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Abstract

The Hilbert book test model is a purely mathematical test model that starts from a solid foundation
from which the whole model can be derived by using trustworthy mathematical metfiduas.
foundation restricts its extension. In additionhat is known abouphysical reality is used as a
guidance, but the model is not claimed to be a proper reflection of physical reality.

The mathematical toolkit still contains holes. These holes will be encountered during the
development of the model and suggestions ared@&ow those gaps can be filled. Some new

insights are obtained and some new mathematical methods are introduced. The selected foundation
is interpreted as part of a recipe for modular construction and that recipe is applied throughout the
development of he model. This development is an ongoing project.

The main law of physicappears to be a commandment:¢ K2 dz a Kl f G O2y a G NUzOG Ay
The paper reveals the possible origin of several physical condépsspaper shows that it is possible

to discover a mathematical structure that is suitable as an extensible foundation. However, without

adding extra mechanisms that ensure dynamic coherence, the structure does not provide the full
functionality of reality. These extra mechanisms apply stochasticagses, which generate the

locations of theelementary modules that populate the model.

All discrete itemén the universeare configured from dynamic geometric locations. These items are
stored in a repository that coveeshistory part, the current statistatus quoandafuture part. The
elementary modules float over the static framework of the repository. Dedicated mechanisms ensure
the coherent behavior of these elementary modulEglds exist that describe these elementary
modules An encapsulating repository supports these fiel@sth repositories are formed by
guaternionic Hilbert spaces
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all historic, current, and futurelynamic geometric data that are stored in theaternionbased

eigenspaces of operatoruaternions store the data in a Euclidean sppomgression structureThe

4S02yR OASH Aad (GKS 20aSNBSNRa OASsd ¢KB 20aSNIBISN
represents the static status qudhe observers only perceive information that comes from the past

and that is carried by the field that embeds thefiS 2 0 & Si®lA&ehliaimodel as a spacetime
based structure that stores its dynamic geometric datth a Minkowski signature.
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If you think, then think twice.
In any case, think dnkly.

1 Forewordbythe author

| am born with a deep curiosity about my living environment. Wheecameaware ofthis, | was
astonished why this environment appeared to be so complicated and at the sameit behaved in
such a coherent way. In nohildhood,l had no clueLater some unique experiences offered me
some indications. After mietirement, | startedin 2009a personatesearch projecto discover some
of the clues.

ThedHilbert Book Modek is the name of my personal research project. My interest in the structure
and phenomena of physical reality started in the third year of my physics study when | was first
confronted with how quantum mechanics was configured. | was quite astonished fgdhat its
methodology differed fundamentally from the way that classical mechanics was 8orleasked my
very wise lecturer on whatriginthis difference is based. His answer was tiv@tsuperposition
principlecaused this differencd was not vey happy with thisasnswerbecause the superposition
principle was indeed part of the methodology of quantum mechanicsirbtitosedays,| did not
comprehend how that could present the main cause of the difference between the two
methodologies. | decidetb dive into literature and after somgearch | encountered the booklet of
PeterMittelstead, 6 t K A f 2 aRrdhlEmedlénfodrnenPhysi€ o mMpcov d® ¢KAA 062217 fF !
chapter about quantum logic and that appeared to taecontaina more appropriateanswer.

Garret Birkhoff and John von Neumann published in 1936 a pHyadmpublishedtheir discovery of
gKEFEG GKSe& Ol f f.8wntumjoditisysiticdA¥enr ntatAein@ticatterminologyknown

as anorthomodular lattice. The relational structuref this lattice ido a large extentjuite like the
NBfFGA2Y I f A0GNHzOGdzZNBE 2F Of FaaAlrlf f23A00 ¢KIFG A3
f 2 37hi® wad an unluclchoicebecause no good reasa@xiststo consider the orthomodular

lattice as a systernf logical propositions. In theamepaper, the duo indicated that the set of closed
subspaces of aeparable Hilbert spachas exactly the relational structure of an orthomodular
lattice. John von Neumaniong doubed between Hilbert spaces and projectigeometries. At the
end, he selected Hilbert spaces as the best platform for developing quantum physical thadres.
appears to be the reason why quantum physicists prefer Hilbert spaces as a realiohrtlvaly do
their modeling of quantum physical systems.

Another habit of quantum physicsalso intrigued me. My lecturer thought me that all observable
guantum physical quantities are eigenvalues of Hermitian operakbesmitian operators feature

real dgenvaluesWhen | looked around | sasvworldthat had a structure that was configured from a
three-dimensionakpatial domain and ane-dimensionatime domain.In the quantum physicef

that time, no operator represents the time domain and no operat@swsed to deliver the spatial
domain in a compact fashion. After sormils, | discovered &our-dimensionahumber system that
could provide an appropriate normal operator with an eigenspace that represented tHeutl
dimensionakepresentation of ny living environment. At thathoment,| had not yet heard from
guaternions, but an assistant professor quickly told me about the discové&tgwanHamiltonthat
happened more than a century earli€uaternions appear to be theumber system of choicier
offeringthe structure of physical reality its powerful abiliti€duaternions were already mentioned

in the introductory paper of Birkhoff and von Neumaiuch later Maria Pia Soler offed a hard
prove that Hilbert spacgcan only cope with members of a division ring. Quaternions form the most
extensive division ring. To my astonishmdnjuickly discovered that physicists preferred a
spacetime structure that features a Minkowski signature instead of the Euclidean gigmdiine



quaternions. The devised Hilbert Book Model shows thahiysicakeality, both structures appear in
parallel.Observers only see the spacetime structure.

My university the TUEtargeted appliedphysicsand there was not much time nor suppdar diving
deep into the fundamentals of quantum physics. Afterstydy,| started a career ihightech
industry wherel joined the development of image intensifier devices. There followed my
confrontation with optics and with the actual behavigirelementary particlesSee:http://www.e -
physics.eu/# What image_intensifienesveal.

Only after myretirement, | got sufficient time to dive deep into the foundations of physical reality. |
2009after the recovery of a severe diseasstarted my personal research project that2011got
AGa OdzNINBeyHiiberyBook Sloddl The author takes the freedom to upgrade thedated
papersat a steady rate.

1.1 My papers
¢ KA & LJ LIS N2 HiloaOEbSkT &4 a @ RuSdviératorg as my personalint archive
http://vixra.org/author/j _a | van_leunen Vixraprovides fulltwo-sidedopen access anldas a
flexible revision servicayhich | use extensivelyn thisway, it is possible to follow how my ideas
evolved.l put preliminary papers on my websitétp://www.e -physics.eu There my papers are
available in .pdandin .docx formatl do nd request copyright on these documents.

| try to avoid the burden of peer review publishifithe peer review publishing industry has turned

into acompletechaos.Since no omniscient reviewers exist and most existing reviewers are biased,
peer review pubthing cannot realize its promisestead | try to keep the quality of my papers at a
high standardDutch is my native language. | use the language capabilities of the MS Word editor to
keep the English text correct.

The most recent versions of the a@MNI a LI LISNE gAf € | LIISIF NI 2y KAa

are superseded by newer ones thgut different names. Older papers started witthe knowledge
that was lectured in universities and or could be founthimliterature. Newer papers also ctain
corrections and discoveries that are made by the author

Quite recently Microsoft introduced a new serviééu can access it aitp://www.docs.com. My
personal link there idocs.com/hans/antleunen

1.2 Text ebook
wSLR2 NI 27T & cModelplojict i &rdEl to be2aBnprehensivalescription of the
project, which contains all items that cannot be easily founthiliterature. Everybody is free to
use or criticize its contenChe author does not require copyrights.

The author triego derive everything from the selected foundation, but when neceshargcceps
guidance from whahe knows from the results of physical tlegies.In the first part of thepaper, the
story will be told with a minimum of symbols or formulas.

In the secongart, the results of the investigation are collected and reformulated by using symbols
and formulas. This approach allows to deepen the stigation and offers a more precise
formulation.

The appendix contains subjects that are relatedhe projectbut are not easily found ithe
literature.

g S
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2 Motivation
Some scientists start a research project that has as target to develop a theory of everything. This is
an implausible enterprise because the target is far too complicaidi comprehended by a human
being. Infact, what these scientists pursue is the ebsery of a foundation, whose extension
automatically leads to a theory that in principle can cover all aspects of physical readityer had
the intention to develop a theory of everythinipstead | am interested in the structure and the
functioningof the lower levels of physical reality.

| starteda study inphysics because | wagerestedin what destinedmy environmentto be so
complicated and yetontrolled that environment such thavhat happensppeasto beverywell
coordinated The belief in a creatdhat settleseverything seemed to mefar too simple solution.
My environmentmusthave a builin principle that in one way or anothénstalledthe necessary
coherenceThat principlemust, therefore,be incorporated irthe foundationor in the lower levelsf
the structure of reality.

If you think about it, then this foundation must be relatively simple. This means that this foundation
can easily be comprehended by skilled scientists. The question now is how exactly ndesifouis
structured.A great chance exists thatimans long ago discovextthis structure It is not necessary

that theythought that this structure is the foundation of physical reality. Tadgledthis structureas

a partto mathematicsMathematics represents the libragf selfconsistent trustworthy exact

human knowledgeMathematicians support and maintain that library. Physicists apply that library.

The challenge of the rediscovery of the founding structure is the factthigat
extenson of this structurdo a more complicated structure muautomatically
restrict to astructure, whichshows more features that can be recognized as
features of physical reality.

The simplest mathematical structures are sets and relational structRstional structures define
what kind of relations between elements of a set are allowRelational structures exist in many
forms.For example,tie classical logic that we usecharacterize a proper way of reasoniisgin
fact, a relational structure. This logic describes wkiatd ofstatements are allowed and what
relationships between these statements are tolerat&ets thatdescribe what kind of relationships
betweenthe elements of the sedre toleratedare calledattices.

The difficulty is not comprehending a suitable foundation. The diffigsiligfinding a structure,
whose extension is restricted such that it automatically leads to a base pwaldieh has a similar
structure and similar behavior as the loweréds ofperceivable physical realityas. The most
challenging requirement is that the foundatiamd its extensions must ensure the dynamic
coherence of the developed model.

If this is a proper reasoninthen a purely mathematical model can describe physicalitg

History shows that the course of development of sciedoes not always follow logical route. The
discoverers of the structure thaictas a candidate for physical reality were searching for reasons
why one of the known topological spaces could be used as a base@lingguantum physical
theories. They discovered that the set of closed subspaces of a separable Hilbert space has the
relational structure of what they called quantum logic and what mathematicians later called an
orthomodular lattice.

This paper shows that it is possible to discover a mathematical structure that is suitable as an
extensible foundation. However, without addj extra mechanisms that ensure dynamic coherence
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the structure does not provide the full functionality of reality. These extra mechanisms apply
stochastic processes, which generate gemetric locations oélementary modules that populate
the model.

The author has long thought that the foundati@md the lower levels of the structuie physical

reality are not observable. However, recently the authmncludedthat an indicationof theselower
levelscan be observed all ovéne universe Thisindication is shown by the fact that all discrete
objects inthe universeare either modules or they represent modular systems. However, translating
thisindicationinto a mathematical structure requires deep insight in both modatarstructionand

in mathematical structured-ere the author was helped with his experience in developing modular
software generating systems.

Besides of this, the generated model offers timterestingviews. The first view offers access to all
dynamic geometric datavhether they belong to the past, to the present status quo, or to the future.
| call that view the creator's view, but you can also call it the storage view. Besides of the creator's
view, the model offers an observer's view. Observers are discrete abjbet travel with the current
static status qudrhey only get information from the past and that information is transferred to them
by the fields that embed thenRelativity affects the view of observers.
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3 Generating the base model

3.1 Observation

The found#éon of physical reality must necessarily be very simplethrdeforeits structure must be
easily comprehensible by skilled scientists. So, quitdably the structure was long ago discovered

and added as a patb mathematics Consequentlythe best wg to investigate the foundation of

reality is to use mathematical test models. The rediscovery of this structure as a foundation of reality
is a complicated task because extending this foundation must automatically lead to a higher level of
the structure d physical reality that shows more features that can be recognized as features of
physical realityln addition, he lower levels of the structure of physical reality must leave some
indicatiors that are visible in many facets of the universe.

Several ouchindicatiors exist. Foexample the fact that all discrete items ithe universeare

either modules or they are modular systems is probanijndicationof the foundation or of the

lower levels of the structure of physical reality. Considering thgeovation a@nindicationrequires
the investigation of the peculiarities of modular design and modular construction. That analysis
learns that relations between modules and relations that are relevant inside modules or modular
systems play a major role. Especially the relatidrag tletermine that an object is a module or is part
of a module are important. It is quite probable that the foundation of physical reality is a relational
structure.A relational structures a set in which the relations that can exist between the element
are restricted in a wellefined way.

About eighty yearsago,a relational structure was discovered, which was thought to play a significant
role in the description of physical reality by physical theories. The discoverers of the relational
structurecd ft SR A0 aljdzl yiddzy t23A06éd ¢KS YIUGKSYFGAOAlI ya
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Neumannshowed that the set of closed subspaces of the somewhat ealikeovered Hilbert space

has exactly the relational structure of an orthomodular lattice. With othierds, this Hilbert space is

a realization of the orthomodular lattice. The question that arises now is whether this Hilbert space is
also a realization ahodules and modular systems. This question has a positive answer but the
argumentation requires a deep dive intiee concept of modularization and inevanced

mathematicsln fact, the modules and modular systefosm an atomic suHattice within the

orthomodular lattice. The HBM interprets all modules and all modular systems as observers.

More indicatiors exist but in thipaper,we first focus on this one.

3.2 Task
The base model must include a simple foundation from which a dynamic geometric univefse can
derived by extending the selected foundation in a coherent and straightforward way. The toughest
task is to find a foundation that puts sufficient restrictions to its own extension such that it becomes
comprehensible why the resulting model shows thgde of coherence that we know from
observing reality. The nice part of this task is tblaviously,an important part of that foundation
was discovered long ago. However, that part alone is not entmghsure sufficient coherence. The
foundation must behelped by mechanisms that ensure extra coherefideese mechanisms are not
part of conventional physical theorids thispaper,we will try to get more information about these
mechanisms.
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4 Modular construction

Diving deep into the fundamental structure of physical reality requires a deep dive into advanced
mathematicsUsually this goes together with formulas or other descriptions that are
incomprehensible to most people. The nice thing about this situatitimisthe deepest foundation
of reality must be rather simple aniereforeit can be described in a simple way and without any
formulas. For exampléf the observedndicationcharacterizes physical reality, then the most
fundamental and most influential law of physical reality can be formulated in the form of a
commandment:

a¢lhy {1!'[¢ /hb{c¢w] /¢ Lb ! ahb5|[!w

This law is the direct or nearly direct consequence of thecstire of the deepest foundation. That
foundation restricts the types of relations that may play a role in physical reality. That structure does
not yet contain numbersTherefore,it does not yet contain notions such as location and time.

This law is intetionally expressed in the form of a commandment. It is not possible to express this
law in the form of a formula, such as & GorO & . At the lowest levelnumbers that can

be used as variables in formulas do not yet exist. The impact obtnenandment is far more
influential, than the impact of these famous formulas.

Modular construction acts very economic with its resources and the law thus includes an important
lesson

"DO NOT SPOIL RESOURCES!"

4.1 Modular design
Understanding that the abovaatements indeed concern the deepest foundation of physics requires
deep mathematical insighflternatively,it requests belief from those that cannot (yet) understand
this methodology. On the othdrand,intuition quickly leads to trust and acceptancetlihe above
major law must rule our existence! Modular design has the intention to keep the relational structure
of the target system as simple as is possible.

Modular design is a complicated concept. Successful modular construction involves the
standardzation of module types and it involves the encapsulation of modules such that internal
relations are hidden from the outside. Systems become complicated when many relations and many
types of relations exist inside that system, which must be reckoned wieeaystem isnalyzed,
configured,operated,or changed. The reduction in relational complexity plays a significant role
during system configuration. The ability to configure modular systems relies heavily on the ability to
couple modules and on the capéty to let these modules operate in concordance.

The modular design method becomes very powerful when modules can be constructed from lower
level modules. The standardization of modules enables reuse and may generate type communities.
The success of gpe community may depend on other type communities.

An important category of modules are the elementary modulegs€&are modules, which are

themselves not constructed from other modules. These modules must be generated by a mechanism
that constructs tlese elementary modules. Each elementary module type owns a private generation
mechanism.

Another categorys formed bymodular systems. Modular systems and modular subsystems are
conglomerates of connected modules. The constituting modules are bondtsh theé modules are
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coupled via interfaces that channel the information paths that are used by the relations. Modular
subsystems can act as modules and often they can also act as independent modular systems.

The hiding of internal relations inside a modekses the configuration of modular (sub)systems. In
complicated systems, modular system generation can be several orders of magnitude more efficient
than the generation of equivalent monoliths. This means that stochastic modular system generation
gets a vinning chance against monolithic system construction.

The generation of modules and the configuration of modular (sub)systems can be performed in a
stochastic or in an intelligent way. Stochastic (sub)system generation takes more resources and
requires mae trials than intelligent (sub)system generati#m inexperienced modular designer
must first learn to discern which relations are relevant and which relations can be neglected.
Predesigned interfaces that combipeoviderelations and requireelationscan savanany

resources.

If all discrete objects are either modules or modular systems, then intelligent (sub)system generation
must wait for the arrival of intelligent modular systems.
Intelligent species can take care of the success of their own type. This includes the care about the
welfare of the types on which its type depend#wus,for intelligent modular systems, modularization
also includes the lesson

a¢c!y9 /! w9 hCla@al/9 ¢ htf9{59HWObBHE D

In physicakeality, the elementary modules appear to be generated by mechanisms that apply
stochastic processes. In massessystem configuration occurs in a trial and error fashion. Only
when intelligent species are present that can control system configuration will intelligent design
occasionally manage the system configuration and binding pro¢ess.in the first phase,
stochastic evolution will represent the modular system configuration drive. Dilegtoestricted
speed of information transfer, intelligent design will only occur at isolated locations. On those
locations,intelligent species must be present.
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5 Mathemati@al model

We will treat some aspects that involve advanced mathematics.nwdalydo that in a descriptive
way.However, if they really elucidate, then we will apply formulas. Inrtioslel,we givenew
namesto items that we want to discuss in detail. Te&ses the discussion.

In 1936 the discoverers of the orthomodular lattice published their discovery in a paper in which they
Ottt SR GKFG f I G0GA CBykhdiflveglay exmzYin latcdthelry ahd JoHn NS (i

Neumann was a broadly orientextientist that was especially interested in quantum physics.

Glidz yidzy £t23A0¢ Aa | adNry3S yIryYS 06SOlFdzaS Ay (KS
subspaces of a separable Hilbert spaces has exactly the relational structure of this orthamodula
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orthomodularlattice is quitelike the relational structure of classical logic and the elements of

classical logic are logical propositions. It is notyikieht the elements of the orthomodular lattice

can be represented by logical propositions, but this immediately creates the question what kind of

other objects the elements of the orthomodular lattice represent. The answer is that they represent

storage bcations of dynamic geometric data.

In a modular systenrelations play a major role. The success of the described modular construction
methodology depends on a particular relational structure that characterizes modular systéams.

call that relational stucture amodular configuration lattice It is a suHattice of the orthomodular
lattice. This will be elucidated later.

5.1 Separable Hilbert space

The orthomodular lattice extends naturally into a separable Hilbert space. Separable Hilbert spaces
are mathemaical constructs that act as storage media for dynamic geometric data. Quantum
physicists use Hilbert spaces as a base model in which they perform their quantum physical
modeling Each separable Hilbert space is a realization of the orthomodular lattice.

Hilbert spaces are linear vector spaces and each pair of Hilbert vectors ownmseaproductthat
represents a number, which is a member of a division ring. Hilbert spaces can only cope with number
systems that are division ringsach norzero member of division ring owns a unique invergéde

inner product of two perpendicular vectors equals zero.

Quantum physicistsise he Hilbert space asstoragemediumfor dynamic geometric data hat
happens in thedrm of eigenvalues of operators, whioap some of thedilbert vectorsonto
themselvesThose vectors are the eigenvectors of the operator.

The Hilbert space appears to be no more and no less thikxialy structuredrepository for dynamic
geometric dataHowever, the concept of the Hilbert space appears todwey flexible and very
feature rich This is mainly due to its support of division rings and its ability to erabpdrable
Hilbert spaces inside an encapsulatiay-separableHilbert space.

5.2 Divisia rings
For a number system, being a division nngans that every nozero element of that number
system owns a unique inverse. Only three suitable continuum division rings exist. These are the real
numbers, the complerumbers,and the quaternions. Therational subsets form discrete division
rings. The quaternions form the most elaborate division ring and comprise the other division rings.
Number systems exist in several versions that differ in the way that they are orderegkdfople a
selected Cdesian coordinate systerman ordemultidimensional number systems and subsequently
a polar coordinate system can order the resilhe imaginary part of the quaternionic number
system represents tree-dimensionakpace that can be ordered in eight independent ways by a
Cartesian coordinate system. The ordering affects the arithmetic properties of the quaternions. Left
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handed multiplying quaternions exist and right handed multiplying quaternions &kistordering
also affects the behavior of functions under multidimensional integra{@{.7] [8]

5.2.1 Representation of quaternions
Quaternions will be represented by a scalar part that represents the real part of the quaternion and a
three-dimensionalectorpart thatrepresents the imaginary part of the quaterniddoldtypefaceis
used for the imaginary parts. The real parts get a suffifometimes suffix or suffix is used
instead.In manyapplicationsthe real part represents progression, while the imagjnpart
represents a spatial location. This representation concerns dynamic geometricdgtsernions can
represent other subjects, but in thgper, the representation of dynamic geometric data plays a
major role.

5.2.2 Quaternionic multiplication
Thequaternionic multiplication rule now follows from:

0 | e o § o | 1)
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The sign reflects that left handed and right handed quaternions exist.

5.2.3 Construction and dismantling of numbers
Both Cayley and Conweaymithproduced formulas foconstructingmembers of number systems
from lower dimensional number systerfid. The dimension increases with a factor two. The reverse
process is also possible. Titewerseproceduredismantlesthe numbers ito two numbers that have
a lower dimension. The dimension diminishes with a factor two.

These procedures can be applied inside a quaternionic Hilbert space. There the procedure helps in
constructing complex number based subspaces from two real number lsakspaces or the
construction of quaternion based subspaces from complex number based subspaces. The road back
is also possible. These procedumesy play a role in thpair creation and pair annihilation processes.

5.3 Symmetry flavors
Symmetry flavors repsent a hardly known feature of quaternionic number systems.

5.3.1 Ordering
Quaternionic number systemaxist in many versions that differ in the way that these number
systems are ordered. Fexample,it is possible to order the real parts of the quaternionsoup
down. A Cartesian coordinate system can be used to order the imaginary parts of the quaternions. If
the orientation of the coordinate axes is kept fixed, then this Cartesian ordering can be done in eight
mutually independent ways. It is also possiblepply spherical symmetric ordering by using a polar
coordinate system. This can be done by starting with the azimuth and order it up or down and then
order the polar angle and order it up or down. It is also possible to start with the polar angle. A
spheiical coordinate system starts from a selected Cartesian coordinate syBtarmnique
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coordinatesthe sweep of the azimuth is\2adians and the sweep of the polar angle isadians.
Polar ordering may be related to spin.

5.3.2 Defining symmetry flavors
Quaternions can be mapped to Cartesian coordinates along the orthontsasalectors 1;

Due to the four dimensions of quaternions, quaternionic number systems exist in X6ndeted
versions 1] that differ only in their dicrete Cartesian symmetry set. The quaternionic number
systemsn} correspond to 16 versions) of rational quaternions.

Half of these versions are right handed and the other half are left handed, thieusymmetry flavor
influences the handedness

The superscript canbe h h h h h h h h h h h h h h A 08
Quaternionic number systems can be usedlefine parameter spaces. We use a superscripd
indicate the symmel flavorof parameter spacT . For thereferenceparameter spacer  we

often will neglect the superscript . Later, we will use index for the background parameter
space The imaginary part of the parameter speT1 gets a special symbél . We will call such
parameter spacesymmetry centers
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5.3.3 Private symmetry
Elementary modules own a private symmetry center. The reference parameter Tpawes
reference center . Graphically the symmetry flavor Tfcan be represented by:

LR NN
The symmetryrelated chargeof a parameter spactllows in threesteps.

1. Count the difference of the spatial past the symmetry flavor of symmetry centér with
the spatial partl of the symmetry flavoof referenceparameter spaciT.

2. If the handedness changes frdRto L, then switch the sigrof the count

3. Switchthe sign of the result for anparticles.

We use the names of the corresponding particles that appear in the standard maadistinguish
the different symmetry flavor combinations. Elementary fermions relate to solutions of a
corresponding second ordgartial differential equation that describes the embedding of these
particles.

In a suggestive way, we use the names of the elementary fermions that appearSatiard
Modelto distinguish the possible combinations of symmetry flavors.

Fermion ymmetry flavor
Ordering Super | Handedness| Color Electric Symmetry center type
x y z U script Right/Left charge | charge *3 | Names are taken from the
standard model

411 R N +0 neutrino

. B W) L R T1 down quark

L hd B} L G T1 down quark
34N L B T1 down quark
Tttt R B +2 up quark
328 R G +2 up quark

2+ 3431t R R +2 up quark
348t L N T3 electron
*r ¥ R N +3 positron

A B g L R T2 antiup quark
L d B d L G T2 antiFup quark
B L B 12 antiup quark
LB R B +1 antrdown quark
I8 R R +1 antidown quark
L Al R G +1 antrdown quark
A L N 10 antineutrino

Spherical ordering can be done by first starting with the azimuth and next proceeding by the polar
angle. Both can be done up or down.

Fermions and bosons appear to differ in this choice. Quarks are fermionarthanisotropic and therefore they feature a color charge.
That color charge becomes noticeable via the Pauli principle when quarks bind into hadrons. Whether bosons also feathagelor

cannot be observed becautiee Pauli principle does not resttitheir binding A phenomenon that is known as color confinement
counteractsthe appearance diree unbounded quarks.

Also,continuous functions and continuums featumesymmetryflavor. Continuous quaternionic
functionsf 1 and corresponding continuums do not switch to other symmetry flavars
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Thepreferredsymmetry flavoversionr 13 of a continuous function 1 is the symmetry
flavor of the parameter spacej

If the continuous quaternionic function describes the density distribution of acsetof discrete
objects® , then this set must be attributed with the same symmetry flavoiThe real part

describes the location density distribution and the giveary part describes the displacement density
distribution.

This section shows that ordering of an embedded (parameter) space can represent specific properties of that space that
distinguisheghis embedded space from differently ordered embedded (paramespaces. This al$mldsfor embedding

fields. The consequencesmeto the front in situations where differences in ordering play an essential role. We will
encounter that situation where different parameter spaces are used in the integration procedwecurs in thextended
Stokes theoremFirst,we look at modules and especially the elementary modules will be investig&iethentary modules
appear to possess their own private parameter space.

5.3.4 Color shift
Pairs of quaternions can shift other quat@ns, sets of quaternions and complete quaternionic
functions to a different symmetry flavor. The operation

© N x EAEA sk (1)
rotates the imaginary part abthat is perpendicular t@|= overan angle that is twice the phase of the
quaternionc If that phase equals7t radians then that rotation occurs overf¢ radians The

rotation axis is perpendicular to the imaginary parts@inda The direction of the rotation depends
on the harledness of the involved numbers.

Especially quaternions for which the size of the real part equals the size of the imaginary part can
perform this trickin an interesting wayin thisway, such quaternions can implement the behavior of
gluonsandquarks

This capability also supports the manipulatiortiofstates. These are states that exist in three
mutually independent versions. fact, the color charge of quarks is an example of @taie.

Isotropic particles are not affected by rotating and colaiftgig quaternions. However, the color
confinement phenomenon indicates that the generation of anisotropic elementary particles may get
disturbed by color shifts. The controlling mechanisms appear to react by conspiring with mechanisms
that control the gemeration of otheranisotropic elementaryarticles and cooperate in the common
generation of isotropic conglomerates. These conglomerates are hadrons and the cooperation
represents a binding of the concerned elementary particles. Hadrons have neutratcatge.
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5.4 Inner product
Paul Dirac introduced a clear and simple notation for the inner product that is based on the existence
of brasandkets In a complex Hilberpace the orderof the vectors is importanin a quaternionic
Hilbert spacealsothe order of the factors is important.

Gl (agl 1)
o wC o WO 2)
¢ @C | o 3)
as & G’ (4)

¢asis abra vector 30s aket vector. | and ¢axare quaterniors.

The version of the number system that is used for definingriher product will obtain a special
role. This version defines what we will call the background parameter space.

5.5 Operators
Hilbert spaceperatorsdescribe how Hilbert spaces map into other Hilbert spaces and can describe
how Hilbert spaces map onto themiges. In the latter case, the inner product describes the relation
between a Hilbert vector and its map. If the vector is mapped onto itself then the inner product adds
an eigenvalueto that vector and the vector is called aigenvector Thuseigenvalues of normal
operators must be members of a division ring. If two eigenvalues differ, then their eigenvectors are
perpendicularand theinner productof the two eigenvectors equals zero

Operators map Hilbert vectors onto other Hilbert vectdtsr all Hilbert vectoraCholds
CYQL gl CY§ os 1)

Via the inner productthe operator"Ymay be linked to an adjoint operat”\ .

