navier-Stokes equations

Daniel Thomas Hayes

June 23, 2019

The problem on the existence and smoothness of the Navier–Stokes equations is solved.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in \mathbb{R}^d where $d \in \mathbb{N}$, see [1,3]. Let $\mathbf{u} = \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^d$ be the velocity and let $p = p(\mathbf{x},t) \in \mathbb{R}$ be the pressure, each dependent on position $\mathbf{x} \in \mathbb{R}^d$ and time $t \geq 0$. We take the externally applied force to be identically zero. The fluid is assumed to be incompressible with constant viscosity $v \geq 0$ and to fill all of \mathbb{R}^d . The Navier–Stokes equations can then be written as

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla p, \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

with initial condition

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}_0 \tag{3}$$

where $\mathbf{u}_0 = \mathbf{u}_0(\mathbf{x}) \in \mathbb{R}^d$. In these equations

$$\nabla = (\frac{\partial}{\partial \mathbf{x}_1}, \frac{\partial}{\partial \mathbf{x}_2}, \dots, \frac{\partial}{\partial \mathbf{x}_d}) \tag{4}$$

is the gradient operator and

$$\nabla^2 = \sum_{i=1}^d \frac{\partial^2}{\partial \mathbf{x}_i^2} \tag{5}$$

is the Laplacian operator. When $\nu = 0$, equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found with

$$\mathbf{u}_0(\mathbf{x} + e_i) = \mathbf{u}_0(\mathbf{x}) \tag{6}$$

for $1 \le i \le d$ where e_i is the i^{th} unit vector in \mathbb{R}^d . The initial condition \mathbf{u}_0 is a given C^{∞} divergence-free vector field on \mathbb{R}^d . A solution of (1), (2), (3) is then accepted to be physically reasonable [3] if

$$\mathbf{u}(\mathbf{x} + e_i, t) = \mathbf{u}(\mathbf{x}, t), \quad p(\mathbf{x} + e_i, t) = p(\mathbf{x}, t)$$
(7)

on $\mathbb{R}^d \times [0, \infty)$ for $1 \le i \le d$ and

$$\mathbf{u}, p \in C^{\infty}(\mathbb{R}^d \times [0, \infty)). \tag{8}$$

2. Solution to the Navier-Stokes problem

I provide a proof of the following theorem [2,3,6].

Theorem. Let \mathbf{u}_0 be any smooth, divergence-free vector field satisfying (6). Then there exist smooth functions \mathbf{u} , p on $\mathbb{R}^d \times [0, \infty)$ that satisfy (1), (2), (3), (7), (8). **Proof**. It is sufficient to rule out the possibility that there is a smooth, divergence-free \mathbf{u}_0 for which (1), (2), (3) have a solution with a finite blowup time [3]. Let the *exponential series* of \mathbf{u} , p be

$$\tilde{\mathbf{u}} = \sum_{L=0}^{\infty} \mathbf{a}_{L} e^{-kL \cdot \mathbf{x}},\tag{9}$$

$$\tilde{p} = \sum_{L=0}^{\infty} b_L e^{-kL \cdot x}$$
 (10)

respectively. Here $\mathbf{a_L} = \mathbf{a_L}(t) \in \mathbb{R}^d$, $b_L = b_L(t) \in \mathbb{R}$, k > 0 is a constant, and $\sum_{L=0}^{\infty}$ denotes the sum over all $\mathbf{L} \in (\mathbb{N} \cup \{0\})^d$. The *exponential series* is similar to a Taylor series. It is equivalent to a Laplace transform of a sampled signal with sampling period k. The initial condition \mathbf{u}_0 is a Fourier series [2] of which is convergent for all $\mathbf{x} \in \mathbb{R}^d$. Since \mathbf{u}_0 is a Fourier series this then implies that \mathbf{u}_0 at complex values of \mathbf{x} is irrelevant and that \mathbf{u}_0 can be taken to be smooth for all \mathbf{x} . The *exponential series* $\tilde{\mathbf{u}}|_{t=0}$ certainly converges for all $\mathbf{x} \in \mathbb{R}^d$ when $0 < k \ll 1$ as it then becomes a Taylor series of which would converge for all $\mathbf{x} \in \mathbb{R}^d$. Substituting $\mathbf{u} = \tilde{\mathbf{u}}$, $p = \tilde{p}$ into (1) gives

$$\sum_{L=0}^{\infty} \frac{\partial \mathbf{a}_{L}}{\partial t} e^{-k\mathbf{L}\cdot\mathbf{x}} - \sum_{L=0}^{\infty} \sum_{\mathbf{M}=0}^{\infty} (\mathbf{a}_{L} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} e^{-k(\mathbf{L}+\mathbf{M})\cdot\mathbf{x}} = \sum_{L=0}^{\infty} \nu k^{2} |\mathbf{L}|^{2} \mathbf{a}_{L} e^{-k\mathbf{L}\cdot\mathbf{x}} + \sum_{L=0}^{\infty} k \mathbf{L} b_{L} e^{-k\mathbf{L}\cdot\mathbf{x}}.$$
(11)

Equating like powers of the exponentials in (11) yields

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} - \sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} = \nu k^2 |\mathbf{L}|^2 \mathbf{a}_{\mathbf{L}} + k\mathbf{L}b_{\mathbf{L}}$$
(12)

on using the Cauchy product formula [4]

$$\sum_{l=0}^{\infty} a_l x^l \sum_{m=0}^{\infty} b_m x^m = \sum_{l=0}^{\infty} \sum_{m=0}^{l} a_{l-m} b_m x^l.$$
 (13)