CYA@LK o O @
Cyars wsYd N aud (€)

A linear quaternionic operatdY which owns an adjoint operatd¥ isnormal when
N oYY @)

If "Yis a normal operator, the™v  "Y "\ 7T¢is aself adjoint operatorandd| Y "\ 7T¢is an

imaginary normal operator. Self adjoint operators are &lgwmitian operators Imaginary normal
operators are alsanti-Hermitian operators

Within a set of mutually orthogonal Hilbert vectors exists no notiothefclosestmember. Only the
corresponding eigenvalues may provide a notion of neighborhBatithat is based on theistance
in the eigenspace.

Several mutual orthogonal eigenvectors of a normal operator may share the same eigenvalue. These
eigenvectors span a subspace and in thatspaceall Hilbert vectors araneigenvectorof the
normal operator.

If eigenvalues diér, then the corresponding eigenvectors are mutually orthogonal.
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The normal operator that represengs) elementary module has no means for controlling the
nearness of the subsequent eigenvaluessfibrmal operator only acts as a descriptor. It does not
act as a controller of the nearness of the eigenvalliesbntrast the mechanism that provides the
eigenvalues of that operator controls the coherence of the swarm of the generated eigenvalues. It
selects the values from the platform on which the elementary particle resides. The mechanism
resides outside the Hilbert spac

5.6 Countable infinity
The dimension of a separable Hilbert space can be countable inginité means that all its base
vectors can be enumerated with a natural number. This holds for the real number based separable
Hilbert space, but it also holds for the quaternionic separable Hilbert sp&eebase vectors can also
be enumerated by the ratizal members of the number system.

These facts play a significant role when the real number based Hilbert space is considered embedded
inside the quaternionic Hilbert space.

Physical reality appears to apply finite subspaces of infinite dimensional sepéfitigrt spaces.
Only infinite dimensional separable Hilbert spaces own a unigueseparable companion Hilbert
space. Norseparable Hilbert spacdeature operators with uncountable eigenspac&hese
eigenspaces are continuums, but these continuums owatain pointlike artifactsand discrepant
regions.

5.7 The real number based separable Hilbert space
Inside the real number based separable Hilbert space only operators that faagireumber valued
eigenvalues appealVe can construct such operator bysing from an orthonormal base that
spans this Hilbert spachlext,we take all rational numbers and use them to enumerate the base
vectors. The corresponding Hermitian operatonnects the enumerator with the base vector and in
thisway,they become eignvalue and eigenvectorhis real number based separable Hilbert space
can be embedded into a complex number based Hilbert space or in a quaternionic number based
Hilbert space. In thatase the eigenspace of the specified Hermitian operator can be aseal
model wide clockAll infinite dimensional separable Hilbert spaces own a unique;separable
companion Hilbert space.

5.8 Reference operatons a quaternioniceparableHilbert space
Number systems that are division rings can be used to define aargte§operators that we will call
reference operatorsThe rational values of the number system are used to enumerate the members
of an orthonormabaseof the Hilbert space. The reference operator connects the enumerator with
the base vector and in thigay,they become eigenvalue and eigenvector. Each reference operator
implements gparameter spacehat is defined by its eigenspadeunctions use parameter spaces to
create a target space. The parameter space is flat. The target space need not be fiafaded
parameter values. This can happen for pdiké artifacts and for closed region$the parameter
spaceIn a subsequergection we will use the reference operators and the functions to define new
operators.

Reference operators are normal opevas and normal operators can be split into a Hermitian
operator that has an eigenspace, which is formed by all rational real numbers and dteamitian
operator that has an eigenspace, which is formed by the imaginary parts of the eigenvalues of the
normal operator.For each reatigenvaluethe Hermitian part of the reference operator owns a
complete subspace that is spanned by corresponding eigenvedtoesantiHermitian part of the
reference operators treats the spatial part of the reference operato
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The Hilbert space can harbor multiple reference operators and invilagtit can harbor multiple
parameter spaceshoseparameter spaces will in general not share tlggometricorigins.Thus,
their geometric centers can float with respect to eachey.

5.8.1 Families
In afamily of referenceoperators,the antiFHermitian parts are ordered such that the Cartesian
coordinate axes run in parallel to each other.

A subset of the reference operators chapart of thehouseholdof the Hilbert spaceThese

reference operators form géamily. The household family members all share the eigenvectors of the
Hermitian operator that has been assigned the task to act as a model wide clep&cidimember

of this familyplays the role of the generator of tHeckground parameter spacelt uses the version

of the quaternionic number system that is used to define the inner products of pairs of Hilbert
vectors.The parameter spaces that are generated by other family memdmrfioat with respect to
the background parameter space and they can float with respect to each other.

The clock relates to theinematicsof the geometric centerof these floating parameter spaces.

In the separable quaternionic Hilbert space, each referenceatpethat is a family member
represents dopping pathof the geometric center of the eigenspace of the aférmitian operator
through the eigenspace of the astiermitian operator that corresponds to the background
reference operator.

5.8.2 Platforms
Platformsare eigenspaces ofselected familyof reference operators. Theackground platform
belongs to this familyThus,platforms are considered to belong to the household of the Hilbert
space. Apart from the background platform wither platforms epresentfloating parameter
spacesEach platform owns a geometric center. The #dhdrmitian part of the platform operator
describes @ymmetry center This is the spatial representative of the platform. Thaekoperator
relates the hopping path of theonsidered platform operator with thplatform of the background
platform operator.Later we will see that that these platform symmetry related charges. These
changes are located at the geometric centers of the platforms.

What happens on a platform can some extent be investigateéddependenty from what happens
in the other part of theHilbert space.

5.9 The scanning vane

If the family of acertain reference operator, such as the background reference operator, is singled
out, then a special subspace of the Hilbert space can be specified that reprédseitgrent static

status quoof the Hilbert space. In theubspaceall eigenvalues of #hselected reference operator

share the same real part. This specification divides the Hilbert space into three subspaces. The first
subspace represents thastoric part The third part represents thiaiture. If the selected real value,
which represents ppgressionincreass, then the second subspace representgaethat scans over

the Hilbert spaceThis simple model represents a very powetdyhamicmathematical test model

Several processes occur that have a figadation. This means thdbr suchprocesseshe passage of
the vane has this duratiofror example,tie durationmay definethe regeneration cyclef a

category ofdiscrete objectsThiscan applyto the stochastic processdhat (re)generate the swarm
of the hop landing locations of thebjects For these processes, it takes a while before statistical
characteristics maturelhe fixed duration enables the capability to discprapertiesof certain
objects and/or enables the definition of theaypes

5.10 Defined operators

By starting from a selected reference operator, it is possible to define a categdefinéd normal
operatorsthat use amostly continuous functiorto replace the parameter value by the function
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value and connect this valwsan eigenvalueof the definel operator and sharéhe corresponding
eigenvector of the reference operator. fact, the reference operators are special versions of the
defined operators for which the defining functions use the parameter value as the function value.
This procedure isary powerful and merges Hilbert space operator technology with function theory.
5.10.1 Mostly continuous function
A mostly continuous function &pecified as aontinuousfunction in the main part of a parameter
space that is spanned by a version of the quaternionic number syapam from a finite set of
closed regions that areovered by parameter space, which are spanned by different versions of the
guatemionic number system. In thosegions,other functions may be defined@he discrepant
regions may shrink to poirike locations. The discrepant parameter regions are covered by
eigenspaces of symmetry centelsside the scanning vane thiiscrepantparameter spaces shrink
to point-like regionsThererays representthe discrepant parameter spaces
5.10.2 The reverséra-ket method
Reference operatorand defined operatorsan be described with the help of the revetsa-ket
method. The following procedure defines the backgrdueference operatoT.

We start with a very simple defining functim r; 1} and the corresponding operat(T.

Let 1 be the set ofrational quaternions in a selected quaternionic number system an ¢ O'be
the set of corresponding base vectors. Theytheeigenvalues and theigenvectors of a normal
operatorT. Here we enumerate the base vectors with in(@x

TRAGHs NG 7 As @
T is theconfiguration parameter space operatop 1 is a quaternionic function, whose target

equals its parameter spac€&he definition also covers the situation where the dimension of the (sub)
space is infinite.

Thisreverse braket notation must not be interpreted as a simple outer product between a ket
vector Qa quaterniorr] and a bra vectod s In fact it involves a complete set of eigenvalues

i and a complete orthomodular set of Hilberéctors ¢ O. It implies a summation over these
constituents, such that for all O Acsdhd allE A @tfe fornula:

st o e G oy 0 2)

holds.Thus formula @) represents the full definition for the shorthandl)(p is a special operator. It
can be considered as a property of the combination of the separable Hilbert nomue one of the
existing versions of the quaternionic number system.

T T 7T 7qis a seHadjoint operator. Its eigenvalues can be used to arrange the order of the
eigenvectors by enumerating them with thheal eigenvalues. The ordered eigenvalues can be
interpreted asprogression values

T T 7¢isanimaginary operator. Its eigenvalues can also be used to order the
eigenvectors. The eigenvalues can be interpretedpadial locationsand can be ordered in several
ways.Forexample eight independent ways exist to order the 3D spatial domain by using Cartesian
coordinates Below, ve will use special indicés attach operators to versions of number systems.

Let"C 1} be acontinuous quaternionic function. Now the reverse k@t notation defines operatc’Q
as:

KO s 3)
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"(efines a new operator that is based on funct'C ] . Here we suppose that the target value<s'@f
belong to the same version of the quaternionic number system as its parameter space does.

Operator'thas a countable set of discrete quaternionic eigenvalues.

For thisoperator,the reverse breet notation(3) is a shorthand for
@Sl e oo @ Lo )

Alternative formulations for the reverse bra-ket definition are:

KA s @AY ns NA@dMs §6nq 1A@s "LRdids ()
Here we used the samsymbol for the operator "Qand the function™Qr . For thisoperator,
usually the eigenvalues of the Hermitian par' "G ", ¢ are not interpreted as
progression values. Often (not always!), these values can be interpreted as dynamic location
density descriptors.Similarly, usually the eigenvalues of the antHermitian part l C G ¢

are not interpreted as spatial location valuesThe eigenspace of normal operata™Qwill
represent fields.

The left side of4) only equals the right side when the domain over which the summation is taken is
restricted to the region of the parameter spaTawhere™Qr| isdefinedon a coherent parameter
space

If the function™Qs mostly continuous, then the forula becomes more complicated.
oy P (6)
s s CGon ) O

Thesuperscript indicates theidentity oflocalparameter spaceunction™(. reigns in that loch
parameter spaceThe paameter spaces are disjoint.

5.11 Symmetry centers
Reference operators ar@special kind of defined operator§he target space of théefining function
equals the parameter spac&he antiHermitian parts of the reference operators that belong to the
family of the background reference operator play a special role and we will use special symbols for
them.

We can define a category of asiermitian operator: ¢  that have no Hermitian part and that are
distinguished by the way that their eigenspace is ordered by apply@ayt@siancoordinate system
In addition, a polar coordinate system can be appli#&@. call them symmetry centeks . A polar
ordering always stastwith a selected Cartesian orderinhe geometric center of the eigenspace of
the symmetry center floats on a background parameter space of the normal reference opgtator
whose eigenspace defines a full quaternioracgmeter space. The eigenspace of the symmetry
centery acts as dhree-dimensionakpatial parameter space. The super scripiefers to the
symmetry flavor offi . The subscript enumerates the symmetry centers. Sometimes we omit the
subscrip.

X siQéds 1)
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It must be noticed that the eigenvalues of the symmetry center operator have no real part! However,
when mapped to another parameter space, the geometric center location of the symmetry center
eigenvaluegan be a function of progression.

The symmetry centers can be ordered with the help of a Cartesian coordinate system as well as with
the help of a polar coordinate systemn.the platformfamily, the ordering of the symmetry center is
defined relative to the ordering of the background platforrithis ordering determines the

symmetry flavorof the symmetry center. The difference of the symmetry flavor of a selected
symmetry center with the symmetfjavor of the background platform determines the symmetry
related charge of the selected symmetry center. This charge capltiénan isotropic part, an
anisotropicpart, and a spin.

The short list ofsotropicsymmetry related charges covers3, 2, 1,0,+1, +2, +3. For historical reasons, these
numbers must be divided by 3o get theequivalent electric charges. Thenisotropic symmetry related charges
correspond to color chargesand correspond with the three perpendicular directions and the opposte directions in
which ordering anisotropy can manifest itself.

Symmetrycentet OFy 0SS NRBGFGSR o6& | LI AN 2F ljdzZ- 6 SNYyA2y &
guaternions exist of which the size of the real part equals the size of the imaginaryl basge
special quaternions can shift the anisotropy of a symmetry center to another dimension.

5.11.1 Discrepant parameter spaces
The eigengaces of symmetry centers are discrepant parameter spaces. Discrepant parameter spaces
play an important role in the definition of mostly continuous functions.

5.12 Nonseparable companion Hilbert space
Each infinite dimensional separable Hilbert space owns a unigue companieseparable Hilbert
space that features operats, which have continuum eigenspaces. Such eigenspaces can form flat
parameter spaces or dynamic fields. This can easily be comprehended when in thepaoable
Hilbert space a similar procedure is ugedspecifying defined operatoms we applied in the
separable Hilbert space. In thatocedure we specified reference operators and we defined normal
operators by using continuous functions. This time we not only use the rational members of the
number system, but we also apply the ticmal members and we use the same continuous
functions. The consequence is that the notion of dimension of the subspaces may lose its sense. The
procedure that creates defined operators now links operator technology with function technology,
differentiation technology and integration technology.
The separable Hilbert space can be considered embedded in itseparable companion.
Platforms that step in the separable Hilbert space will float in the-separable companion Hilbert
space. In a similawvay, progressiorsteps in the separable Hilbert space grdgressiorflows in its
non-separable companion.
Here we keep the difference between the separable Hilbert space and itsearable companion
alive.The scanning vane can be interpretedfas sceneof a progressive embedding of the separable
Hilbert space into its noseparable companion.

In the nonseparable Hilberspacethe reverse bracket method applies integration rather than
summationto define operators that have continuum eigenspaces.

Forthe shorthand of the reverse bileet notation of operatoi_ the integral overr replaces the
summation over .
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The integral only equals the sum sufficiently close when the fun_ 1} is sufficiently continuous
in the domain over which the integration takes place. Otherwise the left side only equals the right
side when domain is restricted to the region of the parameter sjp wehere 1 is sufficiently
continuous.

5.12.1 Platform dynamics
Inthe separable Hilbert space, platforms can step relative to the background platform. This can occur
with a minimal spatial step size. In the nseparable Hilberspacethe corresponding platforms
float relative to the background platform.

5.12.2 Artifacts
Neamess betweemutually orthogonaHilbert vectors is not defined. Only via eigenvalues of
eigenvectorsthe nearness of the eigenvectors makes sense. In an infinite dimensional separable
Hilbertspacejt is always possible to add or subtract base vectdteout changing the dimension of
the Hilbert space. After enumerating an orthonormal base with an ordered sjwtlistantrational
numbers it is possible to add base vectors that disruptateidistantordering. These additional
base vectors will actsaartifactsin the eigenspace of the operator that uses the orthonormal base as
its eigenvectorsArtifads may occucollectedin coherentswarms and the swarm may feature its
own internal ordering that differs from the ordering of the original orthonofrnase. Adding a new
base vector that does not disrupt thegjuidistantordering will not produce a noticeable artifaotit
that addition is impossible gideinfinite equidistantsets

In the nonseparable Hilberspace the addition of a single base vector or of a coherent swarm of
ordered base vectors will always present artifacts.

5.13 Modules as subspaces
In the view ofthe discoverers of the orthomodular lattice, the elements of the lattice can be
represented as closed bgpaces of a separable Hilbert space. It alsoskaseto consider a subset
of these elements as representatives of modules or modular systems. Thus, not every closed
subspace of a separable Hilbert space represents a module or modular sikiemver,a closed
subspace of the separable Hilbert spaepresentseverymodule and everynodular system.
Compared taeneraly closed subspaces of the Hilbert space, will modules and modular systems
have extra characteristics

5.14 Elementary moduleand empty space
Inthe Hilbert space, melementary module cannot be represented by a single Hilbert vector,
because that single vector can on the utmost correspond to a static geometric location and from
realitywe know that modules possess a dynamic geometric locatiorttzatdact also holds for the
elementary modules. However, elementary modules cannot be split into other moduies.the
subspaces that represent elementary modules must have multiple dimenSahst is possible that
at each progression instant ela module represents exactly one spatial location. This is a very special
condition, but wepostulate that this special condition is valid for all elementary modukecause of
this postulate the vane contains representatives of elementary modules thatane-dimensional
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subspaces. They cannot be split into lower level mod@esdimensional subspaces of the Hilbert
space are callethys.
The postulate forbids that two elementary moduhath identical propertiesit the same progression
instant takethe same geometric location.
The vane contains many subspaces that do not contain Hilbert vectors that represent an elementary
module. These subspaces are represenéngpty space

5.14.1 Modular configuration lattice
In thevane,a ray represents every elememyamodule These elementary modules and the modules
and modular systems that they configure represent a-kitice of the orthomodular lattice. We call
this sublattice amodular configuration lattice This latticerepresentsa recipe for modular system
generation
The fact that elementary modules are representatives of atoms of the modular configuration lattice destines them to
behave agermions No two different elementary modules can own the same properties and dynamic location.
Consequently, bosons@not elementary modules. They must be composites. They act as temporary storage containers for
mass and energy.

5.15 Germ operators

The elementary modules are represented by a new category of operators that differ from reference
operators and that differ frondefined operators but that describe the dynamics of elementary
modules.This means that they are coupled to the clock operator, but they aranoémberof an
operator family.The dynamic location of elementary modules hops as a function of progression.
After awhile, the hops form awarmand both thehopping pathand the swarm represent the
elementary moduleThese structures determine the properties of the elementary particle. The
location of the swarm corresponds to its geometric cenfidre operatorsill be calledgerm
operators We will use symbd for the germ operatorsThe germ operators are controlled by
mechanisms that apply stochastic proces$esthe generation of the dynamic locations.
The germ operator uses its own private referepperator. This means that the elementary modules
reside on their own platform, which applies its own private parameter space that may float with
respect to the selected background parameter spdde eigenvalues of the adtermitic part of the
germ operaor correspond exactly with the eigenvalues of the drmrmitic part of the
corresponding platform operatoThegermoperators are decoupledfom the ordering of the
family operators Spatial edering will destroy their coupling to the clock operatdhe hop landings
act as pointlike artifacts!

5.16 Hopping paths and swarms
After generation, the dynamic locations of an elementary module will be ordered with respect to the
real value of the quaternions that represents the dynamic location. After orderingegbtogression
values the elementary module appears to walk along@pingpath and the landing positiorferm
a location swarm. An uncontrolled generation would produce an arbitrary hopping path and a
chaotic hop landing location swarm. The mechanissuposed to ensure that@herentswarm is
generated.

The hops that cause field vibrations in form of spherical shape keeping fronts will beotaitigrs
After integration over a long enougseriod, a clamp results in th® NB Sy Q & of hdAjgld. The2 y
DNBSyQa FdzyOlA2y RSAONAROSE K2¢g G(KS FTASER NBIOGaA

This means that elementary modules are represented by closed subspaces of a Hilbert space that
may have a huge dimension. However, at a single progression instant, each eleymantule is
represented by a subspace that is spanned by a single Hilbert viéégocall such a subspaceay.
Thus,a subset of the orthomodular latticepresentsmodules and modular systems. Within that
subset.the elementary modules are represented by elements that act as atdrtige subset
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If the swarm containsnanyhop landing locations, then its geometric center will move in a much less
chaotic way. A large number of elements also means an equivalengyrégeneration cycle of the
swarm. Increasing the number of hop landings will increaseréenessof the swarm.

5.17 Mechanisms

Fromreality,we know that thehoppingpath is not an arbitrary path and the location swarm is not a
chaotic collectioninstead the swarm forms a coherent set of locations that can be characterized by
a rather continuous location density distributiofhat does not say that theoppingpath is not a
stochastic pathThe location swarm integrates over the regeneration cydis chaacteristics are
statistical characteristics.

Each mechanism that supplies an elementary particle withaggpinglocations applies atochastic
process Acharacteristic functioncharacterizes that process. This characteristic function is the
Fourier tansform of the location density distribution that characterizes the swarm of hop landing
locations.

Fromphysicswe know that elementary particles own a wave function and the squared modulus of
that wave function forms a continuous probability densitgtdbution, which can be interpreted as a
location density distribution of a poidike object. The location density distribution own&eaurier
transform andthereforethe swarm owns aisplacement generatarThis means that at first
approximation the swam can be considered tmove as one unitThusthe swarm is a coherent,
rather smoothly moving object, which represents the violent stochdmijiping ofa pointlike

object. For a largeart, this isbecausehe swarm contains a huge number of locatidhat is

refreshed in a cyclic fashion.

The fact that at every progression instant the swarm owns a Fourier transform means that at every
progression instant the swarm can be interpreted as a wave package. Wave packages can represent
interferencepatterns thus,they can simulate wave behavior. The problem is that moving wave
packages tend to disperse. The swarm does not suffer that problem because at every progression
instant the wave package is regenerated. The result is that the elementary module slaows

behavior and at the same time it shows particle behavior. When it is detected it is caught at the
precise location (the exact swarm element) where it was at this progression instant.

The Hilbert space is nothing more and nothing less than a strettstorage medium for dynamic

geometric datalt does its storage task in a very precise way, thus without any uncertainty! Neither

the separable Hilbert space nor its neaparable companiodoes contain functionality that ensures

the coherent dynamic behavior of the location swarms. Dedicated mechanisms, which do not belong

to the household of the Hilbert spaséll the eigenspaces of the stochasgiermoperators that

control the elementay modules. The hopping path only stops when the elementary module is

GRSGSOGSRe YyR GKS O2yGNRffAYy3I YSOKIYyAAY OKIy3Sa
5.18 Fermionsand bosons

The swarm and the hopping path determine the properties of the elementary parfibke swarm that

represents the elementary particle owns a geometrical center. For fermions, the Pauli principle states that two

elementary particles that possess the same properties cannot share the gaomeetrical center. Fermions

possess alf-integerspin. Separate elementary particles own private platforms that correspond to a private

symmetry center. The Pauli principle states that these platforms cannot share the map of their geometric

centers onto the background parameter space.

Fermions appear todthe elementary modules that appear in stable modular systems.
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Bosons with identical properties can share the sayjaemetrical location. Bosons possess integer.Spie
platforms of elementary bosons can share the map of their geometric centers ontmaitlground parameter
space.

6 Dynamic model

6.1 Exploring the dynamic model
We did construct &anethat splits the Hilbert space such that all elementary module eigenvalues
that have a selected real value have the corresponding eigenvector inside the vananteheplits
the Hilbert space im historicpart, the vane itself and a future part. The vane then represents a static
status quo that corresponds to the current state of the universe.

This represents an interesting possibility. The Hilbert spe@etorage medium that contains a
repository of all historicpresent,and future datalt canalsobe interpreted as a scene that is
observed bymodules andnodular systemghat travel with the vaneThese observers might know
part of the stored historybut have no notion of the future. Depending on their capabilities, the
observers reflect only a part of their history. Information that inside the vane is generated at a
distance has still to travel through amformation-carryingfield that acts as the living space for the
elementary moduleso reach the observer. The encounter will take place in the future. Information
that reaches the observer arrives from the past. Those kinds of information travel via information
carriers.In addition, the observers meet new conditions when the vane passes over them.

The vane forms a subspace of the Hilbert space and for each elementary module that subspace
contains a single Hilbert vector that plays as eigenvector for the corresponding géoloeation.
This location is the landing point of a hop rather than the geometric center of the location swarm.

6.1.1 Two views
The dynamic model offers two interesting viewsie creator of physical reality can view all dynamic
geometric data that are storeith eigenspaces of operators. We will call this@&B I G 2 NDR& OA Sé
Sometimes we will also call it the storage viewK S 2 6 a SNIISNRa (N @St gAGK O°F
receive information that comes to them from the past. We will call thisah & S NIE NdR daned A S
represents a static status quo of the model. Within ttane nothing happens. The dynamics that
affects the observeoccurin the regionat the history side of th@ane and the dynamics that is
actuated bythe observeroccurin the regiononthe future side othe vane.
The information that reaches the observers is transported to them via fields. Feeldse a
maximum speed of information transferThe differential field equations determine the speed of
information transfer of the fields. 16 K S O Nd&w, thigimdndation transport can bmodeledin
asimplewayL y G KS 206aSNIPSNRa Areans thabthelLdrentd kanstormLJt 8 a4 A G
governsobserveddynamic behavior of elementary modules.

Quaternionic platforms can be ngerted into two complex number based platforms and two complex number based
platforms can be converted into a quaternionic platform. At conversion, the quaternionic platforms mirror at the vane. The
mirrors carry a particle at one side and an gpditicle at the other side. The conversion takes a fixed duratiarmber
construction procedures or number dismantling proceduresy support the processes

6.1.2 Scientific method
The scientific method requiresxperimentalverification of every significant physicthtement. This
NHz S Oly 2yfé 06S 20S8SR Ay (KS 20aSNBSNRa GASgo

6.2 Defining fields

Fields are eigenspaces of defined operators that reside in the companicsapamable Hilbert
space and that have continuum eigenspsicéhis enables the treatment of fields independent of
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their defining functions and the corresponding parameter spaces. However, if the dynamic behavior
of fields must be investigated, then the quaternionic differential calculus must be agplied
formulate corresponding defining functions and defined operators.
The embedding field is a superposition of the contributions of the elementary modules to the
deformation of this field. Or more idetail, it is the superposition of the contributions of the clamps
to the deformation of this field. Thus, if no clamps are present then the embedding field is flat.
6.3 Living space
The germ operators have no equivalent inside the-separable Hilbert space. However, their
eigenvalues may be sensed by a field testsaseigenspace of defined operator, whichiesides in
the nonseparable Hilbert spac@he considered field is a descriptor of the involved clanipss can
occur when the separable Hilbert spaceisbeddedin its nonseparable companion Hilbert space.
We will call the mentioned fieldhe embedding field othe living spaceof the modules and modular
systemsor we will use thenicknamePalestrafor this field

The hops in the hopping path generate vibrations of the Palestra. These vibrations are solutions of a homogeneous second
order partial differential equatiorDifferential equations are treated latefheconcernedsolutions are spherical shape

keeping frots. We will call thenclamps After integration over a sufficiently long period, each front formsEhbB Sy Q &
function of the field that describes the deformation of the fielthis deformationis the effect of the hopSpurious hops can

also occur, theyreate spurious clamps.

The hopping path that represents an elementary module, corresponds to a coherent location swarm,

which is characterized kylocation density distribution Via the convolution of th® NBE Sy Q& Fdzy Ol A
of a field and this location desity distribution, the swarm corresponds to a deformed part of the

field. In thisway,the field describes the existing elementary modules. The description of a nearby
locatedelementary particle deforms the field in that region. The convolution meanst tfn

DNBSyQa TFdzyOlA2y ofdNB (GKS t20FGA2Yy RSyairde RAAD
landing locations influence the field, but the alternative interpretation is that the field is a kind of

blurred descriptor of the hopping landing lttons.Anyway the landing locations and the discussed

field are intimately coupled. The deformed field can be interpreted as the living space of the modules

and modular systems.

6.4 Stochastic processes
The mechanisms that generate the hopping landing locatontrol the dynamics of the model.
These mechanisms use stochastic processes. These processes appear to belong to a category which is
mathematically known as inhomogeneous spatial Poisson point processes. ldetailghese
processes probably até&e modified Thomas processes.

This fact is supported nindicationthat is visible in the visual trajectory of a category of living

species that are called vertebrates. It appears that the visual trajectory of all vertebrates is optimized
for low do rate imaging. This visual system contains noise filters that block information for which

the signal to noise ratio is too low. This signal to noise ratio is typical for information generated by
Poisson processes that are attenuated by subsequent bingroaksses that are implemented by

spatial point spread functions. The mechanisms appear to apply inhomogeneous spatial Poisson
LRAY(d LINRPOS&aaSad { S Swp/hifre2om/as/260680328 Huméns &rey F AA Yy 3£ T
vertebrates andat starlightconditions the described processes goveheir visual perception.

Physical theories stop at theave functionof particles. This exposure of the mechanisms dives
deeper and reaches theharacteristic functiorof the stochastic process that controls the generation
of the landing locations that form the hopping path.
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6.5 Selfcoherence
It is difficult tobelievein a creator that installs separate mechanisms, which ensure the dynamic
coherence of the generated moadd. It is easier to accept that the relation between the generated
location swarms and the field that describes these swarms is based on a mathematically explainable
kind of selfcoherence. Irthe caseof selfcoherence, the interaction between the fielti@the
swarm restricts the possible location density distributiés.is indicated earlierhis restriction may
be influenced by the number of elements that are contained in the swarm. This fact may explain the
existence ofjenerationsof elementary modwds.A larger number of elements increases the
inertness of the swarm. However, also the living space field takes a role in ttuwketence of the
swarm.

Ly GKS NBfFiA2y 0SG6SSy GKS &gl N¥Y YR (K§ FTASERX
role. It plays the role of a potential that implements an attracting force. Another factor is the kind of
stochastic process that generates the individual locations. This process belongs to the category of the

inhomogeneous spatial Poisson point procesdeach hop tries to displace the geometric center of
the swarm. This displacement represents an acceleration of the geometric center of the swarm.

[ SG GKS DNBSyQa TFTdzyOiA2y NBLINBaSyd I all I N LGS
object resdes moves with a uniform speed with respect to the background parameter space, then

the scalar potential will in that coordinate system turn into a vector potential. Differential calculus

learns that the dynamic change of the vector field goes togethtdr avnew field that counteracts

the acceleration. This effectli&e the phenomenon that is known as inertia. It looks as if the center

of geometry of the swarm is attracting the accelerating hopping elementary object. This is an

effective kind of seltoherencethat is installed via the living space fi¢kait we call Palestra

This obscure description éucidatedmore clearlywith appropriate formulasn the section about
force raising fields

6.5.1 Test function
For the description of the location swarm the field, K S DNB Sy Q& Fdzy Oui A2y of dzN&
distribution of the swarmlf the location density distribution has the form of a Gaussian distribution,
then theblurred function is the convolution of this location density distribution and tieJ&S y Q &
function. The shape of thisxampleis given by:

ovY'd (6)

In thisfunction, every trace othe singularity2 ¥ (1 KS D NBhas/dappedredyltisidiezofthe
distribution and thehuge number of participating hop lations. This is just an example. Such extra
potentials add a local contribution to the field that acts as the living space of modules and modular
systems. Thehownextra contribution is due to the local elementary modulegether, anyriad of

such bumpgonstitutesthe living space

6.6 Thesymmetryrelatedfield
Theconvolution of tke location density distributiomf the swarm withi K S D NB S yifya@vest dzy O A 2
an integration The local contribution to the integral involves two parameter spacase of them is
the background parameter spacEhese parameter spaces may differ in their orderingcopewith
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this differencethe platform on which the elementary object resides must be encapsuldiee.
integration is an application of thgeneralizedStokes theoremThis theorem converts an integral

over a volume into an integral over the boundary of that voluiitee boundary must only cross
regions of the parameter spaces where the field and the extra potential are both continuous and the
amplitude d the extra potentiaimustbecome negligible. Ifact, the influences of the ordering
characterize the parameter spaces rather than the deformed fields. For the paraspsteesthe
condition is automatically fulfilled and therefore the shape of the banyddoes not matter. For that
reason,we select a boundary that has the form ofabe whose axes are aligned along the axes of
the Cartesian coordinate systems thatised to order thebackgrouncharameter space. This
procedure enables the correct acatting for the differences in the ordering. This accounting process
reveals values that we will calhargesthat go together with the difference in ordering. This reveals
the short list of electric charges and the color charges that appear in the Stakdalel. The

charges will be anchored on the geometric centers of the floating platforms. Byesmetry related
chargesare the source of a new separate basic field that we will calsymemetry related field We

will use thenicknameElectrafor this fied. This field differs fundamentalfyom the field that

represents the living space of the elementary modules.

Thecontribution to thefield that we called Palestra by the influence of the clamps, coupléseto

new symmetry related field via the geometdenters of the platforms that carry the swarm
elementsTheO2 y @2 f dziA2y 2F G(G(KS DNBSyQa FdzyOilAizy 27
distribution, which characterizes the location swarm, determinedbacerning contribution.

6.7 Partial differentiation
In thissection,we intensively use formulas. These formulas keep the description compact and
comprehensive.

We use the quaternionic nabfato provide a compact description of quaternionic partial
differentiation.

(1)

0 (2)

This form of the partial differential equation highlights the fact that in first order and second order
partial differential equationshe nabla operatorand some of the related differential operatorsan

be applied as a multiplierThis means that we can apply the quaternionic multiplication rule.
Therefore these partial differential operators can be used to define corresponding fields and their
operators The following equation defines tHast order changel [ of field[ .

o T F )
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These equations invite the definition of derived vector fieM&use symbols that corresponding
Maxwell equations also use

4K nr 7 (6)
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The sign indicates that the nabla operator is also afflicted by symmetry properties of the applied
guaternionic number system. The above equations represent only low order partial differential
equations.Thus, these partial differential equations represenpegximations rather than precise
descriptions of the considered changde thisform, the equations can still describe poilike
disruptions of the continuity of the field. We can take the conjugate:

[ [“v gl + @

r r ©)

Two different non-homogeneous second order partial differential equations exishat offer
different views on the embedding process. The equation that is based upon the double
guaternionic nablat * cannot show wave behavior. However, the equation that is based
IT Ad! 1 Al AAOé&f és alwava €ydalioh, Which offers waves as part of its set of
solutions. Both second order partial differential operators can be applied as multipliers.

Y—+

K * ahO (10)

K ahO (11)

t [ represents the quaternionic variance of figld

In isotropic conditions thbomogeneougquations look like:

(12)
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These equations have special solutions in odd numbers of participating dimensions in the form of
shapekeepingfronts.
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double nablaoperatort that is defined in (10). That equation can be split into two first order

partial differential equations:

[ (13)

I (14)

The similarity to Maxwell equations is not accidental. Equat#més no equivalent in Maxwell equations. In physics
specialgauge equationsompensatethis lack. The Maxwell equations usmordinatetime where the quaternionic
equations use proper time.

6.7.1 Other partial differential equations
Other second order partial differential equations are:

ah rO m 1)
a JRO 2
JJF 4 F JaRRO ah @ (3)

6.7.2 The contracted equations

The partial differential equations can be contracted by replacing the dpetida; by a normalized
vector= that is perpendicular to a selected plane surfate

r o7 F aha ur Ik . 7 Gha =7 LIS (@)
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These contractions lead to the generalized Stokes theorem

6.8 Elementary behavior
Fieldsactonpoint A1S | NOGATFOla Ay
spherical waves and both second order equations affexpekeepingfronts as elementary
solutions.

6.8.’1 X Waves ) ) o S ]
2 gSa INB azfdzuiAzya 2F UKS g1 4S:Sljdz GAz2y
Q ahOQ n (1)
M ahdQ 71 Q 2
For Cartesian symmetgonditions this leado:
Qthe WA DH Ot o es N p 3)

In spherical symmetric conditions, equation i&ads to a category of solutions that are known as solutions of the
Helmholtz equation. However, here proper timieeplaces coordinate time.

6.8.2 One dimensiondlonts

Thesesolutionsproceedin onespatialdimension but they may act in three-dimensionakpatial
setting Thus:

rrorro_ @
Ta 1

We try a solution in the form " & f 1
2o B 12 g @)
T d T
10 éﬁ Q 3)

— Q

) T )

| (4)

This is solved when uf
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For the first kind of the second order partial differential equation this mgans: |
normalized imaginary quaternion. Witha "Qf & follows:

T ()

The functionQrepresents ashapekeepingfront. It alsokeepsits amplitude. It is not a wave.

The imaginary:represents the base vector in theéfwplane. Its orientation—may be a functiorof
o

For the second kind of the second order partial differergi@lation this meang | . With
Qg ) a follows:

- gt (6)

The corresponding hop landing that represents the continuity disturbing artifact will be @zdigd

A warp corresponds to the hop of the geometric center of the platform on which the corresponding
elementary particle reside$hus the location of the hop is defined relative to a geometric location

on the carrier field that is defined with respect to the background parameter space. The platform

carries its own private parameter space. Subsequent warps @t@quidistant instatsA Yy &a f Ay S| NE
stringsthat follow the deformation of the carrier field. Such strings will be catbedsengersWarps

can also occur as single hojgarphops shiftthe geometric centers gfarameter spaces relative to

the background parameter spac&ssolutions of the second order partial differenteduation the

warp shifts the map of the geometric center of the platform onto the carrying field to a subsequent
location on that carrying field.

Combined in strings the warps can only shift emggtforms. Any clamp in the platform would
conflict with the warp speed.

Warps appear to be emitted from the geometric centers of platforms and when they are absorbed, then they
appear to be absorbed at the geometric center. This reggiincredible aimingapability. At theutmost, this
Oy 68 02 YLINBKSY RS R thatyiewiaKedsopthibis direvéide &miggidnddydical
theories the messengers are called photons.
6.8.3 Spherical fronts
Next,we focus on thehree-dimensionakpherical symmetric condition.

In that casewritingl i « iR separates the equation.

T e ¢le T o

Ti itrirt

—a
—a

r (@)
Tt _ — Tt

toT
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With other wordg fulfills the conditions of the on€dimensional casel hus,solutions in the form
e Qi1 T will fit.
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For the first kind of the second order partial differential equatibat uses thg operator, this
means | #Zwhere lis a normalized imaginary quaternion. Witae "QF @ follows:

- Q. th (2)

_represents a base vector in radial direction.

The corresponding hop landing that represents the continuity disturbing artifact will be called a
clamp. The clamp corresponds to a hop relative to the geometric center of the platform arnwhie
elementary particle reside3.husthe location of the hop is defined relative to this geometric
location. The description uses the parameter space that is private to the platform and the
elementary particleThis description is mapped ontiee bakground parameter space and
subsequentlyit is embedded intdhe field that represents the living space of the elementary
modules.This procedureepresents an interactiobetween the hopping module and tHring
space Clamps occur in coherent swarms. All swarm elements share the same plattausithe
swarm moves as a single unit.

For the second kind of the second order partial differergi@lation this meang | . With
Qi " i1 follows:

- Qi tA 3)

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminiglfies as
with distancel from the sources. When integrated over a long enough period of progression the

NBadzZ G GF1Sa GKS F2N¥Y 2F (KS FAStRa DNBSyQa TFdzyC
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At every progression instant, the hop landing locations cause the emission of a spsiesjpal
keepingfront. That front keeps its shape, but the amplitude of that shape diminisheiawith
distancei from the emission locatiorilhe fronts proceed outwards with a fixed speg&tieshape
keepingfront is a solution of the homogeneous second order partial differential equation that
describes the dynamic behavior of the affected field. Later we will identify both the hop and the
corresponding solution by using the namlampfor these phenomena. this effect is integrated
2PSNJ 6KS NBISYSNIiAzy 0O0eodfsS 2F (KS agl N¥zI GKSy
the homogeneous second order partial differential equation into an inhomogeneous second order
partial differential equation. Thextra term that makes the equation inhomogeneous concerns the
DNBSyQa FdzyOlA2yd ¢KS I YLI A@nderiSdistrie fiokh$he DNE Sy Q&
emission location.

6.8.5 Sets otlampssets of warpsand regeneration cycles
The homogeneous secondder partial differential equation offers two kinds of solutions that
representshapekeepingfronts. One kind concerns the spherishlapekeepingfronts. The second
kind acts in onadimension and not only keeps its shafiealso keeps its amplitude.
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6.8.5.1 Swams of clamps
Hops that correspond to solutions, which represent sphesbapekeepingfronts will be called
clamphops or clampsThe same name is used for this type of solutions of the homogeneous second
order differential equationsClamps occur in savms and reside on a platform thidtthe elementary
module existgs private tothat elementary moduleDuring that episode, the symmetry center carries
an ordered parameter space. Each elementary module type exists in a set of generations and each of
these generations shows a cyclic regeneration period. The swarms have a corresponding number of
elements.

LYGiSaNIGAzy 2F Of YL azfdziazya 20SN) GKS NBISYySNI
that operation,the violent varying function that deribes thdiving space fieldchanges in a rather

coherently varying function that represents a blurred representation of the original field. This blurred

field represents thdiving space potentialFrom now on, if we speak about the living spaben we

mean the living space potential.

The living space potential may also cover spurious clamps.

6.8.5.2 Strings of warps
Hops that correspond to solutions, which represent almensionakhapekeepingfronts will be
calledwarps. The same name is used for this type of solutions of the homogeneous second order
differential equationsAmong other possibilities, avps correspond to hops of platforms on which
elementary modulesnay reside.Such varps occur in isolation or equidistamt $trings.The warps do
not deform their carrying fieldThus, the movement of the platform on which a swarm resides may
berelated to a spurious warp.

Warp strings feature apatial and a temporal frequencyWe postulate that locally and in the same
progressionperiod, the warp strings will feature ixed duration and afixed spatial lengththat are

the samefor all warp strings. This makes it possible to distinguish the individual warp strings via their
frequency. This frequency determines timformation capacityof the string. Each string member

carries aunit of information. Thespatial lengthof the warp string isneasurednside and with

respect to the carrying field'hus the pathof the stringfollows the deformation of thearryingfield.

Thesymmetry-relatedfield Electra depends on the nearby existence of symmetry related charges
andfor that reason it is not a good carriefior the longrangewarps.In contrast the Palestra exists
always and everywhere and for thagason it is a proper candidate ascarrierfor long-rangewarps.

The homogeneous second order partial differential equation of the carrying field describes the
corresponding warp solutions. These solutions feature a fixed speedp8tiallength determines
the passage duratiorof an information messenger. That duration equals ffegeneration cycle of
the string.

The behavior of the warp strings invites their interpretationrdermation messengersThespatial
length postulate only holds locally. Takereotuge ranges of the carrying field or over a long period,
the spatiallength may vary in a smooth way. This phenomenon is the subject of the equivalent of

|l dzoof SQa t1 ¢

6.9 The PlanclEinsteinrelation
The PlanciEinsteinrelation states that the frequencyfaan information messenger is proportional to
the energy of the messenger strinfpgether with the fixed speed of the warps, thigans that each
member of the string carries a standard bit of energy and,thtiteast locallyall messenger strings
feature the same length.

38



The consequence of the PlanEknstein relation is that processes that are related to the emission or
absorption of information messengers have a standard duratidmis duration takes a fixed number
of progression steps.

It means thathe model features two standard clockJ he first clock determines the rate at which
the vane steps. The second clock determines the number of progression steps that the generation of
information messengers take.

6.10 Messenger redistribution and messenger redlion
Some types of modular (sub)systems, which we willatathic modular systemare capable of
splitting information messengers into a set of new information messengeargher, they canabsoib
information messengers arghit information messengers. During the sglition, the hops are
redistributed over the resulting parts, such that each part has again the cosptiallength. The
emission can occur in a direction that is independent of the direafamhich the messergy was
absorbed. The duration of the absorption processes and the duration of the emission processes must
be in concordance with the local passage duration of the information messengers.

If the absorption takes place at a location that is a huge distam@y from the emission location,
then adifference between absorption spectra and emission speatam occur. liphysicsthis
phenomenon is known assmological redshift

The absorption and emission processes must obey spectral rules that determinesibywp@on and
emission spectra.

6.11 The symmetric pair production and annihilation process

The pair creation and pair annihilation procesegsybe supported ly procedures that construct quaternions from two
complex numbers or that dismantle quaternions intmngplex numbers.

Ly GKS 20 4aS saifealpaiamhikiGtidincidert Sppears as i pair of elementary
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opposite directions. It is theimplestpair annihilation processin thisprocessgeach clamp element

of the hopping path of tharrivingelementary (anti)particle convertstima warp element of a linear

hop string of a leaving messenger. The messengers leave in a direction that is perpendithé

direction into which the elementary modules were approaching each other.

The chance that the geometric centers of the elementary modules will meet-beaslivery lowA

Y2NB FLIINBLINAFGS AYGSNILINBGF GA 2y at@e gonverSionY RS Ay
instant the particle reflects against the vane and turns into the corresponding antiparticle that travels

in the reverse direction of progression. Thus, not two partiel@sear toannihilate each other, but

instead asingle particle convertisito its antiparticle.¢ KA & A& 2yt & LRaaAotsS Ay i
the reflectionpoint, each reflecting clamp causes the emission of waspsthat leave in opposite

directions, which are perpendicular to the direction of hréginal elementary particle.

The model representsiessengersas strings of equidistant hops in a complex number based
subspace. The complex numbers represent function vallies.leaving messengers are strings of
warps that transport empty and thus masss$ platforms. Thaumber of elements ithe leaving
stringsreflectthe number of clamps in the annihilatédflected elementary modulesThespatial
length of the information messengers determines theation of the annihilatiorireflection process.

If each warp in the string carries a fixed bit of energy, then this process explainatteenergy
equivalence
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In line withthe perception of the observersluring thepair annihilationprocessthe symmetry
centers of the platforms are annihilated atttbrefore the symmetry related charges vanisin the
O NGB | viev, NiB éharge just switches its sign.

6.12 Pair creation
Ly GKS 20 atShiddsaidd the éverSegpidceess takes pladavo strings of warps that
havea sufficientnumberof elementsthat enter from opposite direction combin®e generate two
swarms of clamps that constitute a parti@atiparticle pairDuring the creatioprocessthe
symmetry centers of the platforms are creatdtherefore the symmetry related charges will
emerge.

In the creatorsview, the particlereflects on the future side of the vane. This reflection goes together
with the reflection of awarp stringat the history side of the van@he electric charges exchange sign.

6.13 Interpreting the pair creation/annihilatiqgorocess
¢tKS ONBFIiAz2Yy WS@GSyidiQ YR (GKS YyyAKAfFGAZ2Y WS@GSyi
processes are not occurring instantaneously. They take a fixed duration. However, each conversion of
a clamp into a warp can take a single instant. \rerse, each conversion of a warp into a clamp can
also take a single instarBimilarly the emission and absorption processes of atomic modular
systems take the same duratiofihus,the surround of the vane is reserved for these processes.

Generations otlementary particles involve different numbers of swarm elements, but if no
observable differencexiss between the duration of the passage of the involved warp strings, then
the active region around the vane can be subdivided in multiple step numberse Babdivisions
correspond to elementary module types and elementary module generations.

Ly KS viewdBdltipiexeldetions correspondo azigzag progression travelf elementary
modules. Thus, at a single passage of the vane the same elementary module can exist multiple times.

6.14 Moving elementary modules
On average,lamp swarms will not move with respect to the geometric center of its platform. The
mechanism that engres coherence of the swarm will ensure that the geometric center of the swarm
will on averagestayin the geometric center of the platform he regeneration process can at the
utmost generate somgtter of the geometric center of the swarmith respect b its platform

Isolatedwarpsand strings of warpgiay cause the hopping of the platform with respect to the
background parameter spac€onsequentlythe platformhopswith respect to the field that
represents the living space of the elementary moduldsis,a mixture of clamps and warps may
cause the movement of the swarm relative to the geometry @ tarrying field.

It is not yet clear what causes the extra insertions of warps, however, a uniform movement of a
platform already requires the regularsertion ofisolated warps This insinuates that isolated wraps
can be generated due to the action of something that generates the displacement. These isolated
wraps concern the hop of the platform as well as the hop landing location and the corresponding
solution of the second order partial differential equation.
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Part two



1 Task

Wewill first recollectand deeperwhat we have achievedifter that, we will further extend the
model by usingesults of what experimemat observation of realithasrevealed.n the resulting part
of the paper we will use symbols for new and existing conceptsidnah appropriatewe will use
these symbols in equationB addition, ve will refer to scientific documents that support the
approach that is taken in this paper.

2 The test model

The HilberBook TestModeT  isbasedon afoundation that has the relational structure of an
orthomodular lattice[1] [2]. Nearly a century ag 1936 the discovery of this lattice was published
by the duo GarrdtBirkhoff and John vonéimann in a paper in which they also explained its
relation to the notion of aeparable Hilbert spacg] [4]. The orthonormal lattice does not contain
the notion of number systems. Thus, this foundation cannot representtimeeptsthat define
dynamic @ometric data, such as time and location. These notions emerge by extending this
foundationin the direction of the separable Hilbert spadky selecting thisxtension of the

foundation the freedom of selection of derived conceptssignificantlyrestricted. The separable
Hilbert space provides operators that have countable eigenspaces that are filled with eigenvalues
that must be members of division rinffs. Only three suitable division rings exist. These are the real
numbers, the complerumbers,and the quaternions. The separable Hilbert space can only cope
with the rational versions of these number systembese restrictions appear very favorable for the
pursued model building process. It strongly limits the range of choices. Still thenmgqiissibilities
appear to be flexible enoudio generate a powerful base modélhe combination of the infinite
dimensional separable Hilbert space and its1separable companion Hilbert space appears to
represent a very feature rich and flexible model.

The restrictions limit the freedom of model generation, but if the orthomodular laiticeed
representghe foundation of reality, then at the same time these restrictions limit the way that
reality can develop. It means that reality must also showdiinecture and the behavior that the
Hilbert space show

does notinterpret the orthomodular lattice as a logical system and it does not interpret the
elements of the lattice as separate spatial locations, which feature a progression starmstead

interprets atomic elements ofthe orthomodular lattice as storage places for dynamic
geometric data. Inaddition;” interprets the atoms of a sulset of theorthomodular lattice as
elementary modules that are represented by hopping paths and corresponding location swarms.
These objects are elementary modules of a modular systeirhese elementary modules are
represented by subspaces of a separable Hilbert space, but these subspaces contain a huge
number of dimensions. However, at each progression instant, these subspaces reduce rtaya
which is asubspace that is spanned by a single Hilbert vectoFherefore] interprets the sub-
lattice of the orthomodular lattice as part of a recipe for modular castruction. The sublattice
will be called a modular configuration lattice.

Modular construction represents a very beneficial strategy that strongly reducethe relational
complexity of the target systemFor very complex systems thenodular construction strategy is
orders of magnitude more efficient than a monolithic approachModular construction uses its
resources in an optimally economic fashion. applies modularconstruction as a general
strategy. Modular construction requires the encapsulation of modules, such that internal
relations are hidden inside the capsule of the module. In some way, must implement that
encapsulation.
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Reality offers huge resources in available time and in numbers of building components. In this
way, even stochastic desigras is applied by nature can reach high levels of complexity. the
beginning,the model will apply a stochastic desigms itsgeneration strategy. This will change
when the model has achieved a level in which intelligent species appear. From that instant on
the efficiency of the modularconstruction strategy, will on some locationsncrease significantly.
Intelligent design and constructionwil | usefar less design and generation timand other
required resources This will clearly affect the evolution of the modelDue tothe limited speed of
information spread, these effects will appear at isolated locations.

As indicated earlier the selectio of modular configuration by the creator includes important
lessons for intelligent designers.
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applies thefact that the set of closed subspaces ofsaparable Hilbert spacehas the relational
structure of an orthomodular lattice. Not all closed subspaces of a separable Hilbert space
represent modules or modular systems, thus the notion of @odule must be further restricted.

appliesthe fact thatseparable Hilbert space&sn only cope with number systems that are division
rings. We use the most elaboratategoryof these division ringsThat category is formed lie
guaternionic numbesystens [8]. Quaternionic number systems exist in multiple versions, that differ
in the waythat they are orderedThis aderingmayinfluence the arithmetic properties of the
number systemForexample right handed multiplying quaternions and left handedlltiplying
guaternions existiurther,as will be shown in this papét,appears thaorderinginfluences the
behavior of quaternionic functions under integratiorhis fact has astonishing consequendes.
enables the distinction of elementary moduleso a small series of types.

Another important fact is that every infinite dimensional separable Hilbert system owns a companion
Gelfand triple, which is aon-separable Hilbert spacfl0]. Where the separable Hilbert space can

only handle discrete datas the Gelfand triple capable of handling continudmsuses both kinds of
Hilbert spaces as structured storage mediea modein whichdiscrete quaternionic datas well as
guaternionic manifoldgan be archivedy applying Hilbert spaces acceptsthat the model uses a
storage medium in whichllits activities are precisely archivethis repository covers history, the
presentstatus quo AND the future! A vane that represents the current static status quo scans over
this repository Observation oty occurs inside this van& he observers are modules and modular
systems that travel with the vane.

Even thouglthe passage of the vane takes a small instant,peeption of information may take
many steps, but each of these steps takes place whewdhe passes at that progression instant.

usesa separable Hilbert spacer to archive countable sets of discrete quaternionic data and
uses thecompanion Gelfand triple= to archive continuous quaternionic manifolds= also
contains an image of the atent ofu”™  uses this facto describe the embedding of the separable
Hilbert space into its Gelfand companion. considers the embedding as an ongoing process. In
taking this view selects between two possible viewkhe viewthat is usuallytaken, classifies the
model as a dynamic modét.alsoOf  aaAFASa G(KS @ASg a GKS 20aSNIDS
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with the vane. In the vane, the separable Hilbert space is embedded into itseparable
companion Hilbert spac&he alternative vievaccepts that besides the historic datnd the static
status quothe Hilbert spaces already contains the future dathis classifies this view as the
ONXB I (i 2 Nl also ¢ell thigview the storage vidw this alternative view aubspacehat splits
the Hilbert space into three partdVe call this subspace the vane

1 The past history part of the model
9 The current static status quo, which is represented bydhlespace
9 The future part of the model

¢ KS O Niw tieatdtlieae three parts as sectiorfssomodel that is created as one whole
system.

introduces the reverse braket methodand uses this methotb relate operators and their
eigenspaces to pairs of functions and their parameter spfjem this way, abspaces act adilbert
spacedomainsin relation to which manifolds are definedhis method allows differential operators
to be treated as Hilbert space operators.

Inthe2 6 & S Nd&& Ndbase version of  consists of the foundation, a quaternionic
separable Hilbert space, its companion Gelfand triple and a set of mechanismghat control the
dynamic split of this base version in a historic part, a part that represents the present static status
guo and a part that represents the future.

The2 6 & S Nd&VEsNl the equivalent of the mystery of therigin of the dynamic ofphysical
reality to the mysteries of a set of mechanisms that control the coherence of the dynamics of the
model.In fact, it uses the characteristic function of the stochastic process that is applied by the
private mechanism instead of the private wave function of the elementary module.

appliesan extended version dhe generalized Stokes theoretm describe the split of the Hilbert
space into thementionedthree parts[11] [12]. The split implements the vane that travels through
the base model. The vane represents a static statusajtlbe model.The generalized Stokes
theorem enforces the encapsation ofartifacts that disrupt the continuity of the manifolds. This
introduces an extra splitting of the base model in which elementary artifacts and domain cavities are
set apart from the domains of the continuous parts of the manifolds.

Via the revers bra-ket method, smoothing operators are introdudghat convolute the defining

function of a primary operator with a blurring function. With an appropriate selection of the blurring

Fdzy OllA2y:r GKS SA3ISyalLl OS 2F GKS aY220KAy3 2LISNI i
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local disruptions othe continuity of the primarynanifold that are caused by other discrete objects.

In this way introduces ndions such as the wave functiotine uncertaintyprinciple,and the
equivalent of the gravitation potential

-

allows two interpretations of the living space of modules and modular systems. One
interpretation sees the living space as a field that describes the swarms that are formed by the
landing locatioda 2 F GKS K2LIWWAyYy3 LIF GKa Ay F gteé& GKFG Aa o
¢KIFIG DNBSyQa FdzyOlAz2y NBLINBaSyia GKS | @SNI IS 208
the field to the hop landingsSpeciakpherical symmetric solutiond the homogeneous second
order partial differential equation that describes the dynamic behavior of the field desdrdset
responses. During thieavel, away from the hopping location, these solutions keep the shape of the
moving front.
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The second intemgtation sees the hop landings as the actors that influence the field by deforming it.
These different interpretations do not affect the model

The factthat steps with model wide steps in the separable Hilbert spaae and flows in the
companion Gelfandriple = is the reason tousethe name Hilbert Book Mode/ for”

The author extends the name tdilbert Book Test Model to warn thaf”  is not meant to be a
physical model Instead is a pure mathematical test model that is used to investigate the
mathematical tools and methods that can be ude describe a physical modelA separate static
status quo of the Hilbert Book Model will be called &filbert book pageor sheet
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2.1 Elementarynodule
The symmetry centel defines a private platform with identity and type . Together with the
private mechanism the symmetry center and the platforform a conglomerate that constitute
the elementary moduld) . The platfom floats over the background parameter spateThe
symmetry flavor of the platform determines the type of the elementary modipleThis includes the
symmetry related charges and the spin of the elementary modie. mechanism applies a
stochastic process that has a characteristic functfonThis characteristic function is the Fourier
transform of the location density distributich of the swarm hop landings that corresponds to the
hopping path of the pointike elementay modulefy .The location density distribution equals the
squared modulus of the wave function of the elementary module.

The hop landings trigger the clamps and the clamps deform the field in which the elementary particle
is embedded. The swarm is cantously regenerated until the mechanism changes the

operation mode of the stochastic process. This occurs for example when the elementary module is
detected. In that case the swarm and its location density distribution collapses. Reflection against
boundary will also affect the generation process.

3 Partition of change

3.1 Domains and parameter spaces
The guaternionidomainmis supposed to be defined asclosedoart of thedomainp of a
reference operator that resides in the noiseparable quaternioic Hilbert space . The reverse
bra-ket method relates the eigenspacq of reference operatop to a flat quaternionidunction
P N . The target of functior 1 equalsits ownparameter spacer] . Here we explicitly use the
same symbob for all directly related objectdny ,P 1 is always and everywhere continuous.

P M@ A Ms NGNS 1)

The domairp is spanned by the eigenvectoiiO of operatorp .