Herein $\mathbf{a}_{\mathbf{L}} = \mathbf{0}$ if any component of \mathbf{L} is negative. Substituting $\mathbf{u} = \tilde{\mathbf{u}}$ into (2) gives

$$-\sum_{\mathbf{L}=\mathbf{0}}^{\infty} k\mathbf{L} \cdot \mathbf{a}_{\mathbf{L}} e^{-k\mathbf{L} \cdot \mathbf{x}} = 0.$$
 (14)

Equating like powers of the exponentials in (14) yields

$$\mathbf{L} \cdot \mathbf{a}_{\mathbf{L}} = 0. \tag{15}$$

Applying L· to (12) and noting (15) leads to

$$b_{\mathbf{L}} = -\sum_{\mathbf{M}=0}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}})(\mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{L}})$$
 (16)

where b_0 is arbitrary and $\hat{\mathbf{L}} = \mathbf{L}/|\mathbf{L}|$ is the unit vector in the direction of \mathbf{L} . Then substituting (16) into (12) gives

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} = \sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} + \nu k^{2} |\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}} - \sum_{\mathbf{M}=\mathbf{0}}^{\infty} k \mathbf{L} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}) (\mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{L}})$$
(17)

where $\mathbf{a_0} = \mathbf{a_0}(0)$. The equations for $\mathbf{a_L}$ can then be solved for all $\mathbf{L} \in (\mathbb{N} \cup \{0\})^d$. Note that there is an invariance that applies to $\tilde{\mathbf{u}}|_{t=0}$ due to (6). Also (16), (17) are invariant if $\mathbf{a_L} \to e^{\mathbf{L} \cdot \mathbf{c}} \mathbf{a_L}$ and $b_L \to e^{\mathbf{L} \cdot \mathbf{c}} b_L$ where $\mathbf{c} \in \mathbb{R}^d$ is a constant vector. The problem is invariant if $\mathbf{x} \to \mathbf{x} + \mathbf{c}$. From (12) and in light of (15) it is possible to write

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{a}}_{\mathbf{L}} = \sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{a}}_{\mathbf{L}} + \nu k^{2} |\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}} \cdot \hat{\mathbf{a}}_{\mathbf{L}}$$
(18)

where $\hat{\mathbf{a}}_{L} = \mathbf{a}_{L}/|\mathbf{a}_{L}|$ is the unit vector in the direction of \mathbf{a}_{L} . Then (18) implies

$$\frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} = \sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{a}}_{\mathbf{L}} + \nu k^2 |\mathbf{L}|^2 |\mathbf{a}_{\mathbf{L}}|. \tag{19}$$

From (19) it is possible to write

$$\frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} \leq \sum_{\mathbf{M}=0}^{\infty} |\mathbf{a}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}| + \nu k^{2}|\mathbf{L}|^{2}|\mathbf{a}_{\mathbf{L}}|$$
 (20)

on using the Cauchy-Schwarz inequality [5]

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|. \tag{21}$$

It then follows from (20) that

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \sum_{\mathbf{M}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}-\mathbf{M}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}|e^{k|\mathbf{L}||\mathbf{x}|} + \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{a}_{\mathbf{L}}|e^{k|\mathbf{L}||\mathbf{x}|}$$
(22)

implying that

$$\sum_{L=0}^{\infty} \frac{\partial |\mathbf{a}_{L}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{L=0}^{\infty} \sum_{\mathbf{M}=0}^{\infty} |\mathbf{a}_{L}| k |\mathbf{M}| |\mathbf{a}_{\mathbf{M}}| e^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|} + \sum_{L=0}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{a}_{L}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(23)

in light of (13), which yields

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \sum_{\mathbf{M}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}}| k |\mathbf{M}| |\mathbf{a}_{\mathbf{M}}| e^{k(|\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|} + \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \nu k^2 |\mathbf{L}|^2 |\mathbf{a}_{\mathbf{L}}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(24)

on using the triangle inequality [5]

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|. \tag{25}$$

Let

$$\psi = \sum_{\mathbf{L}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}}| e^{k|\mathbf{L}|X}$$
 (26)

where $X = |\mathbf{x}|$ and note that

$$|\tilde{\mathbf{u}}| \le \psi. \tag{27}$$

Then (24) can be written as

$$\frac{\partial \psi}{\partial t} \le \psi \frac{\partial \psi}{\partial X} + \nu \frac{\partial^2 \psi}{\partial X^2}.$$
 (28)

Here $\psi|_{t=0}$ converges for all $X \in \mathbb{R}$ since $\tilde{\mathbf{u}}|_{t=0}$ converges for all $\mathbf{x} \in \mathbb{R}^d$. In light of [8] it is found that (28) is globally regular for $\nu \geq 0$. Therefore blowup is ruled out via Taylor's theorem [7] for functions of several variables.

References

- [1] Batchelor G. 1967. *An introduction to fluid dynamics*. Cambridge U. Press, Cambridge.
- [2] Doering C. 2009. The 3D Navier–Stokes problem. *Annu. Rev. Fluid Mech.* **41**: 109–128.
- [3] Fefferman C. 2000. Existence and smoothness of the Navier–Stokes equation. *Clay Mathematics Institute*. Official problem description.
- [4] Hardy G. 1949. *Divergent series*. Oxford University Press.
- [5] Kreyszig E. 1989. *Introductory functional analysis with applications*. Wiley Classics Library.
- [6] Ladyzhenskaya O. 1969. *The mathematical theory of viscous incompressible flows*. Gordon and Breach, New York.
- [7] Milewski E. 1998. The complex variables problem solver. REA.
- [8] Ohkitani K. 2008. A miscellary of basic issues on incompressible fluid equations. *Nonlinearity*. **21**: 255–271.