The reversdora-ket method also relates the eigenspaeeto an equivalent eigenspace of a
reference operatort, which resides in the infinite dimensional separable Hilbert spad&oth
eigenspaces are related to the same version of the quaternionic number system. However, the
second eigenspace only uses rational quaternionT .

T NG Ns AdNs @

Quaternionic number systems exist in several versions that differ in the way that they are ordered.
Reference operaton corresponds to the version of the quaternionic number system that is used for
defining the values of the inner products of the Hilbert vectors. The parameter space that
corresponds to the eigenspace ofwill be called thebackground parameter space

Quaernionic number systems can be ordered in several ways. OpeTatorresponds with one of
these orderingsT is supposed to b€artesianordered T is a normal operator and its eigenspace is
countable. Cartesian ordering means that the set of eigenvectoisaain be enumerated by the
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separate eigenvalues af. The eigenspace is the Cartesian product of four partially ordered sets in
which the set, vkich represents the real part takes a special role. The eigenspace of the Hermitian
partT € T T ofnormaloperatorT, can be used to enumerate a divisionmoito a
countable number of disjunctive subspaces, which are spanned by eigenvector€aftesian

ordering means partial ordering of the eigenvalued ofand additional ordering of the eigenvalues
of the antiHermitian operatonl € P P Dby selecting &£artesian coordinate systenkight
mutually independent Cartesian coordinate systems eT T T Jqis aseHadjoint

operator. The ordered eigenvaluesT " can be interpreted aprogression valuesThe eigenvalues
of’ can be interpreted aspatial location values This differs from the physical notions of time and
spacethat contemporary physics useBhysical spacetime has a Minkowski signature. Here we are
talking about a mathematical test modélhis test model uses a Euclidean sppragression
structureF 2 NJ G KS ONBI 62NRa @ASH | yR kilsignatwdfoaled A YS & (i NHzC
20a4SNIBSNRa QGASo

Parameterspacesas well as domainsprrespond to closed subspaces of the Hilbert spaces. The
domain subspaces are subspaces of the domains of the corresponding reference opérators.
selected coordinate systehrings ordering taathe parameter spaces\ part of the eigenspace of
reference operatop represents he mdomain. The flat quaternionic functian 1} defines the
parameter space . P hasaEuclidean signature. It installs an ordering by selecting a Cartesian
coordinate system for the eigenspace of its ddérmitian partd € p P . Several mutually
independent selections are possible. The chosen selection attaches a corresponding symmetry flavor
to this parameter space. In the mathematical test model, this symmetry flavor will become the

reference symmetry flavor. Thus, the symmetiavor of parameter spage may be distinguished
by its superscript

The manifold is also defined as the continuum eigenspace of fendd normal operator which is

related to domain and to parameter space via function . Within this paraneter space may
have discontinuities, but these must be excluded from the domain over which integration takes
place. This exclusion will be treated below.

3.2 Floating symmetry centers
Symmetry centers are described bigenspaces of special atermitianoperators. The eigenspace
acts as a spatial parameter spacheif geometric center can floas a function of progression over
the backgroungarameter spaceElementary modules reside on a private symmetry ceriéevery
progressiorstep,the residingelementary module uses only one location of the symmetry center
combination this produces avell-orderedoperator where a single progression value corresponds
with a single spatial locatior private mechanismapplies a stochastics process, whichngva
characteristic functiongdetermines the spatial locatiorThe mechanism producea coherent
location swarmthat is characterized by a location density distribution, which is the Fourier transform
of the characteristic function of the stochastic progdsurther,a progression value can enumerate
all swarm elements anih this way that proceduréorms a stochastichopping path If the generated
location is embedded ithe embedding continuunthen theorderingof the symmetry center may
conflict with theordering of background parameter space that is used to define the embedding
continuum. In thattase the embedded location acts as an artifact. The artifact will create apoint
like discontinuity in the embeddg continuum.
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3.3 Stokes theorem ithout discontinuities
The generalized Stokes theorem stands for a combination of a series of integral continuity equations.
Without discontinuities in the manifoid, a simple formula represents the generalized Stokes
theorem [11] [12].

, 1
0 R @

The theorem can be applied when everywherenthe derivative i exists and when everywhere in
T mthe manifold is continuous and integrabl@he domaimmis encapsulated by a bounddryn

mOT m %)

Q1 is theexterior derivativeof] .

3.4 Interpreting the exterior derivative
In this paper, the manifolds and'Q] represent quaternionic fields and'Q , while insidé mthe
manifold] represents the quaternionic boundary of the quaternionic fieldlhese fields and
manifolds correspond to defining functionsry andQ 1 .

P is a flatquaternionicmanifold, which isrepresented by the target of functiom 1; K 1.

We presume that the exterior derivatide of can be interpreted by the following equations:

©)

! 4)

ThusA is represented by a tensor. Tensor equations acknowledge the applied coordinatmsyste
This is not a very attractive presentatidhis elaborate and rather obscurk.is more convenient to
treat the change along the directions in which change takes place in accordance to the first order
partial differential equations. This opens thegsibility to apply the correspondirapnventional

Stokes and Gauss theorems.

Due to their reliance on tensor equations, the exterior derivative differs from the partial differentials
that appear in partial differential equations.

®)
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In the right parts of the above formulas, the summation rules for subscripts and superscripts are
applied.

In contrast tothe terms intensor equations,te terms in thepartial differential equation$ollow the
directions in which change takes place.

The first order partial differential equation describes the total change and it divides this change along
the lines in which that change takes place. This partibhg can also be applied to the integral
balance equation.

First, we focusnto the spatial part! of the quaternionic parameter space. It means that we only
usethe spatial part® MG and + of the first order differential equation.

nooon O MO n N 4 €)

If represents a rather static living space potential, then in this formula the black terms on the right
side can be considered small and will be neglected.

This corresponds with @directed partitioning perpendicular to surface element

J J NG 1 Nt o= . MO = )

Here,= is the normalized vector that is placed perpendicular in the center of the suefaceent.

The generalized Stokes theorem represents the integral based balance equation that is equivalent to
the differential based equation that represents tpartition of change along the lines in which
change takes plac@hat same partition is possible in thrgegral balance equations.

If in a spatial domain, function obeys the homogeneous equation

JJm ®)

then the function and the corresponding field is considered regular in that domairor functions
that are this kind ofegularin spatial domaimw hold:
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a b = (gradient theorem) @)
a MO b & MNQdvergence theorem) (8)
a J 4 b = A (curltheorem) 9)

If we try to interpret these integrals, then they compute the contributions to the balance of change
in the closed boundary that in each of its points locally is perpendicular to unit vector

Lot (10
amMO MO (12)
bAoA (12)
Lot (13

Infact, equation (10) comprises equation (11) through (13).

J J AMO 4 Nt = . GMNGO = A+ (14)

If variation with progression is included two extra terms appear. They represent the change with
progressionn

noo N N _ N n oMo n 4 N (15)

Theconventionalgeneralized Stokes theoreis) in fact,a combination ofnultiple versions. One is
the using the divergence part of the exterior derivatg. It is also known as the generalized
divergence theoremAnother version uses the curl part of the exterior derivatikefact, all these
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versions concern separate terms that exist in the first order partial differeftials,the partition of

thegenet t AT SR {(21S&a GKS2NBY RAQGARSA (GKS AyGSaNyaGaz
The conventional version of the Stokes theorem does not apply all terms of the first order partial

differential. For quaternionignanifolds all termscan be combineih one formulaThis results in the
guaternionicgeneralized Stokes theoremnd that is the version that will be used hetésually the

domains covea static status quor we integrate over the regeneration periadich that variation

with time becomes small or negligibl€he static status quo is characterized by three changes, a

divergence, a gradient and a curl. The other two changes concern what disappears into history and

what comes in from the future. The partoncernthe change ofhe scalar and vectdields that

often represent blurred views ofreightedlocation density distributions.

Without discontinuities in theuaternionicmanifold] a simple formula represents thguaternionic
generalized Stokes theorem

, 16
0 TR (16)

The theorem can be applied when everywherenthe derivative i exists and when everywhere in
T mthe manifold is continuous and integrabl@he domairmis encapsulated by a bounddry

mOT m 3)

3.5 Handling artifacts
Via quaternionic defining functions, the revets@-ket method couples the separable Hilbert space
to its nonseparable companion.

The defining functior_ K links the integral overthe full quaternionic rj numbers tothe
summation ovethe rationalr) numbers

Gs ¢  @AQ A Qe w@ad A Gwoan @)

This corresponds to:

) ) GO MO @)

0 @od f aoan ®)
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This divides the region over which the equation works into two parts. One in which summation
equals integration and a region or a set of regions where integration does not work properly due to
the existence of discontinuities . 1} in those sukbregions. Exchangir. 1} against a smoothed
version can completely or partly cure this problem.

The quaternionic generalized Stokes theorem allosilcumventingthe inclusion of artifacts in the
integration domain. In thatcase the artifacts must be encapsulatednd treated separately.

3.6 A speciatiomain split
In the speciaéplitting case that is investigated herdvequaternionicgeneralized Stoketheorem
construckavane eft between the past history of the field D and the future
e of that field. It means that the boundary efit of field, efD represents a
universe wide static status quo of that field.

More specificallythe form of thegeneralized Stoketheoremfor the sketchedsituationruns as

@)
A o T O QET QT e e

® e T @

Here oD represents the static status quo of a quaternionic field at instahcerepresents
the spatial part of the quaternionidomain of , but it may represent only a restricted part of that
parameter space. This last situation corresponds to the usual of the divergence theorem.

Great care must be taken by interpretinige wedge product in
A o 1" OQOQ®QaQt (3)

Due tothe danger of misinterpretation, we will avoid the wedge products that appear in the middle
part of equatiors (1) and (3) In the right part of theequation only the divergencghe curl, and a
gradientplay a roleThe split that has been selectezbtsa category of operators apart that are all
Cartesiarorderedin the same way as operataris. It enables a spaqaogression model in which
progression steps in the separable Hilbert spaa@nd flows in its norseparable companion . Via

the reversebra-ket method the Cartesiafordering ofT can be transferred te 8

3.6.1 Interpretation of the selected encapsulation
Theboundaryl mjis selected between the real part and the imaginary part of dorraiBut it also
excludes part of the real part. That part igthange of the real part fronfito infinity. Parametert is
interpreted as the current progression value.

The boundary mhas one dimension less than the domainThe form of the partitiorand the
failing dimensiorcorrespond tadirected partitioning perpendicular to a surface elemefithe
differential equation
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In the speciaéplit, the vane that represents the static status quo of the model represents the
splittingbounday. This includes most tiie three-dimensional spatial part of the parameter space

that corresponds to the van@ he theorem does not specifydtiorm of the partition but requires

that the partition form does not traverse discontinuities or regions in which the defining function is

not defined. Thusf the partition wipes through th@parameter space and encounters discontinuities

or regions in which the defining function is not defined, then the pariitioust encapsulate these

objects while it passes them. These encapsulating partitions become pmdepfarateset of

boundaies In thisway,these objects stay outside of the boundény) In this way, gmmetry

centers and space cavities become objehtt float as encapsulated modules over the domajnf

they enter the partitiomh y (1 KS 2 0 AlteNIES ddidbe cobsidéréd creatéfithey keep

floating with the partition, then these objects are alivethey have completely passed the paitin,

then they can be considered tavebeenannihilatedL y § KS O NXHdngilietmi@ &vill A Sg 3 |
correspond to a tubdike history and a corresponding tullige future.In thisview, at some

progression instantghe tube may reflectagaing the curent vane ThusA y G KS ON®Bd 2 NDa ¢
tube paints a zigzag path through the sparegression domaim)

The futurer  mis kept on the outside of the bounddryr, Consequentlythe mechanisms that

generate new data, operate on the rirmbetween pasimand futurer  m Two interpretations

are possible. Either, the mechanisms generate data that was not yet present in the Hilbert spaces, or

the mechanisms represent the data that are encountered during the passage of the parthien.

obseners2 Yt @8 LISNODSA GS .THe\Bseeaardafidndr SuNanrihiladioh &f ghe observed

elementary module paig K SNE (G KS ONBIF 12NDa OAModeiNBAS £ & || NBT
affected by the selected vievt enablesboth views.

Iny the observers live inside the wiping bounddtiie vane)Inthe2 6 & S NIJ SiN&rieatdddf S &
the modelappears to throwdices!

Ini KS ONGEB I, aietdldadicader] Bigchanismepresentsthe activity ofthe creator. These

mechanisms apply stochasticomessesL y 1 KS O NJ gedezaidynangitig&ometric Hata

are createdand storedin a single strokdn this view, causality only makes sense after ordering of

(KS LINPINBAAA2Y LINI 2F (KS WReaylIYAO0Q 3I82YSGNRO

The describedsplit of quaternionic space results in a spgregression model thatesemblesa

significantextent the way that physical theories describe theiacetime models.However, the

current physical theories do not explicitly distinguish between the obs&wéew and the storage

view¢ KS | RKSNByda 2F (GKS A0ASYGATAO YSGK2R 2yfa |
The quaternionistoragemodelis strictly Euclidear: KS  ONXS I (i 2 NDa ¢idragasvieMS LINB & S
CKS 20aSNBSNRA OASg N8 WND &S ¢ Midkowski sirucdiur® S G A YS & ( NHzC

The paper does not claim that this quaternionic sppoegression model reflects the structure and
the habits of physical reality. The quaternionic sppoagression model is merely promoted as a
mathematicaltest model

It is possible to see mat in accordance withhe selected interpretatiorhappensn the mathematical
testmodelasan ongoing process that embeds the subsequent static stgtiosof the separable
Hilbert space into the Gelfand triple.
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Gontrolling mechanisms act as a function of progresdiama stochastic and stepwise fashion in the
realm of the separable Hilbert space. The resofttheir actions are stored in eigenspaces of
correspondingstochasticoperators that reside in the sepable Hilbert spacél hesestochastic
operators differ from the kind of operators that are handled by the reversekbtanethod.

However, if the stochastimechanisms that provide the stochastic operators with their eigenvalues
produce coherent swarms &t feature a continuou®cationdensity distribution, then that
distribution corresponds with an operator that is defined by this distributianthe reverse br&et
method.

Thetube reflection instants indicat¢he existence ofn interaction between th location generating
mechanisms and the field that gets deformed by the clamps. If the deformation of the affected field
gets so strong that the clamp can no longer extend over a barrier, then the clamp refhectse

swarm of clamps moves into the refted direction. It means that the surface direction veator
switches sign! switches into J . The platform on which the elementary module residewitches

its symmetry flavor.

At a singleprogression instanthe part that belongs to the current siia status quo inthe separable Hilbert space is
embedded into its companion Gelfand triple. The controlling mechanisms will provide all generated datgreighession
stampthat equals the progression instamt This progression stamp reflects the state of a model wide clock tick. The whole
model, including it®physicat fields will proceed with these progression steps. However, in the Gelfand triple this
progression can be considered to flow.

The model does not change by selectimg of the two possible viewslowever, he selectedview has significant

consequences for the description of the modelii K S 2 6 & S Nily3oebeatingdWill Sescansidered as mathematical
cheating. Thus, at thvane the uncertainty principle does not work for the progression part of the parameter spaces.
Differential equations that offeadvancedas well as retarded solutionsiust reinterpret the advanced solutions and turn

them into retarded solutions, whit in that case represent another kind of object. If the original object represents a

particle, then the reversed particle is the aptrticle. Thus the eventsthat representappearing or disappearing

elementary moduled y (G KS 2 0 &viff sNdvSdidfettionddt tesboundaryof the path ofa single elementary
moduleinii KS O N3X I. It @bdekira of GFdathd and annihilation eveitsy (1 KS 2 6 &t NS atrepreséhts S 6
GKS St SYSyidl NE Y2 Rdmsses ungistutbéd$oudh B hoiindaNdTha tulé@ kigrags through the
spaceLINE ANB aaA2y R2YI A jhe dayfse df ta&SreflOonddd stillbbdstuee FA S g @

Because ofhe construd, the history, which is stored, free from any uncertairitythe already processed paot the
eigenspaces of the physical operators, is no longer touched. Future is unknown or at least it is inadoesdibbgvation

3.7 Integrating irregulafunctions
We can use thgradientof the inverseof the spatial distancesa 45

P i (@)
SA 8 SA 58

The divergence of this gradient is a Dirac delta function.

~ P 2

o P r

L P P 5 P
T AT r“@mﬂa .

This means that;
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As alternative, 8 OF y | £ 42 dza S QK@ thepbidabdiff@entiafedagtion A 2 y
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For the Laplaciafy v Gthis obviouslymeans:
GO % a (5)

P (6)

Howeverg KSy | RRSR (2 { k@ry NBRY hahofadmshédisiequgtian
ahon n @
isalso a solution of the Laplace equation.

%0 A (8)
“oa

Function%oJ,'f canbe interpreted as the potential that is raised by charge distribu¥orm .

In pure spherical conditions the Laplacian reduces to:

aho i

pT T ©)
IR i

For thefollowingtest function i this meand13]:
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Thus, for &Gaussian location distributiot i of point-like artifacts the corresponding contribution
to field 1 equals an error function divided by its argument. At first sight this may look in
contradiction with equatios (4) (8), but here the distribution of artifacts extends over the
boundary of domairm.
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Figure 1. Close to the geometdenter, the singularities are convertddto a smooth function.
Furtherfrom thecenter, 0 KS T2 NY 2 7F (0 K% iDeidhé&dy Qa Fdzy QG A2y

The testfunction does not represent the action of a mechanism that ensures the dynamic coherence of a real object. It is
a pure mathematical example.
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3.8 The detailedyeneralizedtokes theorem
We separate all poinlike discontinuities from the domaimby encapsudting them in an extra
boundary.Symmetry centers represesphericallyorderedparameter spaces in regiofis that float
on a background parameter spaee The boundaries ( separatethe regions from the domain
m The regiong are platforms for local discontinuities in basic fie[ds These fields are
continuous in domaim (.

0 ( @)

The symmetry centers are encapsulateth regions( and the encapsulating bounddry is
not part of the disconnected bouraty which encapsulates all continuous partshaf quaternionic
manifold] that exist in thequaternionicmodel.

Q] 1 1 @

Infact, it is sufficient that (  surrounds thecurrent location of the elementary module. Wl
select a boundary, which has the shape of a small cube of which the sides run through a region of the
parameter spaces where the manifolds are continuous.

If everywhere on the boundanye take the uninormal to point outwardthen this reverses the
direction of the normal ofi ( , which negates the integral'hus, n this formula, thecontributions
of boundaries? (  are subtracted fronthe contributions oboundaryl m This means thatmalso
surrounds the regiony . This fact renders thintegration sensitive to the ordering of the
participating domains

Domainmcorresponds tgart ofthe reference parameter space . As mentioned before the
symmetry centersy  represent encapsulated regioné that float on parameter space

The geometric center of symmetry center is represented by floatinglocation on parameter
spacep

The relation between theubspac€Y that corresponds to the domaimand thesubspacey that
correspondgto the parameter space is given by

mOrp ®

Similarly:

(4)
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3.9 Symmetry flavor and the origin of the symmetry related charge
The symmetry center is characterized by a private symmetry flavor. That symmetry flavor relates
to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is

fixed, then eight independent Cartesian orderings are possible. We use thei@axedering o
as the reference for the orientation of the axes. has the same Cartesian orderingT  has.

Q] 1 1 @

In thisformula, the boundaries: ¢and: g ? are subtractedfrom each other The difference in
ordering of the domaingjand( controls tis subtration.

Due to the smoothness of the embedding field, we have some freedom with the spatial placement of the encapsulating
boundaries. We exploit that freedom by selecting a cubithaathan a spherical encapsulation of the polikie
discontinuities.The cube is aligned along the coordinate axes. This enables us to correctly determine the influence of the
differences in ordering along the coordinate axes.

The consequence of the diffences of the symmetry flavor on the subtraction can best be
comprehended when the encapsulatibii is performed by &ubic space fornthat is aligned along
the Cartesian axes. Now the six sides of the cube contribute different to the effects of the
encapsulation when the ordering differs from the Cartesian ordering of the reference parameter
spacer . Each discrepant axis ordering capends to one third of the surface of the cube. This
effect is represented by theymmetry related chargend thecolor chargeof the symmetry center.

It is easily related to the algorithm which is introduced for the computation of the symmetry related
charge.Also,the relation to the color charge will be cledius, this effect couples the ordering of
the local parameter spaces to the symmetry related charge of the encapsulatethentary

module The differences with the ordering of the surrounding spdetermines the value of the
symmetry related charge of the object that resides inside the encapsulation!

Thesymmetryrelatedcharge and the color charge e§mmetry cented are supposed to be

located at the geometric center of the symmetry center. DNE Sy Q& Fdzy Ol A2y G23S{K
charges can represent the local defining functionj of the contributione to the symmetry

related field™ within and beyond the realm of the floating regién .

Nothing else than the discrepancy of the ordering of symmetry centewith respect to the

ordering of the parameter spacés andp causes the existence of the symmetry related charge,
which is related to the symmetry center. Anything that resideshism symmetry center wilhherit

that symmetry related charge.

3.10 Single symmetry center
( is a spatial domainfhe regiong that are combined ifiOare excluded from domaim} The
Stokes theorem does not hold for the separate regipns Instead, the difference between the
integrals defines a potential. In case of isotropic symmetry flavor of the symmetry centeolds:

. , 1
0 sa Fs Q 1 @)
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Jl'f is the geometric center of symmetry center . Valued is the symmetry related charge. This
corresponds to the symmetry related potentral 1} that exists at the outskirts of the
encapsulation.

0 , ¥
c A — Q 1
SA TS

The potentiak A "H contributes to the symmetry related field .

3.11 Bounded center
A locally a spatially connected uni@ of encapsulationg is defined by:

@)
G (

"G encapsulates multiple symmetry centers. In case taexists, we consider the objects that
reside within that encapsulatidn "'@as bounded by the symmetry related charges.

5 )

%0 A I
SA TS

At large enough distance from this bounded center, all charges can be considered merged i a singl
charge withsymmetryrelated potential function%.n :

B O (©)
e
4
ey )
0 r

3.12 Discrepant regions
The symmetry centers correspond to polikke discontinuities. However, also large connected
regions off may exist that disrupt the continuity of the manifold. FExxample a region that is
surrounded by a boundary where the deformation is so strong ithfatrmation contained irb
cannot pass the boundary of this regidrhese regions must also be separatezhf domainm In
this way, these regions will correspond travitiesin the domainm The information contained in the
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manifold cannot pass the surface of the cavifijhe cavities act as information holes. Within the
cavity,the manifold can be consideratn-existentor it is defined in a different wayVithin that
region,it has noor a differentdefining function.

Current mathematicaihtegration technology appears to lack proper solutions for this situation.

Discrepant regions cannot be hidden by apupdya smoothing operator to the underlying field.

¢tKS RAAONBLIYy:H NBIA2ya INB GKS aofl O1 K2fSaé 2F GKS
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4 Compartments

The wiversecan be divided into compartments that act@svelopes of black holes An event
horizon characterizes the black hokhat horizon corresponds to the boundary where the escape
speed exceeds the speed of light.

4.1 Clamps and the event horizon
The test functioOi QFi describes the deformation of the embedding field that a Gaussian
distribution of hop landings generat@s free spaceFirst,we consider the situation that the
presence of a barrier in the form of an event horiztimes nothamper the spread of the clampghis
result only occurs when the density of the clamps stays low enough.

If the region is covered by swarm of clamps arallocation density distributioh 1} characterizes
the location swarmthen the clamps cause a deformation of the embedding field that is givémeby
convolution of” | withtheDNB Sy Q& Ofdzy Ol A2y

SA »%

Theundisturbedclamp furction is the solution othe homogeneous second order patrtial

differential equation:

nn*r nn 98980 1 (1)
In free space after integration over a long enoymgiiiod, i KS Of I YLJ NBadzZ 6a Ay | D]
QO T sa A
S I wf ¢ . Qt - = @
SA P <l IS

The integration effectivelgonverts the homogeneous second order partiéferential equation into
an inhomogeneousecond ordepartial differential equation.

08006 o “A o0 o (4)

This can be comprehendaghthe reactions of the field on poidike disturbances.
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initiate the clamps.
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This equation describes the situation in free spand in the absence of an event horizdine
existence of the event horizdslocks thefree spread of the clamp. This can be solved by splitting the
integral into a volume integral and a surface integral.
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In the selected boundary surfagceach clamp is represented by a contribution that equals the effect
2T (GKS DNBSyQa TdzyOlAz2y 2y GKAA& 02NRSNW

TN A ©)

Independent of the surface of the boundary, each clamp imposes the same effect to the boundary.
Each clamp takes the same amount of bdary area

The effect oach contributingclampto the mass and thus the energy equivalent of the clamp is
independent of that arealThe mass of the enclosed region is proportional to the number of clamps
If the trace of each clamp takes a fixed area on the event horizon and if the area of this herizon i
completely covered with these patches, then the black hotgptémally packed with clamps and the

6f 1 Ol K2f8Q& YI&& A& LINELRNIA 2 yaf givéise todths S+ NB |

interpretation of the ensemble of clamps #ee entropyof the enclosed regionit is proportional to
the amount of hidden information.

We postulate that the horizon of the black hole is optimally packed with traces of clamps. The
horizon is the place where the deformation of the embedding field inhibits uhthér extension of
clamps of which the triggers are located inside that horizon. Each addition of a trigger location must
add a standard patch to the surface of the horizon.

The black hole itself is enclosed by an envelope that corresponds to the dpas&sing of

entropy. The amount of entropy that is enclosed is proportional to the area of the enclosure. For
each enclosure holds that the enclosure represents a description of all enclosed clamps asd warp
that are enclosed.

The number of clampé in ablack hole is proportional to the areg 'Y of its enclosurelt is
proportional to the mas$ of the black hole.

0 ¢ Y (10)

If the clamps have a Gaussian location distribution, then the test function offers a suitable
description of asspheaical black hole. It means that the potential does not show a singularity.

For the blackole, the radius for the escape velocity of the fronts lays within the range of the
distribution of the clamps

This escape velocity equals
¢ob ™| (11)

v :
w w

At thisradius,the dampscan no longer leak away and must contribute to the deformation.
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4.2 Photon bending
Somewhat further away than the event horizon exists a surface where photons keep encircling the
black holeThis is amunstablestate. Inside thatsurface most of the photons turn back to the black
hole. Outside of this surface phototisat are directed in a tangent direction are bend toward the
black hole but do not enter the surfacghis effect is known as lensing.

4.3 Inside the event hazon
Inside the event horizarstill a continuous distribution of clamps can exist. Just as with the field in
the direct environment of elementary modules, the field will not feature a singularity. Thus, also here
the test function willgivean idea of thdfield inside a black hole.

While elementary modules can zigzag in free space, a similar zigzag can occur inside the black hole.
The reflection points are located at the boundafhis would mean that at the reflection points
photons will be emitted. Most of these photons wWi# bert back to the black hole.

4.4 The holographic principle
At every enclosur¢hat surraundsthe event horizon of a black hole, the space beyond the black hole
will be relatively simple. Every enclosed clamp will have a representation on the enclbserevent
horizon of the black hole encloses the most efficient packaging of clamps.

4.5 The blachole as a black body
The collection of clamps and warps that exist in a black body must be treatetheidguations of
PlanckQamps and warps do not represent electromagnetic radiation.

5 Elementary radules

Each elementary module resides on a privatafptan, whose spatial part corresponds to a private
symmetry centerA symmetryflavor characterizes that symmetry cent&ymboN ? will represent

the symmetry centerThe superscript refers to the type of the elementary module and the subscript
refersto the identity of the elementary module inside its type group. A germ operatogenerates

the hopping path and the location swarm that correspond to the identity of the elementary module
The mechanism that ensures the dynamic coherence of theitatatvarm picks the eigenvalues of
the germ operatoe from the platform that corresponds to symmetry centef.

For the operatoe that describessia its eigenvalue8 KS Wi AFSQ 2F GKSB St SYSyidl
subsequent real progression valgeaccompanied by an imaginary part and together these parts

form the eigenvalue that belongs to the Hilbert vector, which at this progression instant represents
the elementary module. This single value has not much to say about the owner of this eigenvalue
Only a series of subsequent eigenvalues can do that job. A large series of these numbers can tell the
types of elementary modules apart. These subsequent quaternionic numbersafoopping path

After a whilethese numbers forna dynamic location swarmThe spatial parts of these numbers are
taken from symmetry centet ?. that due to this role determines part of the properties of the
elementary moduleThusthe hopping path and the location swarm reside on the platform that
corresponds to the symntey center.Thus, alelementary modules reside dheir own individual

symmetry center. The symmetry center covers a closed subspace and the module covers a subspace
of that subspace. The private symmetry center floats over a backgnparaineterspace ad the

map ofits center locatioronto the background parameter spaisea function of progression.

Themap of thelocation of the geometric center of the floating symmetry cergato the
background parameter spade not part of the eigenspace of the &htermitian operator !, but it
is a property othe symmetry center. This floating locatiorsisoa property of the elementary
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module and is formulated in terms of a valuetioé backgroungarameter space . This reference
operator is a normal opator and provides full quaternionic eigenvalues that can represent
progression values as well as spatial locations.

Themodelembedsthe swarminto the Palestrdfield that represents its living spacthis embedding

act deforms the fieldThe action involes a convolutiorof the location density distribution of the

swarmg A G K G KS DNBSyQa TFdzyOlAzy 2F (GKS TArSdctR G KI G N
Fy AYGSANI GA2Y 20SNJ GKS NBISYSNIGA2yisD@a@anS 2F (K
integration over the dynamic response of the field during this regeneration cyirtelarly the

D NB Sy Q a is, hdayt,@nintedrstion over the regeneration cycle of the dynamic response of the

living space field in reaction on the corresponding hop landtiagh landingpcation in thehopping

path corresponds with asudden pointlike trigger that affectshe field. A speial solution of the

homogeneous second order partial differential equation describas tesponseThe response

representghe behavior of the field whesuch artifacts triggethis field The response deforms this

field and the convolution accounts ftre deformation due to all triggers that are members of the

location swarm. The convolution involves an integfalis reasoning implies that the generation of

the swarm is an ongoing process.

If the generation stops, then the swarm collaps@sscollapseincludes thecollapse of the
corresponding location density distribution. The reason can be that the mechanism, which is
responsible for the generation ofi¢ swarm decides to switch emother operation mode.

Two fields are involved. One field represethe living spac@alestra The result of the convolution is
the living spaceotential. The other field is the symmetry related fidttectra The integral that
concerns the symmetry related fiefdust take the differences in the ordering of the invalve

platforms inthe account The generalized Stokes theorem best explains fHigt theorem converts

an integral over a volume into an integral over the boundary that encapsulates this volume.
Depending orthe ordering the contrbution is added or subacted. If the encapsulation is located
such that at these locations the added function values are negligible, then only the contributions of
the difference in parameter space ordering result. In tbase these differences will reveal the
symmetry related barges.Thesymmetryrelatedcharges are supposed to be located at the
geometric center of the platform on which the elementary module residésis, for the symmetry
NEflG§SR FAStRZI GKS @2fdzyS AyaSaNIt Ay@2t@Sa | &A

5.1 Module content
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space
adrFdSay aLF F y2N¥IFE 2LISNIG2NI YILA || Of 2aSR &dz a
orthonormalbaseconsisting of eigenvectors of LIS NI (G 2 NXp¢ ¢ KS O2NNBa LIy RAY
characterize this closed subspace.

Germ @eratorz only acts as a descriptdt.describes a hopping patithe operator does not
generateits owneigenvalues. It has eigenvalues that are generated by a mechanismvhich is
not part of the Hilbert space.

5.1.1 Progression window
Operatore is a stochastic operator. It is a normal operaits eigenvalues are not ordered in the
way that the eigenvalues of reference operators ardered Still the real partsfooperatorz are in
sync with the eigenvalues of the clock operafdue to theintegration over the regeneration cycle,
the stochastic ordering of the spatial part of the eigenvalésbecomehidden.Infact, the location
density distribution implenents a spatial reordering of tHeoppinglocations.
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Thus, i is possible talefinea quaternionic normal operatoy for which a subset of the

eigenvectors span theameclosed subspacas is spanned by the eigenvectorsofand the
corresponding eigenvalues this new operatodescribe thereordereddynamic geometric data of

this elementarymodulesuch that they fit in the ordering of the eigenvalues of symmetry cehfer
After that ordering process, they form a subséthe eigenvalues of ?. The integration over the
regeneration cycle can be installed as a smoothing effect, which dampens the kinematic actions of
the eigenvaluesf . In this way, he geometric data becomeew functions of what wealready
havecalled progression Thenew operator describeshe module contenin a reordered fashion

that can be interpreted as a location swathat resides on its private platform

The determination of the location density distribution of the swarm integsadver the regeneration

cycle and turns the hopping path into a location swarm. The integration turns the spherical shape
1SSLIAY3I FNRyiGa GKIG FNB Ol dASR o6& GKS K2LI fI yRAY
¢t KS O2y @2t dzii A ®inttioR\ifith thekokalion DedySdystelution of the swarm of hop

landing locations results in the deformation of the embedding field that is caused by the presence of

the elementary particle.

A companiomormalreference operator  providesanormalcapsulefor the antiHermitian
symmetry center ?. On the otherhand, it also covers th@rogression windowof operatorea It can
be considered as theapsuleor asthe encapsulating operatdor the elementary modulelts
eigenspacean be vewed as dube in which the elementary module travelShe operatore can be
considered ashe descriptor ofaninner tube It gets its data from a private stochastic mechanism.
The operator stores these data into the separable Hilbert spBlce.progession window covers a
harmonica of sheets in which the model steps from sheet to sheet. Outside of the harnttomica
model, is considered to flow.

The operator ? that describes the symmetry center is only a descriptor. This also holds for the
operatorse ,7 ,and that describe the contenand the direct environmenof the corresponding
elementary module. The real actor is the controlling mechanism which is responsible for
establishing the characteristics that are typif@lthe elementarymodule These characteristics are

the statistical characteristics and the symmetry of the swarm and the dynamic characteristics of the
corresponding hopping path. The mechanism takes care of the fact that the swarm i€aherent
swarm and stays that wayThis is partly ensured by the fact that the private mechanism uses a
stochastic process that owns a characteristic function.

Stochastic processes that are controlled by dedicated mechanisms proviééethentarymodules

with dynanic geometric data. Here we only consider elementary modules for which the content is
well-ordered This means that in the eigenspace of the selected operator every progression value is
only used once

For the most primitivenodules the closed subspace még reduced until it covers generation
cyclein which the statistically averaged characteristics of the module mature to fixed values. The
resulting closed subspace acts adiding progression windowT his sliding window corresponds to a
regeneration gcle.The sliding window covers a (large) series of shihetisact as static status quos
A cycle of operator describes it

What happens can be integrated over the progression window. This turns the germ operiaiicin
describes the hopping patinto a swarm operaton, v C ¢

For observers he sliding window separates a deterministic history from a partly uncertain future.
Inside the sliding window dedicated mechanism fills the eigenspac®f operabr) . The

66



mechansm is a function of progression. If it is a cyclic function of progressionjtgprivate
mechanisnrecurrently regeneratethe module.

¢KS LIKNIaS aNBOdZNNBy (it & oNSNpideminh b tReémodebvhedIhéchaini§hiR geiedateld K S
new eigenvalues in contrast to tleternativeinterpretation where the boundary is passing over data that already exist as
eigenvalusin the Hilbert spaceThese interpretations do not influendbe model For describing the mad, the paper

mostlyfollows the first interpretationHowever, it is also good to keep tAeNS | ifitérpidiagion in mind. It throws a
slightly different light upon the model.

5.2 Interaction witha continuum
The swarm is defined with respect to the paramrespace that resides on the platform of the
symmetry center. To define the interaction with the living space field Palestra, the swarm must be
reinterpreted with respectto the background parameter space, which is used as parameter space by
the PalestraWe will not redefine the swarm, bumstead we formulate the location density
distribution such that it uses the background parameter spEcts parameter space.

By imaging the discrete eigenvalues into a reference space, the discrete eigenvalueswoanma

¥ , which is a subset of the rational quaternions that are eigenvalues of the symmetry center
on which the module residegt the same time the disete eigenvalues form laopping path They
form a subset of the eigenvalues of tube operator. With other words the swarm forms a spatial
map of the dynamic hopping of the poitike object. The swarm and the hopping path conform to a
stochastic opeatore that is well ordered with respect to its progression values, but is not ordered
in spatial sense like reference operatarory . The swarm is spatially reorderéal construct the
location density distributionToprepare thismap,the collection & must be reordered such that it
conforms to the ordering of the background parameter space. This results in coll ¥ JHere the
superscript is removed. This collection is eigenspace of opefator
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In approximation, goerator can be considered as a defined operatwat uses the location density
distribution™ as its defining function

Theimage¥ of hop landing locatio! represents a pointike artifact that leads to a dynamic
response of thdiving space field in the form of a spherishbpekeepingfront that after integration

2PSNJ 6KS NBISYSNIiAzy 0O0eoOfS O2NNBalLlRyRa (42 GKS
the convolution with location density distribution leads to a local contribution to the living space
fieldw.¢ KS DNBSyYyQa TFdzy Ot A2y o0f dzNlhe cankilltiofi dQHei A 2y RSy

elementary module to the Palestwis the gravitation potential of the elementary module.

The deformed fidd w represents a conglomerate of descriptorstiog location density ofocation
swarms Where the location density becomes negligible the fwildiescribes the background
parameter space. The convolution process must convert the symmetry flavors ofcditeh swarms
to the symmetry flavor of the background parameter space.

In the previouparagrapls, the field is viewed as being deformed by the discrete objects that disturb its continuity. It is also
possible to view the field as a descriptor that describes the location density distribution of the discrete objects. &hsse vi
correspond to differentnterpretations of the same model. The interpretations do not influence the model. However, the
selected interpretation does affect the description of the moddlis duality indicates that there is nothing mysterious

about the fact that the field and thdiscrete objectappear tointeract. However, the situation will look mysterious if
information transfer will use the deformed field as d@arrier. That is what happens jpysicakeality.

The generalized Stokes theorem shows tinahe integration procesthe discrepant regions must be separately handled
and for thatreason it is necessary to encapsulate the discrepant locations. The corresponding contributions must account
the difference in symmetry flavor.
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The interaction procss influences one of the eigenspaces of the parameter space operatongy
this last step causes space curvaturéhie deformable target fieldThe embedding of each of the
swarmelements lats only a short instant and is immediately released. What itegs the impact on
the smoothedfield w. Held wis not onlyblurredin a spatialsense. It is also averaged over the
progression window.

5.3 Coherent elementary modules
A coherent location swarm characterizesrakntary moduleshat behave in a cohererdynamic
way. The oherent elementary modules are directly related to imdividualsymmetry center. The
elements of the coherent location swarm that characterizes the coherent elementary module are
taken from this symmetry center. These elements are ordéseith respect to progression, but
spatially they are selected in a stochastic fashion. This selection is descrigedrigperatorz . In
the map onto the reference continuum, coherent elementary modules feature a hopping path. Inside
the symmetry centethe hopping path isn averageclosed.lt means that on average it has a static
geometric center. That centés supposed t@orrespond to the geometric center of the symmetry
center.Further, for coherent elementary modules, the map of the location swimto the reference
continuum corresponds to a density operatothat is defined by @ontinuous function”
approximates) .That continuous function isr@ormalized location density distributiomand it has a
Fourier transform This Fourier transform equals the characteristic function of the stochastic process
that is used by the mechanism, which generates the hop landing locations of the elementary module.
Due to the existence of this Fourier transfartine swarm owns aisplacanent generatorand as a
further consequence in first approximation the swarm withve as one unitAnother consequence
of the existence of the Fourier transform is that the swarm behaves like a wave package and the hop
landing locations may form an interence pattern.
¢KS FIOG GKIG GKS 20l GA2y RSy&arde RAAGNAOGdzZiAZ2Y to2 T G(KS &gl |
compute the interactionindicates that the contributions of the separate hops can be superposed to deliver the tigtetl e
of the swarm.

The new operator’ hasT and thusp asthe parameter spaceof the defining function” . It tends
to describe the swarm as &ingle unit. It no longer describes the hopping path. The operatdr is
no more than a special descriptor. Itoes not affect the distributionof the density of the
locationsthat is described by this operator and its defining function.

The private mechanis,  that selects the eigenvalues such that a coherent swarm is generated
ensures the coherence.

This paper gives rioll explanation for this special habit of the mechanism. However, this habit is essential for the
coherence of the whole modefome guesses about the way that mechan  1works are possibldDue to his experience
with low dose intasified imaging,he author assumes that the mechanisms amaynething that looks lika combination

of a Poissorprocessandabinomial processTogether they form ainhomogeneous spatial Poisson point proce¥e test
function shows that such a comfzition results in a coherent swarrA.combination of a Poisson process and a binomial
process that is implemented by a spatial spread function can establigtation density distribution, which approaches the
Gaussian distribution, which underlies the debed test function. This might provide a partial indication of how the
mechanism worksA Poisson process that is combined with an attenuating binomial process can again be considered as a
Poisson process that has a lowecalefficiencythan the homogaeous spatial Poisson point proce3sus, in this
interpretation, the spread function defines the spatial spreadtud efficiency of the locdPoisson processeSee the

section on low dose rate imaging.

The symmetry flavor of their symmetry center also characterizes coherent elementary modules
When mapped into a reference continuum that is eigenspace of reference operator

P B @ ¢ the module is characterized bysgmmetry related chargewhich idocated at
the center of symmetryThe symmet related charge is a property of the losgimmetry center
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The symmetry related charge corresponds to an isolated giketartifact of thesymmetry related
field™ . Thissymmetry related fielC will be treated later.

The size and the sigrf the symmetry related charge depends on the difference of the symmetry
flavor of the local symmetry centsvith respect to the symmetry flavor of theurroundingreference
continuumT . The coherent swarn¥ inherits the symmetry flavor of the locaymmetry center
{ . However, the controlling mechanism picks the elements of this set in a spatially stochastic
way instead of in a spatially ordered fashidinus the stochasticoperatorz that reflects the
stochastic selectioby. , corresponds with anotheoperator, this timea densityoperatory that
reflects the spatial ordering and characterizes the coherent stochastic mechaniswith respect

to its achievement to establish spatial coherence.

5.4 The function of coherence
Embedding o$ets ofpoint-like objects into the affected embedding continuum spreads the reach of
the separate embedding locations and offers the possibility to bind modtilésS DNB Sy Q& Fdzy Oi
defines the spread of a single embedded pdike¢ object¢ KS DNB Sy Q& Fdzy OliA2y NBL
integral over the regeneration cyctd the dynamic response of the fietd a short trigger. The
trigger corresponds with a hop landing aisdmmediately released’ he homogeneous second order
partial differential equéion describes the dynamic response of the fidle integration turns the
homogeneous equation fo an inhomogeneous equation in which the extra term represents the
DNBSyQa Fdzy OlAz2y o

Surious embedding locations have not enough strength and not enoegthrto implement an
efficient binding effect. In contrast, coherent location swaiffer enough localityenoughspread

and enough embedding strength bind coherent swarms that are sufficiently clo3ée reason is

that the swarms contain a huge numbef elements and the location density distribution is very high
in a large part of the volume that is covered by the swarm.

For examplga Gaussian distribution of the location swarm would turn the yergkyD NE Sy Q &
functionsinto a rather broad spherid¢gainting brush that can be described by the potential:

0'Y'D @
i

This is a smooth function without a trace of a singulaifityusthe coherent swarm bends the
embedding field in a smoottashion!We will give thispeciaffunction a name and call iest
function. At the center location, the amplitude of the test function equaltmut1,128379 The test
functionhas a standard sprea@he standard deviation is abo0f598758 A graph of function i
was shown in figure 1.

The actual location density distribution may diffesm the Gaussian distributiorThe amplitude of the resulting function

will depend on the form of the density distributi@ndwill depend on the number of participating poitike obstructions.

For lage numbers of participating poitike obstructions, the coherence of the swarm ensures that the smoothed
embedding field stays integrable, while each of the elements of the swarm would separately cause a singhéasttual
smoothness of the affectefield will depend on the number of participating obstructions. This plays a greater role in the
outskirts of the distribution. In thategion,the signal to noise ratio is much lower than in the center. This results in a larger
local relative variancin the outskirts
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We assumed that all obstructions haasimilarimpact on the affected field. However, the process that governs the
generation of the obstructions has a stochastic nature. The characteristics of this pdepesslon the properties of the
controlling mechanismThe number of elements in the coherent swarms that corresponds to actual elementary modules
depends on the type of the module. For most typé&lementarymodules this number is hugdf the generator of the
obstructions is a Poisagrocess in combination with a binomial process that is implementedidnpanspatial spread
function, then the local signal to noise ratio can be calculated at any locatiene the number of participating
obstructions is still large enoughhis isbecausea Poisson process in combination with a binomial process is again a
Poisson process with an attenuated efficiency. An object that will approach these outskirts will sense treddteal
varianceof the fieldand may act accordinglf¥herefore,its behavior in response to the local field value may appear to
show some turbulenceCloser to the center of the swarm the signal to noise is much larger and the behavior of the
respondent will become more consistent.

If for some reason the generation prss is halted, thethe controlling mechanism changes to another control madel
because of thathe discrete nature of the swarm wilkecomenoticeable. In thigase the last location in the location
swarm indicates the exact location where the genemtprocess was disrupted. After thisstant, the previouslocation
density distribution has lost its validity adllapses In physicshe group of physicists that support the Copenhagen

interpretation namedi KA & LIKSy2YSy2y a(KStod2f I LJAS 2F (KS 61 @S Fdzy O

Imaging of the location swaranto the reference continuum is only used to define cohereandit
is usedo indicate the influence of the symmetry related chargeise embeddingnto the affected
continuumw s used to exploit the corresponding featial binding effect of the swarm. The
stochastic process that implements the stochastic location distributimher control of mechanism
_ is thede facto actuator in establishing the coherent swarithe embedding fiele is not
affected by symmetry differences. In contrast the symmetry related fielsl caused by these
differences. Thusrand™ differ fundamentally!For the elementarynodule,the symmetry center
couples the two fieldsThe coupling is located at the @metric center of the symmetry center.

5.5 The effect of the blur
The coherent swarm represents an effective blur of every observation of the spatial location of the
corresponding objectAll information about the swarm will be transmitted via the fieldbat are
influenced by the presence of the swasrnThe model does not support other information carriers

In thisaspectthe model differs from theories that postulate the existencdate carriers This model does not support

force carriers. Nor does it spprt the corresponding force fields. However, the basic fields can cause acceleration of the
discrete objects that reside on symmetry centéfle notion of force carriers imposes a dilemma: What supports the force
carrier?0On the otherhand,the variation of a vector field as a function of progression goes together with a new field that is
represented in the first order partial differential equation. This new field acts with a force onto artifacts that are emabedd
in that new field. For théivingspacethis effect is known amertia. For the symmetry relatefleld, the effect is known as
symmetry related forcelnphysicsit is called electric forcélhe section otfiorce raisingsulfieldstreatsthe situation in

which the total change of the fielstays zero.

The blumeans that every object thas informed about the properties of thebservedobject will
perceive thsobserved object with a blur that is defined by tfield contribution that reoresents the
actuallocation density distributionThis is not the smooth density distributidnlt is the convolution

2T (GKS RSyairie RAaONROdziIAZ2Y 6AGK GKS DNBSyQa
Due to the blur, p observer willdirectly perceivahe difference between an object #tis

constructedas a swarm of discrete elemerdadan object that has a more compact structure such

as a sphere. Thfactis increasedf the observer itself has a similar structuiiéhelocationswarnms

contain a hug number of elements. Only in this way the signal to noise ratio of the transferred

information is large enougto tolerate reliable reactions of the observen the signal that it receives
via the surrounding fields

Thus, every interaction is afflictedtiv a certain signal to noise ratio.

70

T dzy



5.6 Modules and subspaces
Only a small fraction of the rational quaternions will represent a dynamic locafian elementary
module. Thus, a comparable humber of Hilbert vectors will represent the state of an elementary
module.Each of these Hilbert vectors spans a closed subspace. With other wWardsthomodular
lattice that describes the relations between all modules will only sparsely cover the selostd
subspacs of the Hilbert space

At the next progressioimstant,a new category of Hilbert vectors will represent the elementary
modules. In thisvay,the model steps with model wide progression steps. The current state of the
model wipes through the model and divides ttm@del irto three parts: a historic parg current

part, and a future partThe separable Hilbert space exactly registeesestates. Thus, theeparable
Hilbert space is not confronted with any uncertainty. However, everything that travels with the
separatingvanewill be cut off from any information that is stored in the future paithat occurs at

a distance will reach the observer in the future. That information is transferred via. fiedal|
participants uncertainty exists about what the future will bringhe fact that the controlling
mechanisms install coherence will reduce the size of the uncertainty.

The elementary modules will follow hopping paths and controlling mechanisms take care that these
hopping paths stay within a tubé map of thehoppingpath onto the cross section of the tube

results in a spatial location swarm. This swarm and the hopping path characterize the properties and
therefore the type of the elementary module.

¢ KS 20 aS NdlowdikeviewthaSssobtained by objexthat travel with thescanning vane
Observers are modules thatavelwith the vane However, it is also possible to take a view in which
the investigator knowsll eigenvalues that are stored in the Hilbert space. In tage the

uncertainty of thevanetraveler is changed ito the uncertainty of the process that filled the
eigenvaluest the instance that the whole Hilbert space was establisfiég:se uncertainties are the
same. The creator generated its otm)certainty! However, the creator did his creatidm a single
stroke.
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6 Fields

6.1 Fields in contrast to sets of discrete objects
Coherent sets of discrete quaternions have much in commontivéltontinuums that describe the
locationdensity of these swarmd hediscreteset of rational quaternions idensely embedded in the
continuum of the corresponding quaternimnumbersystem A continuous function can relate the
coherent setthat corresponds to the target of the rational quaternionic functamd the
corresponding smootlontinuum. If youvant to estimate the impact of poinlike disruptions of the
continuity, it makes more sense to investigate the set of rational target values of the relating
function, than tryng toinvestigate the disrupted continuum. Putting the pelike disruptions in
capsues willpartly solve integration and differentiation problemis thisway, smoothed versions of
the fields can be derived that circumvent the problethat integration haswith the existence of
point-like disruptions.

In regions where no disrupting adifts are presenthe embedding field will equal its parameter
space, which is a flat field.

6.2 Differentiable and integrable basic fields
By applying the reverdara-ket method, acategory of operators can represent quaternionic
functions.They do this in ambination with reference operatordhe reference operators support
the available parameter spaceBe defined operators arapplicable both in the separable Hilbert
space and in the Gelfand triple.

In this paper, fields are continuums that are targeasps of quaternionic functions that define
eigenspaces of operators, which reside in the Gelfand triple.

Quaternionic functions and their differentials can be split in reahber valuedscalar functions and
imaginary vector functions. Here we will onlyneider the not too violent disruptions of the
continuity of the fields. We also restrict the validity range of the equations. With trestdctions,
the quaternionic nablacan be applied and the discontinuitiesstect to pointlike artifacts.The
guaternionic nabla has the advantage that it works amuwtiplying operator. Apart from its
functionality as a differentiation operatot, @beys quaternionic multiplication rule$his enables the
partition of change along the lines in which change takeseplac

Quaternionic functions can represent fields and continuums, but they can also represent density
distributions of discrete dynamic locations.pointlike disruption then corresponds to a single
exception in a large assemblysyhoothly varyingzalues.The vector field that goes together with the
scalar field may then represesithe displacements of the discrete objec@uaternionic
differentiation of such fieldss treated in the next chapter.

Double differentiation of a basic field leads to a Hmwmogeneous second order partial differential
equation that relates the basic field to the corresponding density distributions of discrete dynamic
locations of the artifacts that cause the local discontinuities of the basic field. For quaternionic
functions two different second order partial differential equations exist. Tegcribethe different
dynamic behavior of theame basic fieldnd thetwo-secondorder partial differential equations can
offer views on different behavior of the investigated field

Thesymmetryrelatedfield™ and the embedding continuunv are basic fieldsThis papemainly
investigateghese two basic field®A third basic field describes tlaetivity of rotator quaternionsin
this paper, # other fields are derived from theseabic fields.
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Thesymmetryrelatedfield™ is based on the existence of symmetry centers. These symmetry
centers float ovethe backgroundgarameterspacethat coversthe whole model The background
parameter space relates to the version of the quaternstomiimber system that is used to specify the
inner products of the Hilbert vectors.

The embedding continuumwis based on the existence oflgnamially deformable functiorw that
describes the embedding of discrete artifacts, which reside on symmetry centeistaratt withw.
Mechanisns,  that arededicated to the symmetry centdr selectthe locations of these

artifacts Corresponding stochastic operatas describe he results of theactvity of these
mechanismsAll stochastic operatorsf typez have countable eigenspaces and can be considered to
reside in the separable Hilbert space.

6.3 Subspace maps
The orthomodular base modebnsist of two related Hilbert spaces.

1 Aninfinite dimensionateparable Hilbert spaae that acts as a descriptor of the properties
of all discrete objects.
1 A nonseparable Hilbert space that acts as a descriptor of the properties of all continuums.

The nonseparable Hilbert space can be interpreted ase¢hgelope of its separable companion.

The orthomodular base model does not apply Fock spaces because the tensor product of quaternionic Hilbert spaces is no
longer a quaternionic Hilbert spadestead it is a real Hilbert spacé. reduces the model to the representation of the

Y2RSt Qa Oft 201

Inthe2 6 & S Nd&v& MarEyoing process which is governed by dedicated mechanisms erabeds

part ofthe separable Hilbert spaceinto its nonseparable companion Bert space= . The treated

part is the vane and a section that covers the regeneration cytlis.ongoing process corresponds

to a partitionin the form of a van¢hat moves through theeference parameter spacet  andp

and splits them into three partdistory, present statistatus quoand future.This corresponds to a
similar split of the Hilbert space that divides the Hilbert space into three subspaleemtroducea
harmonica that splits the vicinity dfie vanein a series of sheets. The middle sheet is the actual
vane Thus nearthe vane we treat progression as a discrete parameter. Further away, progression
may be considered to flovi.he sheets cover a sliding progression window that coversuhent
regereration cycles of the swarm$he mechanism that governs the embedding of an
elementary module is active in the splitting boundary, but its control is influenced by historic and
future sheets that belong to the harmonicahich covers the regenerati cycle that produces the
coherent location swarm, which is characteristic for the elementary module. The behavior of the
mechanism is stochastic and only determined by statistical and symmetry related characteristics.
Nothing, not even the creator of thmodel, hasdeterministicinsight in the decisions of the
mechanism.

This view corresponds to the interpretation of the model in which mechanisms generate new spatial data as a function of
the progression value. An alternative interpretation suspects thatfuture data are already present in the Hilbert space

and are encountered by the moving boundary. In tbase the mechanisms must have been actasgenertorsat the

instance of theformation of the whole Hilbert spac@lsg in that casethe activity of the mechanisms is stochastic and is

not governed and deterministically determined by the creator of the moftedse differentnterpretations do not affect

the model

The Cartesiaiordered reference operatcT and the correspondingeference operator
couple the two Hilbert space8oth are defined by the quaternionic functiec 13 K 1.
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On the rim between history and future will controlling mechanis fill the module related
subspaces of separable Hilbert spaceith data and the new contents of these subspaces are
subsequently embeddethto the nonseparableHilbert space . The history stays untouched. The
fill of subspaces with data is described by dedicated stochastic operators. The mechanis

use stoclastic processedo generate these dataThese operators glue the generated geometric
data as eigenvalues to corresponding eigenvectors that each span a fBye author suspects that
the stochastic operators represent inhomogeneous spatial Poisson point presses. In more
detail these, processes are probably modified Thomas processdsach of these processes can be
interpreted as a combination of a Poisson process and a subsequent binomial process that is
implemented by a spatial spread functionThe combindion of a Poisson process and a binomial
process acts again as a Poisson process which has a weakened efficiency. The combination can
be interpreted as astochastic spatial spread function

A closed subspace im maps into a subspace of . Onlythe countable subspaces of have a
sensible dimension By applying the reversebra-ket method, defining functions can map
countable eigenspaces of operators that reside in the separable Hilbert space into continuum
eigenspaces in the Gelfand triple. Mapping does niofluence the flat reference fields that are in
use as parameter spacesiowever, the embedding process affects the deformable field w
describes the deformation of this embedding field that is due to the presence of elementary
modules.In this case the embeddingmust be interpreted as interactionand not as a much
simpler mapping. Indirectly, the wfield describes the generated location swarms that result
from the corresponding hopping pathsThe embedding processlso affects the symmetry
related field ™ , because the geometric center of the platform on which the location swarm
resides is also the location where the symmetry related charge is located

In fact, both fields interact by affecting the location of the geometric center of the symmetry
centers that correspond to elementary modules.

6.4 Embeddingprocess
The embedding of a bp location only causes a clamwhen the generated hop landing is a
discrepant member of its new environment. This means that the symmetry flavor of the
symmetry center of the elementarymodule differs from the symmetry flavor of the background
parameter space. The adaptation generatake trigger that causes the clamp.

The embedding process is the result of the triggers, which result from the hop landingshese
OOECCAOO CAT AOGAOA Al Ai DO AT A OE Avithbut thé regGlar ET OACOAC
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regeneration cycle. The stochastic process that generates the hop landings of the elementary

module has a huge efficiency. This corresponds to a very high signal to noise ratio or

equivalently to a very low relative variance. This results in a rather smooth hop location density

distribution and an even smootherAT 1T OT 1 OOETT 1T £ OEA ' OAAT 60 ££EO1T AOE
distribution. With other words, the deformation of the embedding field that$ due to the nearby

presence of the elementary module is a very smooth function. Only in @sitskirts, this function

may show remarkable stochastic variation.

A convolution with a rather smooth location density distribution does not flatten bhe spurious
discrepant embeddingof generated locations On the other hand, the perception of these
disruptions by observers is hampered by the blur that the spatial spread of these observers
represents.The urious discrepant embeddingis not regenerated or replacedy nearby
generations. Therefore, the effect of spurious discrepant embedding quickly fades away.
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Together, the spurious discrepant embedding events create a n@ero vacuum embedding
continuum.

6.5 Embedding field
The elements of theeigenspace of thestochastic operatore , which is used by a controlling
mechanism xEI 1 AA AT AAAAAA ET O BMnorddngGotned@dcA™A 1 £ | DA
of this operator exists that mimics the view that observers get from the field. For example,wis
smoofOEAA AU EOO ' OAdsméoedmOa bilirGratiapprodched the blur of the
test function. Observers are the receivers of information that is transported by messengeos by
other vibrations or deformations of the embedding field Theinformation messengersare
objects thatuse the embedding field as their transport mediumSmoothing blurs the perception
of the observer. The smoothing implemented by represents the minimal observation blurfor
elementary modules.

With this interpretation, the embedding processs the pursuit by the embedding field to follow the density
distribution of a set of rational and thus discrete quaternionic target values as close astolerated by a selected
blurring function. This process involves a convolutiorand this convolution involves an integration.The target values
are the targets of the defining function for a selected set of parameter value@guses a narrower blurring function than
~ does.w /s interpreted as a field, while is interpreted as apotential. The difference betweerwand”~ is that™ blurs
all spurious point-like artifacts such thatas an individual,they becomeinobservabled Only in huge numbers these
spurious point-like artifacts will become noticeable adarge range effects

Operator wcan be described by a quaternionic functiomw ;  that has a parameter spacp

which is generated by the eigenspace oéferenceoperator P . When applicable, we use the
same symbol for the parameter space, the definirfgnction, and the operator. With the installed
restrictions, the dynamics of theembedding process can be described by quaternionic
differential calculus.However, what is perceived by observers is extra deformed by the influence
of relativity . The Lorentz transfom describes this extra@eformationd The observers perceive a
spacetime structure that features a Minkowski signature. The data that are stored in the Hilbert
space are stored in quaternionic format. Quaternions feature a Euclidean structure. The
guaternionic differential calculus applies this Euclidean structurelncluding the effect of

relativity requires the application of tensor calculus.

If the discontinuities that are generated by local discontinuities are not towiolent, then the non
homogeneoussecond order partial differential equation will elucidate the embedding process.
This will be treated in detail in the next chapter.

In= the operatorwK 11 Qv @) is defined by functionw ;  and represents an
embedding continuumw. The embedding processffects this continuum and thus deformst
dynamically.

We will show that two different non-homogeneoussecond order partial differential equations
exist that offer different descriptions of the embedding process. The equation that is basegon
the double quaternionic nabla  * cannot show wave behavior. However, the equation that is
AAOCAA 11 Ad! 1 Al shtd 43 @ aave equathb) whizh difers waseas part of its set

of solutions. Other solutions than waves prove to be more important for the embedding process.
These are the clamps. Warps play an essential role in the transfer of information.

: aho (1)
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The embedding continuunw is always and(nearly) everywhere present Closed regions exist
where wis penetrable for transfer of information. wis vibrated and deformed by discrete
artifacts that are embeddedduring a short eventin this field. In the considered domainw may
contain point-like artifacts and connected regions wherew 1j is not definedor defined in a
different way. These regions arenformation cavities.

In = , the representations of symmetry centers float over the natural parameter spae  of the
embedding continuum. Thesymmetry-related charges of the symmetry centers generate local
contributions « to the symmetry related field™ . The location of the center of the symmetry
center{ within parameter spacep s affected by the symmetry related field . The
symmetry related field™ K 3 O 3 ¢ uses the same natural parameter space  as the
embedding fieldw does.This indicates that the fields” and winfluence each other in an indirect
way via the symmetry centersForces effectuate this influenceFor the™ field, these brces

relate to the electric charge. For thwfield the force relates to the mass, which on its turn relates
to the number of involved hop landings.

The mechanism  that controls stochastic operatore  picks members of a symmetry center

{ and stores them in the eigenvalues of that operator. These eigenvalues are mapped to
parameter spaceT and in thatway, they become eigenvalues of a new operat¥ . This map
involves relocation and reordering. This fact couples the location of the symmetry related
charge of this symmetry center with the locations that get embedded in the eigenspace of
operator w. However, the parameter location of the symmetry related charge does not coincide
with the parameter location of the eigenvalue of operato¥ ,that will be embedded in the
eigenspace of operatow. This embedding involves a interaction that is describedin a blurred
way by function w(q). The eigenvaluesof operator ¥ will form a mapped swarm whose center
will coincide with the mapped parameter location of the symmetry related charge. That location
also coincides with the location of the mapped geometric center of the symmetry centdhe
eigenvalues o interact with field w. This interaction is not a simple map, but can be
interpreted as a blurred image.The images of these eigenvalues on the smoothed versi™ rof w
correspond with even moreblurred locationsin ~ . Convolutions cause theeblurs.

wand” lay like thin and thick (3D) snow blankets over the set of discrete rational quaternions.
~ represents a thicker and thus smoother snow blanket thaw.

6.6 Symmetryrelatedfields
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ
in their symmetry flavorlf we restrict to the spatial part, then eight different versions restiite
elements of coherent sets of quaternions belonghe same symmetry flavor. This is the symmetry
flavor of the symmetry centel that supports the original location swarm. Differences between
symmetry flavors of a symmetry centér and the symmetry flavor of the eigenspace of the
surrounding reérence operatoT  cause the presence of a symmetry related charge at the center
location of that symmetry centeilhe countable reference parameter speT  in the separable
Hilbert spacen maps onto the continuum parameter spap , which resides in th&elfand triple

Symmetryrelatedcharges are poinlike objects. These charggenerate a field™ thatin its
behaviorfundamentallydiffers from the embedding continuunthis difference is due to the nature
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of the pointlike artifacts. Thesymmetry rehited field also plays a role in the binding of modules, but
that role differs significantly from the role of the embedding continuwniThe defining function

~ 1 offield” and the defining functionv N of fieldw use the same parameter spap

Symmetryrelatedcharges are located at the geometric centers of local symmetry centers. The size
and the sign of the symmetry related chamdgependon the difference of the symmetry flavor of the
symmetry center with respect to the symmetry flavor of #gm@bedding continuum. Symmetry

centers that belong to different symmetry related charges appear to resitte symmetry

differences. Equally signed charges repel and differently signed charges attract. The attached
coherent location sets that are attachéalthe symmetry centers will be affected by these effects.

Thesymmetryrelatedcharges do not directly affect the embedding continuwmTheir effects are

confined tothe mapof the symmetry centet to the parameter spacp . However, with their
action the symmetry related chargeslocatethe centers of the corresponding coherent swarms.
The elements of the swarms deform the embedding continulihe deformation also has a
relocating effect.

Thesymmetryrelated charges areather isolatedpoint chages.Consequentlythe range of the field
GKFG A& 3ISYSNIGSR oé | aAiay3datsS OKFNHS Aa NI GKSNJ ¢
as 1/r with distance r from the charge.

Fields of point charges superpose. A wide spread uniform distribution of symmetry related point
charges can generate a correspondimigespreadsymmetry related field . This works well ifnost
charges have the same sign. Still, relevant values of thengym related field” depend on the
nearby existence of symmetry related charges.

Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are
not recurrently generated, buhstead their geometric centecan get relocted. Together with these
symmetry centersthe corresponding symmetry related charges and the residing swarms get
relocated.

Therelatively short range of relevant field values makes the symmetry related field a bad candidate
for the medium on which longange messengers can travel. For thatpose,the embedding fieldv
is a much better candidate.

6.7 Force raising subfields
The fact that the geometric centers of symmetry centers act as points of impacts, will destine these
centers as sources of force raisiigds. The samreasoning is possible when mass can be viewed to
be located at a center point of impact.

A partial differential equation represents the change of a field

r o STk @
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Here we consider a situation in which the change of the total field is zero and more in detail:

41 A 4

A temporal change of the scalar fi¢ld can be compensated by a divergence of the vector field
Similarly, a temporal change of the vector fieldan be compensated by a gradient of the scalar
field[ . The termf I represents dorce raising field

671 DNBSYyQa TFdzy OlAz2y
¢ KS DNB Sy Qm of hd£isld can & Yonsidered as the resultioé integration of a clamp
over a long enough period. Parameteis the displacement from the location of the trigger.
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However,”O » can also be considered as the effect on the field of a relative steady artifact. In that
OFrasS GKS DNBSyQa TFdzyOlAz2y Oley» dthe aktifAci. SmAINB G SR | &
number valued charge characterizes the strength of the influénce
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As such, every clamp represents a unit chafdso,symmetry related charges represent paiike
artifacts that characterize the strength of the corresponding potential.

If the pointlike artifact moves rather than homsd this movement occurs with a uniform speed
then the scalar potential turns into a vector potental» .

0 (7

T o P

LS L
In the above formulaplayse » the role off and= » plays the role of . If the pointlike artifact
accelerates, then the change of the vector potential goes together with the existence of a new vector
field f » that acts as a force raising field. This follows from the fact that the total change of the field
stays zero.

— o= = ©
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If the acceleration occurs the radialdirection, then this results in a force raising figtd» :

78



0 0 (10)
13 O 13 >
TS TR

W’ = p

With respect to this force raising field another pelikte charge with charge value that is also
embedded in the original field will sense a forces that equals the product of the force raising
field and the charge of the second embedded pdike object.

00 » » 11)

A forceraising fieldr /[ is a component of a base figldthat can exert a force onto a charged
object. Theforceraising field counteracts the change of the field when another comporneott that
field is changed + .

For example, inertia is the result of a force raising field that counteracts the acceleration of massive
objects.

6.7.2 Module potential
The same reasond can be applied to an object that features a potential, which it contributes to a
field, while it moves witluniform speed with respect to that field and it suddenly starts accelerating.

Thus,it applies to free elementary modules that suddenly acceker#ttalso applies to modules or
modular systems whose distribution of swarm elements own a continuous location density
distribution that on its turn owns a Fourier transforitherefore in first approximation, the module
or modular system camoveasa sngleunit. If it starts accelerating, then that fact goes together
with the existence of a force raising field. In tfiedd, a charged object will sense a force that is
proportional tothe productof the local strength of the field artie value of the barge.

With respect to thePalestrathe force raising field implements the phenomenon that physicists call
inertia.

6.8 Gluon related field

Quaternions exist that can rotate another quaternion or even an entire swarm of quateroiers
“ 7¢ radians In thatcase, be size of the real part of thespecialquaternionic rotators equals the
size of their imaginary part. These quaternions act in p@he. specigbairs ofquaternionscan
switch an anisotropy to another dimensidn. other words, thegairsmay swtch the symmetry
related charge of an anisotropgdementary moduldo a different value£color).lsotropic objects
stay unaffected.

In Quantum Chromatic Dynamjeke influence of gluons isttributed to astrong force raising field.
This explanation des not fit well in the Hilbert Book Test Model. Instedtk author supposes that
the presence of thesepecialquaternionpairs during the generation of the swarm of an anisotropic
elementary modulecan interfere with this building process. Thus, the prese of the color shifting
guaternions affects the persistence of the anisotrogiementary modulelsotropic objects ar@ot
affected
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In addition, he author supposes that thenechanisms that ensure the coherence of the swaoins
anisotropicelementarymodulesrespondto the generation disturbancbky colluding with other
mechanisms that also manage anisotrogiementary moduls by jointly generating isotropic
composite objectsThe composite will be characterized bgiaglelocation swarm but that svarm
will reflect the landing locations of multipl@ppingpaths.The constituting hopping paths are
anisotropic, but he result of the merge will be that the swarm is effectively isotropic.

This proposal attributes a lot of intelligence to the stochastchanisms and it supposes a mutual
interaction between the mechanisms and the region where these locations are generated.

In physicsthe phenomenon of color neutralization is callemblor confinement. This phenomenon

has a binding effeciThe procesbinds quarks into hadronsThe color shifting quaternions play the

role ofthegluonsp ¢ KI G A& 6Keé 4SS gAff dzaS GKS yIFYS a3af dz2
guaternions. The gluons giviseto a third basic field They are governed by a special mechani

that controls their presence and their activitje will use symbab for the gluon related field.

This interpretation distinguishes the Hilbert Book Test Model from Quantum Chromo Dynamics that
introduces a force fieltb explain the binding between @uks.

6.9 Free space

In the separable Hilbert space, the eigenvectors of the Cartesidered reference operatcT
that do not belong to a module subspace together span free space. The elementary modules reside

on symmetry centers whose center locations float on the eigenspaT f

At every progressiomstant,only one element of the swar ¢ A & dz& S RIS ¢AKLAzEO SeT NJ

surrounds all elements of the swarm. It forms most of the continnwjmvhich is deformed bthe
embeddingof the currently selected swarm element

Generation of spurious locatiomsause a non-zero vacuum embedding continuumEach generated
locaion causes a clamp. The clamp represents a bit of nTfdws norzero embedding continuum can
cause phenomena such as the Casimir effect.
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7 Field dynamics

With respect to quaternionic differentiglalculusthe basic fields behave in a similar way. This
egpecially holds in the absence of continuity disrupting discrete artifacts. We will use a more general
symbol for the investigated field to analyze thehaviorof the fields under differentiation and
integration. In the appendix, we will describe the diffiace between quaternionic differential

calculus and Maxwell based differential calculus. To support that comparison, we will define the
derived subfields and .Bothwand™ have such subfields!

In thischapter, the differential equations are all quaternionic differential equations. They ate no
Maxwell equations. Maxwell equationse coordinate timeThequaternionicMaxweltike
equations use progression rather than coordinate tifReogression intervals confim to proper time
intervals. Since Maxwell equations useordinatetime they reflect better what observers perceive
from the behavior of fields. However, observers are still confronted with the consequences of
relativity. Since the quaternionic differeatiequations apply proper time rather than coordinate
time, the quaternionic differential equations are Lorentz invariant

7.1 Differentiation
In the model that we selected, the dynamics of the fields can be described by quaternionic
differential calculus. Agafrom the eigenspaces of reference operators and the symmetry centers
we encountered three basic fields that are defined by quaternionic functions and corresponding
operators. One is the symmetry related fi€ld another is the embeddinfield wand thethird field
S is caused by the activity of the gluons

~ determines the dynamics of the symmetry centavgets deformed and vibrated by the recurrent
embedding of poirdike elementary particles that each reside on an individual symmetry center.
Fields gets deformed by the presence and the activity of gluons.

Apart from the way that they are affected by poiike artifacts that disrupt the continuity of the

field, the fields obey, under not too violent conditions and over not too large ranges, the sa
differential calculus. The main difference between the fields is the nature of the artifacts that disturb
the continuity of the fields. Field exists always and everywhere except in some discrete spatial
points and in some space cavities.

Two quite similar, but still significantly different kinds of dynamic geometric differential calculus exidindmsthe

genuine quaternionic differential calculus. The other kind is known as Maxwell based differential calculus. These two kinds
will appear to represent different views onto the basic fields. To perform the comparison, we must extend the set of
Maxwell equations. In principle, this means that tMaxweltbasedset of differential equations is incomplete. However, in
practice and to achievcertain goals the set of Maxwell equations is extended edhivalents of somgauge equations. In

this chapter, only the quaternionic differential calculus will be treafBteMaxweltbaseddifferential equations and the
comparison of the two kinds artreated in the appendix.

7.2 Quaternionic differential calculus.
First, we will investigate the validity range of our pack of pure quaternionic differential equations.
We will only consider equations that do not surpass second order differentiation. Thisteethe
applicationto not too violent changes of the investigated fields.

Under rather general conditions the change of a quaternionic fun¢€iin can be described by:

(1)
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Here the coefficientsd 13 andc 1] are full quaternionic function€ r} are real numbersQ are
guaternionic base vectors.

This covers first and second order differential terms. We ignore the higher order differentials. Thus,
these conditions cannot be considered general conditidsraiier more moderate and sufficiently
short range conditions thdifferential functionis suppoed to behavemore linearly.

i~ P, (@)
Q@ .WQ] w nm
8

Under even stricter conditions the partial differential functions become real function§ that are
attached to quaternionic base vectors:

Q@ »®»QR ®i0n n oBon o Qan (3)
rtaQ i~ ot
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Thus, in a rather flatontinuum we can use the quaternionic natslaThis is the situation that we

want to explore with our set of pure quaternionic equatiofm$e resulting conditions are very
restrictive! These conditions are far from general conditions. However, these restrictions still tolerate
point-like disturbance®f the continuity of the original functioi2 Thus these equations can handle

the triggers of hop landings and the emittance of warps.

®)

' 0 (6)
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This form othe partial differential equation highlightbe factthat in first order and second order
partial differential equationshe nabla operator can be applied as a multiplieFhis means that we
can apply the quaternionic multiplication rule.

o T 3 (7)

r ol 3 s, (8)

- FooT e 9)

The sign indicates that the nabla operator is also afflicted by symmetry properties of the applied
guaternionic number system. The above equations represent only low order partial differential
equations. In thisorm, the equations can still describe poilike disruptions of the continuity of the
field. We can take the conjugate:

"V gl + 10

r r 11)

7.2.1 Useful formulas
The following formulas are just mathematical facts that generally hold for vector differeatallus:

af B ahd 2
ah| &k ahd 3
o 4)
af 40 n -
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7.2.2 Special formulas
We list a series of interesting formulas that hold generally for the nabla operator
1)
0 O (2)
0 (3)
s 2 (@)
2 DS
P 0 0 (5)
® 08 O 08
6 h— O 6RGL— 6h " 0O 11 6 0 ©)
D 08 D 08 D 05

Similar formulas apply to the quaternionic nabla and parameter values.
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Thus, with spherical boundary conditions—~ A & adzAidlrofS a GKS DNBSyQa
D

equation, bu R2Sa y20i NBLNBaSyid
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For a homogeneousecondorder partial differentiaequation DNB Sy Qa TFdzy Qi A2y A a
¢tKdzAX GKS RSTAOAG 2F I ANBSyQa TFdzyOlAzy R2Sa yz2i
second order partial differential equatiostill equation (6) forms the ba®f the Poisson equation.

7.2.3 The first kind of secordrder quaternionic partial differential equation
This kind of double partial differentiation will then result in the following quaterniooic-
homogeneous second order partial differentiation equation
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We can split the above equation in a real (scalar) part and an imaginary (vector) part.

Investigation of the details shows that thé operator has a rather simple consequence that is
shown in formula (1)

- % QRO 2
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Here, is a quaternionic function that for a pdrtdescribes the density distribution of a set of paint
like artifacts that disrupt the continuity of function n] .

(4)

-
-
-
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In the caseof a single static poidike artifact, the solution 6 A f f RSAONAR OGS GKS
function. Its actual form depends on the boundary conditions.

Functiom 1 describes the mostly continuous figld

The second order partial differentiatjgation that is based on the double quaternionic natda be
split into two continuity equations which are quaternionic first order partial differential equations:
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Iff and3 are normalizable functions an® £ p, then with reald andA&#& p follows:

[ a- )

The formula

e+
(@)
2 ¢
Q~

(10)

holds independent of the functions on which these operators work.
The operatort characterizes thequaternionic field variance

7.2.4 The other second ordgrartial differential equation
We encounter another quaternionic second order partial differential equation, but this one
cannot be split into two first order quaternionic partial differential equations. It is based on
Ad!1 AT AAOO&EO 1 bAMAGTh quaternionic operator applies proper time
rather than coordinate time.

— —_ * . . . L] Y @ FU O‘ (1)

Dirac has shown that it can be split into two biquaternionic partial differential equations. This fact is
treated in theappendix.

In contrast to the first kind of second order quaternionic partial differential equation, the second
kind accepts waves as solutions of the homogeneous version of the equation. The waves are
eigenfunctionsof differential operator . All superpositions of such eigenfunctions are again
solutions of the homogeneous equation and can be added to the solutions of the inhomogeneous
equation. These superpositions form so calledave packages\WWhen they move, wave packages
tend to disperse.

M ahdQ 1 Q 2

Othy OCATTY Ot ¢ es Mo p 3
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This leads to a category of solutions that are known as solutions ¢dehmholtz equation These
solutions characterize the behavior of constituentatdmic modular systemsThe original
Helmholtz equations use coordinate timénstead of proper time.

7.3 Fourier equivalents
In this quaternionic differential calculus, differentiation is implemented as multiplication.

o T 3 1)

The Fourier equivalents of this equation reveal:

a N N == F @

The nabla is replaced byperatorn). is the Fourier transform of .

nr - 3)

4 N+ mh ==t 4

The equivalent of the quaternionic second order partial differential equation that is basedien

., KOWAT N ekl (5)

7  Clkdel) (6)

The continuity equations result in:

n (7

T )

7.4 Poisson equations
Thescreened Poisson equatios a special condition of the ndromogeneous second order partial
differential equation in which some terms are zero or have a special value.
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Green functions represent solutions for point sources. In spherical symmetric boundary conditions
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G(r) has the shape of the Yukawa potential [13]
In thecaseof _  Ttit resembleghe Coulomb or gravitation potential of a point source.

If _ 11 then a solution of equation (3) is:
[ e AGPQ t;_ Q (6)

These solutions concern a screened Poisson equation that is based on the first version of the second
2NRSNJ LI NIAFE RAFFSNBYGAFE Sldzr dA2yd ¢KS Sljdz (A2

° . . L7 GJ FIJ C’)’. - (7)
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¢ KS DNBSyQa 7¥dzy Ol solution(9 differis gighificantlyMrenX solotidn(6). THe S
difference only concerns the temporal behavior of the field.

7.5 Special solutions of the homogeneous partial differential equations
The fact that thevave equationK & ¢ @Sa | a Ada az2fdziazy Aa GKS OldzasS dGKIdG R
additional name. The fact that both homogeneous second order parffaréntial equations possess special solutions for
odd numbers of participating dimensions is much less known.

Here we focus on these special solutions of the quaternionic homogeneous second order partial
differential equations. These solutions are of gpémterest because for odd numbers of
participating dimensions these equations have solutions in the foramapekeepingfronts.

The homogeneous equations run as:

—n
—a
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Here we treat the two kinds of homogeneous equations together.

First, we focus on the solutions that vary in one dimension. Thus:

—a
—a

o @)
ra i

We try a solution inthe form "QQ ¢ T T

TQ Q . 3

o Hﬁ el ©
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This is solved when uf

For the first kind of the second order partial differential equation this mgans: |
normalized imaginary quaternion. Witha  "Qf & follows:

. Wherei is a

o Q4 T ?
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The functionQrepresents a shapkeeping front. It is not a wave.

The imaginaryirepresents the base vector in theéftoplane. Its orientation—may be a functiorof
Q.

That orientation determines the polarization of the edeanensionakhapekeepingfront. The
messengershat are mentioned earlier are constituted of strings of these -din@ensional shape
keeping fronts. The string members are equidistant. The messetrgeesd with a fixed speed. They

feature a fixed shape and a fixed amplitude. The equidistance results in a characteristic frequency.

For the second kind of the second order partial differergi@lation this meang | . With
Qa " a follows:

T T ™

Next, we focus on théhree-dimensional spherical symmetricondition. In that case, writing
i « 1ht separates the equations.

Toe Qe T

Ti irTt

—a
—a

r (8)
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T
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With other wordg fulfills the conditions of the ondimensional case. Thus, solutions in the form
e QY 1 T TR will fit.

For the first kind of the second order partial differential equation this means: | ;where is a
normalized imaginary quaternion. Withw "Qf w follows:

.ot ©

. represents a base vector in radial direction.

For the second kind of the second order partial differergi@hation this meang | . With
"Qw QO w follows:

- Qm T (10)

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminigifies as
with distancel from the sources. When integrated over a long enough period of progression the
NBadzZ G G1615a GKS F2N¥Y 2F (KS FAStRa DNBSyQa
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Theshapekeeping fronts are not waves and do not form wave packages. They do not feature a
frequency. In order to obtain a frequency, the fronts must be emitted at regular equidistant instants.
In that case the shapekeeping fronts occur in strings and dotmiisperse. If these strings obey the
PlanckEinstein relation, then their temporal duration and their spatial length must be fixed at
constants that are independent of the frequency.

7.6 Differential field equations
By introducing new symbots andA we will keep the quaternionic differential equations closer to
the Maxwell differential equations. Still essential differences exist between these two sets of
differential equations. This will be elucidated in detail in the appendix.

Like the quaternionghemselves the quaternionic nabla candmit intoa scalar part and a vector

part. The quaternionic nabla acts as a multiplying operator and this means that the first order partial
differential equationsplits irto five terms. Part of these termeze scalars. The other terms are

vectors.

The following formulas are not Maxwell equationgt the utmost, the formulas are Maxwdike.
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These definitions imply:
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The Maxwell equations ignore the real part&f
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7.7 Poynting vector

The definitions ofl andp invite the definition of the Poynting vectd:
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Where” represents the presence of charges Wilepresent the flow of charges.

7.8 Quaternionic differential operators
When applied taquaternionic functions, quaternionic differential operators result in another
guaternionic function that uses the same parameter space.

The operators # h Jh? G ° ? ahOAT A
& h Gare allquaternionic differential operators.

is the quaternionic nabla operator.
* is its quaternionic conjugate.

The Dirac nabla operatdrs JAT'R N convert quaternionic functions into
biquaternionic functionsThe equation

"TEQ . Q ahdQ Q (19)

represents a wave equation and is a pure quaternionic equation! The Dirac operator and the Dirac
equation are treated in detail in the appendix.
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8 Double differentiation

8.1 Right and left sided nabla
The guaternionic nabla can be sjiito a right sided version and a left sided version. Without further

indication, we consider the right version as the current version. The imaginary part determines the
version, which is linked with the handedness of the product rule.

L S ©
nQ Q— QQ— QQn "Q n"Q
Tw Tw
nQ —Q Q00— Q010 Qaone 1 v v ¢ |
Tw Tw

nn1"Q QQQn 1 "Q

8.2 Double partial differentiation
The partial differential equations hide that they grart of a differential equation.

@)
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Q Q— Q— QQ —/———
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8.3 Single difference
Single difference is defined by
@
ra. .
Q"® TTQQ ™M %0'Q'M
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Here
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Doubledifference is defined by:
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If we apply%. & the first differential operation and  “%.as the second differential
operation, thenQ ph #F o and

11

Here the switcti distinguishes between quaternionic differential calculus and Maxwell based
differential calculus. See the appendix.

8.4 Deformed space
If the investigated field represents deformed spagehen the fieldr , which represents the
parameterspace of functionw ] represents the virgin state of that deformed space.

Further, the equationw— Tirepresents a local condition in whiehis not affected by external
influences. Herecan6 S ' ye f AYSIENJI O2Yo0AYylGA2Yy 2F LINRPIAINBEAA:
of local quaternionic distance:

IOR!
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9 Information transfer

In the model, the fields with which discrete objects interact implement the information transfer
between these discrete objects. Interaction means that the location of the object or the state of the
object is affected by the field and/or that the presence of the object deforms the field. The state of
the object is its assembly of discernable propertielsese properties may depend on the mechanism
that governs the behavior and the existence of the object.

Solutions of the second order partial differential equation of the field play an important role in these
interactions. Especially the informationessengers play a major role in the transfer of information.

9.1 Messengers
Solutions of the quaternionic second order partial differential equation configure the messengers.
For odd numbers of participatirdjmensionssome of the solutions of the homogeneosiscond
order partial differential equation are combinations of shageping fronts.

In three dimensions the spherical shakeeping fronts diminish their amplitude a3i with distance
i of the trigger point. In this paper the spherical fronts ardezhtlamps Each clamp carries a bit of
mass.

Onedimensional shape keeping fronts alsgep their amplitude Consequently, these shape
keeping fronts can travel huge distances through the field that supports them. Ipapés, the one
dimensional shapand amplitude keeping fronts are callacrps. Each warp carries a bit of energy
and represents a bit of information.

Warps can travel huge distances without losing their integrity. In order to travel suchdistgace
the carrying field must exist dugrthe trip and along the full path. The Paleswaxists always and
everywhere. The Electfa depends on the nearby existence of symmetry related charges. The
amplitude of the potential of the charge diminishes as 1/r with distance from this charge.

Theembedding fielcwis a better candidate for long distance transfer of energy and information.
Warps vibrate thew field but do not deform this field. They just follow existing deformations. It
means that they follow geodesics.

Creating a string ofiarpsrequires a recurrentvarp generation process. Such processes do not
underlay the generation of symmetry related charges that supporf'thield. However, such
processes exist during the recurrent embedding of artifacts that occurs iw fiedd.

Recurent regeneration of clamps is capalifdeformingthe corresponding field in a rather static way. It has similar
effects as the stationary deformation that is due to a set of pbks static artifacts has. Each of the static artifadggorms
theembedd y3 FTASER a4 GKS DNBSyQa TdzyOlAzy ¢g2df R R2O®

9.1 The Planciinstein relation
The information messengers are strings of equidistant warps. Thesdiorensional shape and
amplitude keeping fronts are solutions of a homogeneous second order partial differeqaation.
Each of the fronts carries a standard bit of information and that information corresponds to a
standard bit of energy. In line withe PlanckEinsteinrelation, the energy equivalent of the
information that is contained in the messenger is prammal to the frequency of the information
messenger. The energy of the messenger is proportional to the number of fronts in the messenger.

All warps travel with the same speed. The homogeneous second order partial differential equation
sets this speed.d& this speed, the duration of the emission of the messenger and the spatial length
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of the messenger are independent of the frequency of the messenger. In the same way, these values
must be independent of the energy of the messenger.

The number of warps tit the annihilation of an elementary module emits in a messenger equals the
number of clamps in the annihilated elementary module. The mass of the elementary module is
proportional to that number.

The mass of the elementary module depends on its type.régeneration cycle of all elementary
module types must take the same duration. This means that the generation of elementary modules
can be synchronized. The locations of more massive elementary modules must be generated at a
faster rate.

All processes thatmit information messengers must feature the same emission duration and the
same spatial length of the emitted messenger. Thus, the emission of messengers by atoms must
feature this same duration.

9.2 Photons
The fixed speed afarpstranslatesinto the same fixed speed for the messengers. A string of warps
can carry a quantized amount of energy. Photons appear to be the physical realizations of the
information messengers. The relatiO " and the fixed speed of photons indicate that at least
at relative short range the string efarpstakes a fixed amount of progression steps for its creation,
for its passage and for its absorption.

However, observations édngrangeeffects over cosmological distances reveal that these relations

do not hold oer huge distances. R&lK A Fi 2F LI GGSNya 2F a2f Ré LIK2(02)
and arrive from distant galaxies indicate that the spatial part of waisl extending as a function of

progression.

Taken over huge ranges of the carrying field or over a long period, the spatial length may vary in a

smooth way. This phenomenon is the subject of the equivaleht 020 6 f S\With thé | &

interpretation of photons as strings ofarps this means that the dration of emission and the

duration of absorption are also functions of progression. Locally and at the same instant, these

RdzNI GA2ya FINB (GKS alyYSod /2yaSlidsSyatezr a2yS 27F (K
absorption. In thatase the detectedphoton corresponds to a lower energy and is accounted for a

lower frequency than the emitted photon has. In line with relatO "Q that holds locally, the

detected photon appearstoberai KA FTi SR® ¢ KS S ywaidbs&ongkeied int€der a YA &34 S
kinds of energy or strings of misserpskeep proceeding as lower energy photons. Spurigagps

may stay undetected.

In a similar way, photon detectors may catch only part of the energy of a photon and then the other
part of the energy is convertedto other kinds of energy or strings of missedrpskeep proceeding
as lower energy photons.

9.3 Frenet Serret path
The fixed speed of the messengers represents an interesting case. The change of a field has five
components that cover four dimensions. Howewvine path s T of an object in the spatial part of
that field can be characterized by three mutually independent figures.

The first figure is called thenit tangent vectorgg 1 . The vector is directed along the tangent that
departs at a selected locationon that path.

mt A tTE A )
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The second figure is called thermal vectorg T .
Bt =1t oz thig tGgt @)
i 3)
=T T
The size] t £of vector] t is not equal to unity and the direction [t is perpendicular to the

unit tangent vector. The inverse of the size is an indication of the tarahtureof the field that acts
as the transport medium for the messenger. It is called the loaalaturell of the paths T .

P

| gt TO

The third figure is called theinormal vectorg T .

I+ =t on thgtGgt o thg tGgt

T
m H_IT/E-T m

The sized] t &of vector] 1 is not equal to unity and the direction |pf t is perpendicular to
both the unit tangent vector and the normal vector. The size is an indication of theclataf the
field that acts as the transport medium for the messenger. It is called the tarepig¢he paths T .

Since the speedr 1 &is constant the righside term in equation (2) is zero. We take the speed
equal to unity. This reduces the path to a natural path, which is described by three orthonormal
frame vectors9 il AT A

1+ =t

4+ nd

4+ w4t ot
| + 24+
(-

Due to the curvature and the curl of the carryiiigld, the path becomes the base ofggodesicIn a
geodesic, the path length is a local minimum. In the parameter space of the deséuibitign, the
object travels with constant spele It means that along the parameter space version of the geodesic
the progression steps are equal to the spatial steps. The carrying field deforms to support the
sidesteps due to the nerero curvaturdl and the nonzero torqued of the path of the mesnger.

9.4 Consequences for our model
Thus, thequaternionic second order partial differential equatioray be valid near the images of the
geometric centers of the symmetry centers inswlebut does not properly describe the longnge
behavior oiw. Due to its restricted range and the noecurrent generation of its charges, tfiefield
does not show the equivalents of photons andsdft phenomena.

The longrange phenomena of photons indicate that the parameter sgp  :of wmay own an

origin. For higher progression values and for most of the spatial reach ofwiglidat origin is located

at huge distances. Information coming from low progression values arrives with photons that have
traveledhuge distances. They report about a situation inahtsymmetry centers were located on
average at much smaller intelistances.
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Instead ofphotons the™ field may support waves, such as radio waves and microwaves. These
waves are solutions of the wave equation, which is part of Maxwell based differealtailus.

On the other hand, the wave equation also has shlapeping fronts as its solutions.

9.5 Energymass equivalence
The enormous number of elements in the swarms that represent elementary modules causes at least
for a part the selcoherence of the swan. For anothepart, the effects of inertia cause the self
coherence of the swarm. Inside the swarm, it leads on the one hand to the assumption that the mass
of elementary modules is directly proportional to the number of elements inside the swarm. The
creation and annihilation events of elementary modules then lead to the conclusion that during
these events the solutions of the homogeneous second order differential equations convert from
clamps to warps or vice versa. This process occurs stepwise. T¢enaion of symmetry
conditions restricts what happens during each step. During the life of the elementary module what
happens can and will be integrated over the regeneration cycle of the swarm that represents the
elementary module. The integrationcorNdi & (G KS ALKSNAOFf az2fdziAz2ya Ay
field. It converts the homogeneous second order partial differential equation into an inhomogeneous
Slidz A2y ¢KS yS¢é G4SN¥ NBLINBaSyida (KS DNBSyQa Td
The onedimensional solutions will beombined in a onalimensional string of equidistant elements.
For each element of the swarm and thus for each solution in the form of a clamp, an element of the
string of equidistant warps is generated. At particle annihilation, the photons leave incliairéhat
is perpendicular to the direction in which the swarm is/was moving. This indicates that some other
object that is active in a third direction is also involved in the process.
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10 Zigzag tube

The symmetry centel that conforms to encapsulateégion( , keeps its private symmetry
flavor. The eigenspace of operator is represented by tube that contains a series of sheets that
each represent a static status quo.

The dynamic dual Hilbert space model offers two interesting views. One view is the observer's
view. The observers are modules that travel with the vane. The observers have no access to the
future part of the model. They get their information via information messengers and more
indirectly via deformations of the field in which th ey live. Also, the information messengers travel
in the field in which the modules live.

The other view is the creator's view. The creator's view has access to all dynamic geometric data
that are stored in the Hilbert spaces. In the creator's view, the elementary modules live in a tube
that may zigzag over the Hilbert space. The tube may reflect at some instants against the vane.
This may happen at the history side and it may happen at the future side. Thus, the tube may pass
the vane several times. The reason the tube reflects at certain instances is not clear. It may happen
when locally the warps and the clamps can no longer proceed forward (or backward) with respect
to progression. In the storage view, an anti-particle is equivalent to a particle that mov es back in
time.

An elementary module for which the trajectory of the tube keeps the same time direction in the

ONB I i2NDa @ASég NB LINEiaddhytiha elemanaty patifle eXigisirGieBesblAE |
Y2RS® LT Ay (GKS ONBIG2NDRa OASg GKS StSYSyidlNEB Y2
GKSY Ay (KS 20aSNBSNRa @OASg GKS St Sywediléthau® Y 2 Rdz
equalstts Y2 Rdz S & AF Al NI @iew, the niodul® Hoesingt annikit& © Ly
It reflects against the vane. The creator does not distinguish between elementary modules and their
anti-module versions. These versions only differ in theieation of time travel.

The zigzag time travel does not need to cope with the incredible aiming precision in which particles
and photons must meet in the creation and annihilation story.

If the tube reflects against the future side of the vane, then far divserverawo elementary

Y2RdzZ Sa GKI G I N RS#H GK I NBEK OB vieByRidinddyles ar&rdt ONB | G 2 1
created. The module just switches its direction of time travel. Withstlvitch oftime travel switches

the symmetry flavor of thenodule.

The reflection of the symmetry centers against the vane goes for observers together with
annihilation and creation phenomena for the objects that reside on these platforms. Thus, this
passage is related to the annihilation or the creation of eletagnmodules. These exceptional
occurrences are known as pair production and pair annihilation. At most instances, the tube just
passes the vane and the behavinode of the concerned elementary module persists long as the
tube passes the vane withougeflection, the observers will perceive the elementary module as
persisting.

¢KS NBadzZ & 2F GKSaS NBFESOGAz2ya Aa GKFEG Ay (GKS C
can pass th@anemultiple times. Observers cannot observe the zigzag of eltang modules. They

might noticeentanglement2 ¥ St SYSy G NB Y2RdzZ Sa (KIG véwdzle §K:
the entangled elementary modules concern the same object.

Ly GKS ONBIG2NRaE OASs (GKS Y2RSt Borshat (ygh)piovide e SG 0 L
an annihilation instantAll elementary modules that exist keep zigzagging.
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In the quaternionic spacprogressiormodel, the existence of symmetry centers is independent of
progression. With othewords, the number of symmetry cents is a model constant. The passage
through the rim and the reflection against the rgo not influence this number. The passage only
affects the characteristics of the combination of the symmetry center and the background parameter
space.

Ly (KS siewstBehdi8iatidbhof elementary modules goes together with the emission of
information messengers. Similarly, the creation of elementary modules goes together with the
absorption of information messengers. At the reflection instants, the numbemolvedwarps
equals the number of involved clamps. The conversion process takes a certain duration. That
duration equals the recycle period of the involved swarm.

At the reflection instants, the mechanism that generates the locations for its client ekanyen
module reverses its progression dependence and therefore the location generation algorithm
generates the locations in the reverse sequence. This means that in free space the elementary
module behaves as if it is an antiparticle. The antiparticle éasrsed properties. Its electric charge
has changed sign.

10.1 What characterizes reflection instants?
Reflection instants occur at locations where deformation is so strong that the clamps cannot pass the
barrier. This happens for example at the inner sidéhefevent horizon of a black hole.

10.2 What happens during reflection?
This suggestion by the author describes in the storage view what happens at tube reflections.

At reflectioninstants,the mechanism that providdsop locations proceeds as if nothisgecial
happens. However, the platform bounces ahdreforeit switches its symmetry flavor to the
symmetry flavor of the anparticle. During thisconversion the embedding action of the platform
stops. Instead, the action of the platfomaduces to itxenter location. At that locatioand for each
received hop locatiorthe platformdoes not embed the hops, but insteackitits two warps. These
warps are emitted in opposite directiotisat are perpendicular to the spatial reflection direction

After finishingthe rotation, the platormNB i | { Sa A (G a SY o SrokekyloAg theNP OS R dzNB
reflected tubein the reverseprogressiordirection.

11 Actions of the fields

All fields obey the same first order partial differential equatidfar. allfields, the homogeneous

second order partial differential equations are the same. Thumoderate conditionghe

differences between fields locate in the inhomogeneous pathe second order partial differential
equations The influences of disturbances betcontinuity of the field are gathered in this
inhomogeneous part. Without these disturbances, most of the fields would be flat and their defining
function would be equal to its parameter space.

In this view many of thefields are blurred representatioraf discrete distributions, where the elements of the distribution

are target values of a function that has rational quaternions as its parameter space. In some cases, the discrete distributio
represents a dynamic location density distributibmfact, tvo views are possible, either the field influences the discrete
objects that correspond to location swarms or the swarms define the fields via their location density distribution. Smoothed
fields are afflicted with extra blur.

Apart from thesymmetryrelatedfields™ that are raised by the charges of the symmetry centers
and the fields that describes the gluons, at least one othmasicfield exists. That field is the
embedding fieldw. It represents the Iimg space of the modules and modular systeffise origins of
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these fields differ fundamentally. The embedding field smoothly follows a distribution of discrete
guaternionic values, which are eigenvalues of a series of operators. Some of these values dwr not fit
better said, did not fitproperly inthe set of values that surrounds thefhe disparities are due to
difference in the symmetries of the underlying domains. The trigger only lasts a single progression
instant. It persists during a short period as a clamp that fades dwalge special coritlon that

these disparities appear in coherent swarms, we have indicated the swarm as the representative of
an elementary particleA stochastic mechanism continuously regenerates the swaha.

symmetries determine how the values cooperate in convolwgidhthe disparities were not present,
then the embedding field would be equal to the parameter spaamnd that continuum would

follow parameter space . As long as the activity of the stochastic process that is applied by the
mechanism is characterizdyy a rather stable characteristic function, the swarm will in fist
approximation move as one uni displacement generator describes that motidie live of the
elementary modules is controlled by quaternionic differential equations. At a much lardertsaa

also holds for the swarms.

Thesymmetryrelated charges of the symmetry centers do not directly affect the embedding field.
The embedding field isdirectly affected because the symmetry related fields affect the location of
the symmetry centershat house the objects that can deform the embedding field. In principle, each
disruption of the continuity of the field, thus each element of the swarm that represents an
elementary module, affects the embedding field The smoothed versionh of the embedding field

is far less vigilant. Also, the symmetry related fie|dvhich § coupled to the geometric center of the
symmetry center reacts much less vigilafstcording to the conviction of the authohe gluon field

is related to locationsvhere pairs of color shifting quaternions disturb the generation process of the
anisotropic coherent swarms and causes the generation of hadrons, which are conglomerates of
quarks.

The embedding fielavis affected by the embedding of artifacts that ariekgd by a dedicated
controlling mechanism that uses a symmetry center. as a resource. After selection of the location
of the artifact, the controlling mechanism embeds this artifact into the embedding contimaunis
continuum is represented byhe continuum eigenspace of operatar

Another interpretation is that this field describes the location swarms that are generated by the controlling mechanisms.

Each of these mechanisms operates in a stochasticstill mostly cyclitashion. The embeddg
events occur in the direct neighborhood of the geometric center of the corresponding symmetry
center. The result is a recurrently regenerated coherent location swarm that also represent a
stochastic hopping path. The swarm is centeaeoundthe geometic center of the symmetry

center. Hopping means that the controlling mechanism generates at the utmost one embedding
location per progression step. This means that the hopping object can be considered asl&@oint
artifact. At the embedding instant, thertifact actually resides at the location that is represented by
an element of the location swarm. Thus, the swarm represents the spatial map of a set of potential
detection locations. The swarm is generated within the symmetry centeand is encapdated by

T (. The actions of the mechanisms deform the figlihside the floating regions( . The
deformation of wreaches beyond the regior{

In this way, the mechanism creates an elementary module, which can deform the embedding
field wand inherits the symmetry related charge from the symmetry center. The deformation
represents the local contribution to the embedding field by the elementary module that owns
the swarm.
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On the other hand, the geometric center of the symmetry center housd®etelectric charge that
influences field™ . This view can be reversed. It is possible to consider the path that the
geometric center of the symmetry center takes under the influence of both fields. This view
requires an estimate of the results of the aabins of these fields. This will be achieved via theath
integral. First, we will investigate the influence of the embedding field. In a later phase, we will
add the results of the much less vigilant actions of the symmetry related field.

As indicatedbeforehand a third basic field is the result of the activity of gluons. That activity
disturbs the generation of anisotropic elementary modules. The controlling mechanisms react
by assembling several partially generated anisotropic elementary modules intn isotropic
composite. In this composite, multiplesymmetry centers are involved. Also, these symmetry
centers join. Outside of the joinedncapsulation the composite appears isotropic. The
composite still may carry anelectric charge. But it no longer carries color charge. Inside the
capsule multiple hopping paths walk and form a common location swarm.

11.1 Multi-mix path algorithm
In this primary investigation, we ignore the actions of the symmetry related potential. They are far
fSaa GAIAAT Iyl GKIY GKS RANBOG NBa&dzZ Gnultin® GKS SYOo
algorithmé a il yRa F2NJ I &A YA paintedra® DNIG LK Y0 kiimfactia SAAANI If £ 2
misnomer. The algorithm concerns a sequence oftiplications. Since during the regeneration of
the considered object the displacement of the object is rather stable, will part of the multiplication
factors reduce taunity. The other factors are close to unity. The result is that the sequence reduces
to a sequence of additions of many small contributions. These contributions are the actions of the
individual hops of an elementary module.

Elementary modules reside on an individual symmetry center. A dedicated mechanism controls its

recurrent generation ad embeds the object into the embedding field. The path of the symmetry

center is the averaged path of the embedded object. The embedded object is hopping along the

elements of the generated location swarm. Tdantrolling mechanism generate thanding

locations of the hops in a stochastic fashion, but such that at first approximation the swarm can be
consideredo moveas one unit. This is possible when the swarm is characterized by a continuous

location density distribution, which owns a displacement gatar. That is the case when the

location density distribution owns a Fourier transforfine existence of the Fourier transform is

ensured by the characteristic function of the stochastic process, which generates the hop landing

locations. The Fourier traformSy | 6 f S& G KS RSAONARLIIA2Yy 2mmix 0 KS LI 0
FfA2NRAGKYé D ¢KS K2LILMAYy3I 2F GKS SYOSRRSR 202S0i4 C
after multiplication represent the whole path. Each factor represents three subfactors.

Theprocedure that underlies thenulti-mix algorithmdepends on the fact that the multiplication of factors that are all very
close to unity can be replaced by a summation.

1. The first subactor represents the jump from configuration space to momentum spaus. T
subfactoris given by the inner product of the Hilbert vector that represents the current
location and the Hilbert vector that represents the momentum of the swarm. This second
Hilbert vector is assumed to be constant during the current regeneratidineoliocation
swarm.

2. The second subctor represents the effect of the hop in momentum space.

3. The thirdsubfactorrepresents the jump back from momentum space to configuration space.
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The procedure runs over the complete hopping pdththe sequence diactors, the third subfactor
of the current term compensates the effect of the fisstbfactorof next term. Their product equals
unity.

What results is a sequence of factors that are very close to unity and that represent the effects of the
hops in momentunspace Because the momentum is considered constant, the logarithms of the
terms can be taken and addeéd an overall sum. In this way, the multiplication is equal to the sum of
the logarithms of the factors.

This summation approaches what is known asdhedr G K Ay G S3INI £ ¢ @ Ly 2dzNJ Ay d:
integral, butinstead it is a finite summationwhich approaches a sequence of multiplications of
factors that approach unityin moredetail, the procedure can be described as follows.

We suppose thatmomentume= Is constant during the particle generation cycle in which the
controlling mechanism produces the swarmc: . Every hop gives a contribution to the path.
These contributions can be divided into three steps per contributing hop:

1. Change to Fourier space. This involves asbfactor the inner product ¢ g @
2. Evolve during an infinitesimal progression stepinto the future.
a. Multiply with the corresponding displacement generatofum.
b. The generated step in configuration space + .
c. The action contribution factor in Fourier space iGeaf$ 0O
3. Change back to configuration space. This involves subfactor the inner product
M@ O
The combined term contributes a factof> g G & G I + 00 & O

Two subsequent steps give:
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Thered terms in the middle turn into unity. The other terms also join.

Over a full particlegeneration cycle with N steps this results in:
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0 Gemlad (4)

Here,0 is known as theLagrangian

Equation (4) holds for the special condition in which=s iS constant. |f== is Not constant, then
the Hamiltonian "Ovaries with location. In the next equations, we ignore subscript .
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In these equationsye used proper time rather than coordinate time.

The effect of thehoppingpath is that the geometric center of the symmetry center is moved over a
small resulting distancty @ ¢ 23S KSNJ b G tkis rao@ekdetevdEirg s the next
version of momentu e .

The result is that both the symmetry related fie™ and the embedding fielwinfluence the
location of the geometric center of the symmetry center.

In this investigation, we ignored the influence of the symmetry related ™ 2[dhis field influences
momentum== and the correspondingigenvectors) O'This means that the product of thied

colored middle terms is no longer equal to unity. Instead the product differs slightly from unity and
the effect can be included in the path integral. In this way, a small slowly varying extra contribution is
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added to each subsequent term in the summation. This extra contribution is a smooth function of
progression and thus, it is a smooth function of the index of the term.

¢KS NBadzZ GYRE HKSB2 NWEA YA A& SELISOG!I 6éimof thksbepsiotitie Bdplk TR ¥ (G KS &
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possible paths. The multhix algorithm only takes the actual hopping pdtlsuallyii KS @B AKI A |t A2 NRAGKY A

introduced by starting from the Lagrangian. Here we statfield S éYYAdzf @ A FrénNbeihdpping path and the
omulti-mix algorithng resultsin the Lagrangian.

11.2 Gluon action
The presence of gluons causes the disruption of the geimer of anisotropic swarms of artifacts and
the governing mechanisms will join their activity by generating isotropic swarms of artifacts that will
represent conglomerates of the intended elementary modules. Therefore, separate anisotropic
elementary modies will hardly ever reach the condition that a private swarm represents them.
Instead the isotropic swarms will appear as persistent results. Thus, gluons combine multiple
hopping paths into a single coherent swarTinis meanshat the & Y dafixialgorik Y eust be
applied to each of the hopping paths and the result must be attached to a common location center.
The number of hops in a hopping path can be used as a location weighting factor.

11.3 Grouped isotropic artifacts
Next, we consider grouped artifadtsat cause discontinuities in the realm of a symmetry center. The
concerned field is the embedding field. Since we do no longer focus on symmetry related charges, we
will omit the superscript .

We consider the case that the locations of the artifactsrf@ coherent swarmd-  that can be
characterized by a continuous location density distributiom .
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If we use the spherical symmet@aussian location distributioof artifacts” 1 that was
introduced earlier asest function,
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then a potential in the form of
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results.
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At somewhat larger distances the potential behaves like a single charge potential.

0 (4)

™1

This gives an idea of what happens when a mechanism that acts within the realm of a symmetry
center produces a coherent swarm of artifacts that will be embedded into a field that gets deformed
by these artifacts.

Even though it is conistited from a myriad of singular contributions, the potential in equation (3) is a
continuous function and its gradient at the center point equals zero! Thus, the corresponding
RSTF2NNI GA2yLINBE Rt OANRI YT STFSOGP

11.4 Acceleration of the symmetry oter
Due to their actions, the fields andw may accelerate the location of the symmetry center on which
an elementary module resides. This occurs via the interaction of these fields with the contributions
that the symmetry center and the recurrently emdided elementary module add to the influences of
these fields.

The symmetry center and with it the residing elementary module float over the background
parameter space . This means that these items also float over the fiéldmdw.

11.4.1 Thesymmetryrelated field
Thesymmetryrelatedcharged of the symmetry centet contributes the local scalar potential
e to the symmetry related field .

0 1)
. A —
SA S
On the other hand
Coa 0 a F @)
r SA S

Another symmetry centet  contributes potentiab  to the symmetry related field . The force
3  between the two symmetry centers equals:

T T ; 3)

This need not correspond to an actual acceleration. On the other hand, if relative to the parameter
spacep , the movement of the symmetry centeér is uniform with speec , then the scalar
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potentiale  corresponds to a vector potential * o . Ifrelative to the parameter space,
the symmetry center actually accelerates, then this goes together with an extragfield v

« o thatrepresents the corresponding change of fieldThus. If the two forces  andsq

do not hold each other in equilibrium, then the fieldwill change dynamically with this extra
contribution.

11.4.2 The embedding field
The location swarms that are generated by dedicated controlling mechanisms produce a local
potential that also can acceleratee symmetry center on which the location swarm resides relative
to the parameter space . We analyze the situation in which a Gaussian location distribution
represents the swarm. Thus, we use the corresponding artifact as a test particle. The corregpondin
local potential that contributes to field equals

oo 1)

HereO represents the strength of the local potential. At somewhat larger distances the potential

0SKIFI@Sa a | aAy3atsS GOKIFNBS¢ LRGIGSYGAlf o
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adds to the embedding fielr. The result is thatv gets deformed.

The local scalar potential. A corresponds to a derived field a.

0 a 3 @3)
SA 38

Another symmetry centet  contributes potential... A to the embedding fieldv. The forcey
between the two symmetry centers equals:

T T . (4
S

This need not correspond to an actual acceleration. The force raisinghfieddtreated in detail in a
special section of this paper.
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If the platformy  on which the swarm resides moves with uniform speedhen the local potential
correponds to a local vector potential.

F .0 (5)

If this platform accelerates, then this goes together with an extra contribution tofielthat
counteractsthe acceleration.

n F ...0 (6)

This effect is known dsertia.

11.5 The smoothee&mbedding field
The embedding fieldwis described by a mostly continuous functionw rj; . The convolution of
w | with a blurring function transforms this function in an everywhere continuous function
~ 1 . Space cavities exist where bottv 1 and™ 1} are not defined. The blurring function
integrates over the regeneration cycle of elementary modules in the progression part of the
domain. If in the spatial domain, the test function 1 is used as the blurring function for
isolated discontinuities and a Gaussian distribution is used for coherent swarms of
discontinuities, then the function™ 1) defines the smoothed embedding field . This field takes
the role of a modelwide potential. In physics, thisis therole of the gravitation potential. Inthis
model, we consider” to represent the equivalent ofuniverse, however it represents a blurred
universe.

The local contribution to the embedding fieldw by the elementarymodulehas a smoothed
version, which is the equivalent of its individual potential. It contributes to field .

11.6 Spurious artifacts
Due to their minor effect, spurious artifacts will be hidden for observers due to the blanket that is
spread over the correspondiriggld by the smoothed version of this field that the observers will see.
Only recurrent regeneration of the artifact can generate a reasonable detection proba®illtyin
large numbers, spurious artifacts can produce long range effects, such asepaleg. At short
ranges they can produce the Casimir effect.
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12 Free elementary modules
Free elementary modules obey special differential equations.

The landing locations of the hops that form the hopping path and the location swarm trigger the

Palestra ad that trigger starts a sphericahapekeepingfront that we named a clamp. The

AYGSaANFYr A2y 2F GKS OfFYLI 208SNJ 6KS NBISYSNIridAiAzy C
function of the field, which represents an averaged response of the Palastitzedrigger.The
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contribution of the elementary module to the PalestsaFor free elementary modules, this

contribution equals the Palestra.

The clamps a solution of the homogeneous second order partial differential equation under
isotropic conditions.
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We only use the left term and average over the cydeod.
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The integration converts the field into the Palestraw.
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Locally, the result equals the Palesff&e integration converts the homogeneous equation into an
inhomogeneous equation in which the added term equals the Palestra.

‘pTT—‘Ii TT—WI TT—W S R @

a is areal factor that is proportional with the number of hops. It cepends to the strength of the
deformation of#

This equation can be split into two first order partial differential equations.

‘woa ow 5)
3 w (6)
3 aw o)
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13 At the start of progression

At progression valug 11, the mechanisms that generate the artifacts, which cause discontinuities
in the embedding manifolds have not yet done any work. It means that this manifold was flatatnd
instancet Tttthe defining functionw equaled its parameter space.

AtT T1nothing arrives from the past.

The model offers the possibility that the domaijexpands as a function df In thatcasejt is
possible that domaimcovers a growing amount of symmetry centers.
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14 Low dose rate imaging

14.1 Preface
The author started hisateer in thehightechindustry in the development of image intensifier
devices. His job was to heip optimizethe imaging quality of these image intensifier devices. This
concerned both image intensifiers for night vision applications aramage itensifiers that were
aimed at medical applications. Both types of devices target low dose rate application conditions.
These devices achieve image intensification in quite different ways. Both types can be considered to
operate in a linear way. The quatdition of the image intensifier is based on the fact that human
image perception is optimized for low dose rate conditions.

At low dose rates the author never perceived waves in the intensified images. At the utmost, he saw
hail storms of impinging disae particles and the corresponding detection patterns can simulate
interference patterns. The conclusion is, that the waves that might be present in the observed image
are probability waves. Individual photons are perceived as detected quanta. They are nev

perceived as waves.

14.2 Human perception
With respect to thevisualperception the human visual trajectory closely resembles the visual
trajectory of all vertebrates. Hubel and Weisel discovered this. They got a Noble price for their work.

The sensitivityf the human eye covers a huge range. The visual trajectory implements several
special measures that hetp extendthat range. At high dose rates the pupil of the eye acts as a
diaphragm that partly closes the lens and in this way, it increases the stsmrjom the picture on the
retina. At such dose rates the cones perform the detection job. The cones are sensitive to colors and
offer a quick response. In unaided conditions, the rods take over at low dose rates and they do not
differentiate between colorsln contrast to thecones the rods apply a significant integration time.

This integration diminishes the effects of quantum noise that becomes noticeable at low dose rates.
The sequence of optimizations does not stop at the retina. In the trajectory from the retina to the
fourth cortex of the brain several dedicated decision centers decode the received image by applying
masks that trigger on special aspects of the image. For example, a dedicated mask can decide
whether the local part of the image is an edge, in which directiondtiige is oriented and in which
direction the edge moves. Other masks can discern circular spots. Via such masks the image is
encoded before the information reaches the fourth cortex. Somewhere irrdjectory, the

information of the right eye crosses theformation that is contained in the left eye. The difference is
used to construct threglimensional vision. Quantum noise can easily disturb the delicate encoding
process. That is why the decision centers do not pass their information when its sigiédeaatio

is below a given level. The physical and mental condition of the observer influences that level. At low
dose rates, this signal to noise ratio barrier prevents a psychotic view. The higher levels of the brain
thus do not receive a copy of thenage that was detected at the retinstead that part of the

brain receives a set of quite trustworthy encoded image data that will be deciphered in an
associative way. It is expected that other parts of the brain for a part act in a similar noisiadplock
way.

The evolution of the vertebrates must have installed this delicate visual data processing subsystem in
a period in which these vertebrates lived in rather dim circumstances, whergshalperception of
low dose rate images was of vital importam
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This indicates that the signal to noise ratio in the image that arrives at the eyes pupisigasfigant
influence on the perceptibility of the low dose image. At high dose rates the signal to noise ratio
hardly plays a role. In thosmnditions the role of the spatial blur is far more important.

It is easy to measure the signal to noise ratio in the visual channel by applying a DC meter and an
RMS meter. However, at very low dose rates, the damping of both meters might pose problems.
What quicklybecomes apparent is the relation of the signal to noise ratio and the number of the
guanta that participate in the signal. The measured relation is typical for stochastic quantum
generation processes that are classified as Poisson processes.

It is also eagto comprehend that when the signal is spread over a spatial region, the number of
guantal that participate per surface unit is diminishing. Thus, spatial blur has two influences. It lowers
the local signal andn the otherhand it increases the integréan surface. Lowering the signal

decreases the number of quanta. Enlarging the integration surface will increase the number of
involved quanta. Thus, these two effects partly compensate each other. An optimum perceptibility
condition exists that maximizeke signal to noise ratio in the visual trajectory.

The Point Spread Function causes the blur. This function represents a spatially varying binomial
process that attenuates the efficiency of the original Poisson process. This creates a hew Poisson
procesghat features a spatially varying efficiency. Several components in the imaging chain may
contribute to the Point Spread Function such that the effective Point Spread Function equals the
convolution of the Point Spread Functions of the components. Mathgalét it can be shown that

for linear image processors the Optical Transfer Funcfioms an easier applicable characteristic
than the Point SpreaBlunctionsbecause the Fourier transform that converts the Point Spread
Function into the Optical Transféunction converts the convolutions into simple multiplications.

Several factors influence the Optical Transfer Function. Examples are the color distribution, the
angular distribution, and the phase homogeneity of the impinging radiation. Also, veiliegnager
hamper the imaging quality.

The fact that the signal to noise ratio appears to be a deciding factor in the perception process has
led to a second way of characterizing the relevant influences. The Detective Quantum Efficiency
(DQE) characterizes ttedficiency of the usage of the available quanta. It compares the actual
situation with the hypothetical situation in which all generated quanta would be used in the
information channel. Again, the measured signal noise ratio is compared to the ideaiositumat

which the stochastic generator is a Poisson process and no binomial processes will attenuate that
primary Poisson process. This means that blurring and temporal integration must play no role in the
determination of the DQE and thmeasureddevice wil be compared to quantum detectors that will
capture all available quanta. It also means that intensification processes will not add extra relative
variance to the signal. The applicationneicro channeplates will certainly add extra relative

variation This effect will be accounted as a deterioration of the detection efficiency and not as a
change of the stochastic process from a Poisson process to an exponential process. Mathematically
this is an odd procedure, but it is a valid approach when the nreasents are used to objectively
evaluate perceptibility.

14.3 Mechanisms
The fact thathe Optical Transfer Function in combination with the Detective Quantum Efficeamcy
providethe objective qualification of perceptibility indicates that the generatiothef quanta is
governed by a Poisson process that is coupled to a binomial process, where a spatial Point Spread
Function implements the binomial process.
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The mechanisms that ensure dynamical coherence appear to apply stochastic processes whose signal
to noise ratio is proportional to the square root of the number of generated quanta.

Quite probably the quantum generation process belongs to the category of Poisson point processes
and in particulathey belongto the subcategory thais known adog-Gaussian Cox point
processes.

15 Discussion

This paper shifts the mystery that in current physical theories exist about the wave function to the
mysteries that exist about the characteristic function of the stochastic processes that give the
hopping path and theorresponding location swarm their location density distribution. The existence
of that characteristic function means that this location density distribution must possess a Fourier
transform and that therefore the swarm can be considered to behave as piheSome guesses are
made about the nature of the stochastic processes. Nothing is said about how the corresponding
mechanisms cooperate. This paper suggests that the mechanisms implemestlssiénce and that
this selfcoherence relates to inertidn the future an important part of fundamental physics will
concern spatial statistics.

This papemainlyconsiders the divergence based version of the generalized Stokes theorem. The
consequences for the curl based version are not investigated in detaih ffuim dynamics, it is

known that artifacts that are embedded in a fluid may suffer from the vorticity of the embedding
field [x].

This paper does not investigate the consequences of polar ordering. It probably relates to the spin
properties of elementarynodules. In thatase the polar ordering of symmetry centers regulates the
distinction between fermions and bosons. Thadf-integerspin particles may use ordering of the
azimuth, where the integer spin particles use the ordering of the polar angleet#wthis does not
explain the difference in behavior between these categories. The paper also does not investigate the
origin of the Pauli principle, which is closely related to the notion of spin.

Skillful mathematicians carefully designed the concdpbaerior derivative, such that it becomes
independent of the selection of parameter spaces. However, in a situation like the situation that is
investigated by the Hilbert Book Test Model in which several parameter spaces float on top of a
background pammeter space, the selection of the ordering of the parameter spaces does matter. The
symmetry flavors of the coupled parameter spaces determine the values of the integrals that account
for the contributions of the artifacts. Theymmetryrelated charges othese artifacts represent it.

These symmetry related charges are supposed to be located at the geonsetigrcof the

symmetry centers.

As happens so often, physical reality reveals facts (such as the symmetry related charges) that cannot
easily be disceered by skilled mathematicians. The standard model contains a short list of electric
charges that correspond to th@ymmetryrelated charges. The standard model does not explain the
existence of this short list. In the Hilbert Book Test Model, it becartees that the electric charge

and the color chargare propertiesof connected parameter spaces and not a property of the objects
that use these parameter spaces. Instead, these objects inherit the charge properties from the
platform on which they reside.

Both the symmetry related fields and the embedding continuum affect the geometric location of the
symmetry center. They do that in different ways.
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If electric charges are properties of the connection between spaces, then the fieldich these
chargescontribute implement the forces between these connectiomdo extra objects are needed
to implement these forces!

(et
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integral equations that are obeyed by the considered field.

S

The model does not dive deep into the binding process. In that respect, regular physical theories go
much further.

The Hilbert Bookdst Model is no more and no less than a mathematical test case. The paper does
not pretend that physical reality behaves like this model. But the methods used and the results
obtained in this paper might learn more about how models of physical realitheatructured and

how these can behave.

16 Lessons

Some interesting lessons can be derived from the model. At the first place the model introduces a
commandment:

G¢K2dz aKIFIfd O2yaidaNMzOG Ay | Y2

This commandment enforces the constructortmstructin a very economical wathat applies as
littles resource as is possible. A problem occurs when the resources are limited.

In the beginning, pure stochastic processes control the evolution. In that evolution process,
increasingly complicated modular systemvill be generated. This process depends on the availability
of nearby resources. As soon as in a local environment the evolution reaches a level that intelligent
species (read types) are formed, these species can taketarepart in the evolution proess. In

that environment, the stochastic modular design method turns into an intelligent design method.

After investigation of the lifeforms that he discovered at the islands in the oceans and at the beaches
of southern continents, Darwin concluded thatlpthe fittest species can reach a longer existence in
the evolution process. A similar rule exists for the modules and modular systems. However, this rule
must be extended, because the survival struggle does not so much concern the individuals. Ihstead, i
concerns the survival of modutgpes and that survival is supported when the type promotes the
survival of the community of the type to which the individual belongs. This often must include the
care of the survival of the types that are used by the aered type as a resource. If a community

grows so large that its resources become endangered, then the complete community is endangered.
Thus, a second commandment follows the primal commandment:

oEach individual mugake care of the resources tfe
communityof which that individual is a member®
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1 Lattices
A lattice is a set of elementdcithX G KF G A a Of 2 4 S Randf ZTNdsdicénBectiosy y S O A
obey:

9 The set ipartially ordered
o This means that with each pair of elemerifgobelongs an element) such that
O Gand O @
1 The setis a half lattice.
0 This means thawith each pair of elementéftoan elementoexists, such that
1 The setis a half lattice.
0 This means thawith each pair of elementsfan elementdexists, such that

O O @
1 The setis a lattice.
o This means thathe set is both a half lattice and a half lattice.

The following relations hold in a lattice:

O, O ® 0 (1)
O, O, 0 O O O (2)
S TR R I 3
AR R AR (4)
A IR R N A N (5)

AR A S (6)
The lattice has partial order inclusionO:

How &, © @ (7)
Acomplementary latticecontains two elements and'Qwith each elementoa complementary
element® such that:

W 0 & 8

W & ¢ 9)
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® Q o (10)

0 O Q (11)
®w Q Q (12)
G (13)

Anorthocomplemented latticecontains two elements and'Qand with each elemenan element
@ such that:

W W Q (14)
G, = ¢

) ) (15)
HO by FO = (16)

‘Qis theunity element ¢ is thenull elementof the lattice

Adistributive lattice supports the distributive laws:

a (bcc)=( b) (a c) 17)
a (b, c)=(a b), (a c) (18)

Amodular lattice supports:

W 000 0 0 o0 o (19)
Aweak modular latticesupports instead:
There exists an elemei@such that

~
¥

DO O O B O (20)

18!
€
@)
e
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where'Qobeys:

DO QQ

O Q ¢

» Q ¢

DOt DO Q0

In anatomic lattice holds

r is an atom

1.1 Well known lattices

&)

WE 1

n

(21)
(22)
(23)

(24)

(25)

(26)

Classical logitas the structure of an orthocomplemented distributive modular and atomic lattice.

Quantumlogic has the structure of an orthocomplemented weakly modular and atomic lattice.

It is also called aorthomodular lattice.

Both lattices are atomic lattices.
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Quaternion geometry and arithmetic

Quaternions and quaternionic functions offer the advargad a very compact notation of items that
belong together [8].

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real
coefficients. The vector forms the imaginary part of the quaternion. Quaternionic number systems
are division rings. It means that all n@aaro members have a unique inverse. Other division rings are
real numbers and complex numbers. The separable Hilbert space only uses the rational subsets of
these number systems.

Biquaternions exist whose partxist of a complex scalar and a 3D vector that has complex
coefficients. Octonions and-guaternions do not form division rings. This paper does not use them.
However, one exception is tolerated: in considering the Dirac equatiegyddiernionic functionsand
bi-quaternionic differential operators are used. The Dirac equation is treated in the appendix.

2 Quaternions

2.1 Notation
We indicate the real part of quaterniaiby the suffixw .

We indicate the imaginary part of quaterniosby bold face1=.

G o F (1)

We indicate the quaternionic conjugate by a superscript in the form of a star.

& o F ¥

We introduce thecomplex base numbetvia

\Vjot| p 3

In biquaternionic equationsycommutes with all quaternions.

N3 O 4)

However, the product is no longer a quaternion. Instead, ith&aaternion A beret indicates bi
guaternions.

0 @ NI ©)
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Heredand ®are both regular quaternions. Complex conjugation is acting as:

\F v (6)
Complex conjugation iadicated with a superscript in the form of a filled circle.

F oo N (7)

Here we see bguaternions as hypetomplex numbers with quaternionic coefficients. These
numbers do not form a division ring. These numbers are not equivalent to octoniaspdper does
not apply Clifford algebra, Jordan algebra or other than the pure divisiot ringd S Bebilis@ the
author considers them to conceal more than they elucidate.

2.2 Quaternionic sum

O ® F O b (1)

€
E=
()

2

TOF 3)

2.3 Quaternionic product

| o 1)

N Qo Mg 2)

| 05 0 W g &)

Thus, the product contains five parihe sign indicates the influence of right or left handedness
the version of the quaternionic number system

Bgiiis the inner product Mand g
W qis theouter product ofand g

We usually omit the multiplication siga
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2.3.1 Handedness
We introduceby superscript= a switch in handedness tfe quaternion.This does not touch the real
part.

¢ G0 QN Mgt QG o E L @)
- = @

QAT Bt rgy- TgllA g™

Thus, aight-handedquaternion cannot be multiplied with left-handedquaternion. Quaternionic
conjugation switches the handedness. In addition:

Ow* o 3 (3)

A continuous quaternionic function does not switch its handedness. Embedding a conflicting quaternion in the target space
of a function produces a local artifact that produces a local discontinuity. This also holds for other aspieetpuaternion
symmetries.

2.4 Norm
$5 GO GHEO Vikas ()

2.5 Norm of quaternionic functions
Squareintegrablefunctions are normalizable. The norm is defined by:

3 §sQw @

$§ s g3 Qw

A E AA
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2.6 Quaternionic rotation

In multiplication , guaternions do not commute. Thus, irgeneral,(I)(ImI) @ In this
multiplication, the imaginary part of cthat is perpendicular to the imaginary part ofcis rotated
over an angles that is twice the complex phase ofa

a= Rlexp(s) The trans:formiba'l rotates the

imaginary parb of b around an axis
along the imaginary pastof a over
an angle2 3 that is twice the
argumentsz of ain the complex field
spanned by and1

U means perpendicula
ZA£means parallel

This means thatif  “ 7t, then the rotationd ccshifts f to another dimension. This fact
puts quaternions that feature the same size of the real part as the size of the imaginary part is in
a special category. They can switch states of state systems. In addition, they can switch the
color charge of quarks.

127



3 The quaternionic separable Hilbert space

We will specify the characteristics of a generalized quaternionic infinite dimensional separable

Hilbert spacei® ¢ KS | R2SOGA DS aljdzr G6SNYA2yA0¢é AYRAOFGSaA
eigenvalues of ogrators are taken from the number system of the quaternions. Separable Hilbert

spaces can be using real numbers, complex numbers, or quaternions. These three number systems
are division rings. In fact, the quaternionic number system comprises all diviisin

3.1 Notations and naming conventions
"Q means ordered set of). It is a way to defindiscretefunctions.

The use of bras and keliffers slightly from the way Dirac uses them

$@is a ket vectar

0Qis a bra vectar

0 is an operator.
0 is the adjoint operator of operatan.

| on its ownis a nil operator

We will use capitals for operators atmver-caseGreek characterfr quaternionsandeigenvalues
We use Latin characters fket vectors, bravectors and egenvectors. Imaginary and astiermitian
objectswill beindicated inbold text. Real numbers get subscript

Due to the norcommutative product of quaternions, special care must be paid to the ordering of
factors inside products. In thigaper, a special ordering is selected. It is one out tdrgerset of
possibilities.

3.2 Quatenionic Hilbert space
The Hilbert spaca is alinear space That means for the elemens@'s@and b n and
quaterrionicnumbers andf a linear space is defines@s@and s@are ket vectors.

3.2.1 Ket vectos
Forket vectors hold

SO B B D 0 D (1)
W D W W D D (2)
$ C s@Ns® ¢ 0 3)
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sl 1@ @ W

SO @ @ sW

s go

B o

3.2.2 Bravectors
Thebravectors form the dual Hilbert spaee ofun .

(g (¢ ¢ @ C

Notice the quaternionic conjugation that affects the coefficients of bra vectors.

S CREN A GGG

3.2.3 Scalar product
The scalar product couplétilbert spacen to its dualu.

CEX A
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C"Q g\gsm c-nggugiu c»:ngsum (2)
VI OMIINECIOMIIN 7N C RN ¢ (5)
¢ Q@ W § W 6)

¢'(3is a bra vectors@is a ket vector| is a quaternion¢§@is quaternion valued.

If the Hilbert space represents both dual spaces, then the scalar product is also cafiedran
product

3.2.4 Separable
In mathematicsatopological spacés called separable if it containsauntabledensesubset; that is,
there exists sequence < O of elements of the space such that every nonemmpgn subsebf
the space contains at least one element of the sequence.

Everycontinuous functioron the separable spacaeis determined by its values on this countable
dense subset.

3.2.5 Base vectors
The Hilbert spaca isseparable That means that a countable row of elemengO exiss that
spansthe whole space.

f6sQ0 | ak px EASl anmi OE A Otk GAO forms anorthonormal baseof
the Hilbert space.

Aketbase s of n is a minimal set of ket vectog&IXhat together span the Hilbert space

Any ket vecto§@in u can be written as a linear combination of elements $i.

SO SISED @)

A bra base@y ofn is a minimal set of bra vecto@gsthat together span the Hilbert space .

Any bra vectoBQinun can be written as a linear combination of elements @i .

6  OR@s )

Usually base vectors i@ taken such that their norm equals 1. Such a base is calledl@mormal
base.
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3.2.6 Operators
Operators act on a subset of the elements of the Hilbert space.

3.2.6.1 Linear operators
An operatorV is linear when for all vectog@and s@for which0 is defined and for all quaternionic
numbers andf :

D I WD W OW@ (1)

Operatord is colinearwhen for all vectorg@¥or whiché is defined and for all quaternionic
numberg there exists a quaternionic numbgrsuch that:

$0°® W KDr I W P
If $@¥s an eigenvector of operatdr with quaternionic eigenvalué)

bS® A
then g0"@s an eigenvector di with quaternionic eigenvalué @

I HO® @D AL WDH OO

0 is theadjoint of the normal operatoro.

60p M 0D SO 0P B @)
5 b (5)
6 6 6 B (6)
66 68 )
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If6 0 ,thend is aself adjointoperator.
| is a nil operator.

3.2.6.2 Operator construction
The construc§ @ Gacts as a linear operatog@FGis its adjoint operator.

Thereversebra-ket method uses an orthonormal basar} O'that belongs ¢ quaternionic
eigenvaluesr] and aquaternionic functioiOr] and in this way a linear operatd®can be defined
such that for all vector§@and s@holds:

CgO® o On @ D @

oK gionn @ ®

If no confusion arises, then the same symbol is used for the function F(q), the operator F and the set
of eigenvalues F. For the orthonormal bagg O holds:

Nne O ©)
We will use
oK @1 Q0N @s (10)

as a shorthand for equations (ahd (8).
C Koo ‘&s (1)
A007 Ms €07 @s A@ON “ns (12)
The eigenspace of reference operaTidefined by
TK 3 ds (13)
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represents the countablparameter spaceof discrete functionOn)
"OandT are constructed operators.

If collection 1 covers all rational members of a quaternionic number system then this definition
specifies a reference operator for which the eigenspace represents the parameter space of all
discrete functions that can be da&d with this number system.

Quaternionic number systems exist in several versions that only differ in the way that the elements
are ordered. We will identify these different versions with special superscripts. When relevant, this
will also be done withite number systems, with the operators, with the eigenvectors and with the
eigenvalues.

T KA AN s (14)

T is a member of a set of reference operatt T . The superscrif specifies the symmetry
flavor of the number systenm)

Thesuperscript canbe h h h h h h h h h h h h h h A 08

Often, wewill use the sameharacterfor identifying eigengctors, eigenvaluesand the
corresponding operator.

Definition 8 specifies a normal operatdie set of @envectors of a normal operatéorm an
orthonormalbaseof the Hilbert space.

Aselfadjoint operator has real numbers as eigenvalué”Yis a normal operator, the”v

"Y "\ 7Tgis aself adjoint operator ard| Y "\ 7¢is an imaginary normal operator. Self
adjoint operators are also Hermitian operators. Imaginary normal operators are alsblemmtitian
operators.

3.2.6.3 Normal operators
The most common definition of continuous operators is:

A continuousoperator is an opeator that creates images such that the inverse images of open sets
are open.

Similarly, acontinuousoperator creates images such that the inverse images of closed sets are
closed.

If s an eigenvector of normal operatdrwith eigenvalugdthen
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indicates that the eigenvalues are taken from the same number system as the inner products.

A normal operator is a continuous linear operator.

A normal operator im creates an image of onto u. It transfers closed subspaceswfnto closed
subspaces aofi .

The normal operator® have the following property.

Oodn + wn )
Thus, the normal operatar maps separable Hilbert spameonto itself.

0 commutes with it§{Hermitian) adjoint0

00 0 0 (2)

Normal operators are important because the spectral theorem holds for them.

Examples of normal operators are

unitary operators:"Y  "Y , unitary operators are bounded,;

Hermitian operators (i.e., seladjoint operators) 0 ;

Anti-Hermitian or anti-selfadjoint operators0 0;

Anti-unitary operators:"Y "Y , antiunitary operators are bounded:;
positive operators0 0 0

orthogonal projectionoperators:0 0 0 .

=A =4 =4 -4 -4 4

For normal operators hold:

66 66 oh|Oob | = = | ©)
0 €0 0 @)
4 e 00 (5)
66 606 dRIG o6 4 (6)

3.2.6.4 Spectral theorem
For every compact se#djoint operator'Yon a real, complex or quaternionic Hilbert spacehere
exists arorthonormal basi®f n consisting of eigenvectors 6f More specifically, the orthogonal
complement of the kernel (null space) &admits, either a finite orthonormaldsis of eigenvectors
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of "Y or acountable infiniteorthonormal basis of eigenvectors of with corresponding eigenvalues
_ O a,suchthat. © 1 Because is separablete set of eigenvectors 6¥can be extended
with a base of the kernel to form a complete orthonormal base of

If "Yis compact on an infinite dimensiondllbert space1, then”Yis not invertible, hence Y, the
spectrum of'Y always contains. The spectral theorem shows that Y consists of the eigenvalues

of "Y and offt (if rtis not already an eigenvalue). The setY is a compact subset of the real
line, and the eigenvalues are densg ifiY.

A normal operator has a set of eigenvectors that spans the whole Hilbert gpace

In quaternionic Hilberspace a normal operatohas quaternions as eigenvalues.

The set of eigenvalues of a normal operator is NOT compact. This is becsussparable.
Therefore, the set of eigenvectors is countable. Consequently, the set of eigenvalues is countable.
Further,in genera) the eigenspace of normal operators has no finite diameter.

A continuous bounded linear operator enhas a compact eanspace. The set of eigenvalues has a
closure and it has a finite diameter.

3.2.6.5 Eigenspace
The set of eigenvaluegj of the operator0 form the eigenspace af .

3.2.6.6 Eigenvectors and eigenvalues
For the eigenvectog)Obf normal operatord holds

Hno N0 NG (1)
M0 s Mns Nl 2)
sou 0RO o@d @0 $®  AD )

The eigenvalues &'-on normal operator are 2ons For Hilberspacesthe eigenvalues are
restricted to elements of a division ring.

(4)
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Thel are selfadjoint operators
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3.2.6.7 Unitary operators
For unitary operators holds:

'rY 'rY ( 1)

Thus

YY YY O (2)

QpposeY O 6 whereYis unitary and) is compact. The equatiof@)andé °Y "‘Ghow
that 6 is normal. The spectrum 6f containsr, and possibly, a fité set or a sequence tending 1o
Since’Y 'O 6, the spectrum ofYis obtained by shifting the spectrum dfby p.

The unitary transform can be expressed as:

Y Qo T (3)

o T (4)

is Hermitian. The constaffrefers to the granularity of the eigenspace.
Unitary operators have eigenvalues that are located in the unity sphere of'tha<field.

The eigenvalues have the form:

6 Qo T (5)

« is real.is a unit length imaginary number ifi-@n space. It represents a direction.
6 spans a sphere inn space. For constarito spans a circle in a complex subspace.

3.2.6.7.1 Polar decomposition
Normal operatorg) can be split into a real operatdrand a uitary operator'yY. "Yand have the

same set of eigenvectors as

(1)

©|

0 AAEY 0°Y Y0 (")'Qd)r‘i; Qwn

is a positive normal operator.
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3.2.6.8 Ladder operator
3.2.6.8.1 General formulation

Suppose that two operatabsand( have the commutation relation:
1 AR (1)

for some scala® If & Os an eigenstate dj with eigenvalue equation,
90 gG 2)
then the operator® acts ong Gn such a way as to shift the eigenvaluedby

O ©E0 sOO O ¢0 sdb  ®EO (3)
W60 HEdh WEQ e wEdE o

In other words, i£ Os an eigenstate aj with eigenvalug then 0¢ Os an eigenstate aj with
eigenvalug

The operatois araising operatoffor U if Gis real and positive, andlewering operatorfor 0 if Qis
real and negative.

If O is a Hermitian operator, thesmust be real and the Hermitian adjointobbeys the
commutation relation:

Oh® Ad 4)
If dis a lowering operator fob then s a raising operator fa§ and viceversa.

3.2.7 Unit sphere o
Theket vectors i1 that have their norm equal to one fortogetherthe unit sphereQ of u.

The orthonormal bse vectors are all member of the unit sphere.

3.2.8 Braket infour-dimensional space
The Braket formulation can also be used in transformations of ther-dimensionakurved spaces.

The bradGis then a covariant vector and the k§@iis a contravariant vector. The inner product
acts as a metric.

i QW 1)
The effect of a linear transformationis then given by

(0% 0 2
The effect of the transpose transformati@n is then given by
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For a unitary transformatiofivholds:

YO R (Y 0D &6 FD & KD 4)

Y'Y SFD 5)

@D o @ f@n @ an R & 'E (6)
Notice that

nn nn nn HdhO n (7
3.2.9 Closure

The closure ofi means that converging rows of vectors converge to a vectar. of

In general converging rows of eigenvalues®fo not converge to an eigenvalue @f
Thus, the set of eigenvaluesDfis open.

At best the density of the coverage of the set of eigenvalues is comparable with the Sairsf that
have rational numbers as coordinate values.

With other words, comared to the set of real numbers the eigenvalue spectrur bfas holes.

The set of eigenvalues of operatbrincludesrt This means thal does not have an inverse.

The rigged Hilbert space can offer a solution, but then the direct relation with guam logic is
lost.

3.2.10 Canonical conjugate operator P
The existence of a canonical conjugate represents a stronger requirement on the continuity of the
eigenvalues of canonical eigenvalues.

0 has eigenvectorss)iO and eigenvaluey .
0 has eigenvectorssiO and eigenvalues .

For each eigenvecta|Obf O we define an eigenvectag)OGand eigenvalueg of 0 such that:

Ny

NNO NNO Qoih AT )
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o ¥¢* isascaling factodg)Os a quaternioniiis a unit length imaginary quaterniofy. and
R are quaternionic (eigen)values correspondingri@ ¢ O

3.2.11 Displacement generators
The \arianceof the scalar product gives:

1S A @Nd A (1)
0190 nanon (@)

In the rigged Hilbert space, differentiation can replace the variance.

Partial differentiation of the functiodig|Qyives:

3)

 ahiC 4)
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4 Gelfand triple

The separable Hilbert space only supports countable orthonormal bases and countable eigenspaces.
The rigged Hilbert space that belongs toan infinite dimensional separable Hilbert spaces a
Gelfand triple. It supports heoountable orthonormal basesd continuum eigenspaces.

A riggedHilbert space is a paimh  with n a Hilbert space, a dense subspace, such thds given a
topological vectospacestructure for which theclusion mag is continuous

Identifyingu with its dual space 4, the adjoint td is the map

ap wdo d (1)

The duality pairing between and 9 has to be compatible with the inng@roduct onu, in the sense
that:

oo oh |, )

whenevero®  Owunandovu u O

The specific triple Oun O is often named after the mathematiciarael Gelfanil

Note that even though is isomorphic to if is a Hilbert space in its own right, this
isomorphism iglifferent fromthe composition of the inclusiofith its adjoint’Q

g Ou un O 3)

4.1 Understanding the Gelfand triple

The Gelfand triple of a real separable Hilbert space can be understood via the enumeration model of
the real separable Hilbert space. This enumeration is obtained by taking the set of eigenvectors of a
normal operator that has rational numbers as its eig@ines. Let the smallest enumeration value of

the rational enumerators approach zero. Even when zero is reached, then still the set of enumerators
is countable. Now add all limits of converging rows of rational enumerators to the enumeration set.
After this operation, the enumeration set has become a continuum and has the same cardinality as
the set of the real numbers. This operation converts the Hilbert spaco its Gelfand triple and

it converts the normal operator in a new operator that has thalreumbers as its eigenspace. It

means that the orthonormal base of the Gelfand triple that is formed by the eigenvectors of the new
normal operator has the cardinality of the real numbers. It also means that linear operators in this
Gelfand triple have genspaces that are continuums and have the cardinality of the real nufbers

The same reasoning holds for complex number based Hilbert spaces and quaternionic Hilbert spaces
and their respective Gelfand triples.

1 This story also applies to the complex and the quaternionic Hilbert spaces and their Gelfand
triples.
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A similar insight can be obtained via tteversebra-ket method. Thecontinuous function F(g) can
relate a continuum parameter space {q} to a closed gD of Hilbert vectors that form an
orthonormal base of the rigged Hilbert space In this way, a normal operator F is defined via:

GgiC  GA& f Goan @

The relation between the infinite dimensional separable Hilbert space and itsewarable
companion follows from:

) ) ) ) . 2
g GN&N NI LN@&n NIOQn

This can be interpreted by the view that teeparable Hilbert space is embedded within its hon
separable companion.

Formula (2) also reveals how summation of §r|'sis related to integration of corresponding
continuums{q}.

If function&is mostly continuous, thethe formulamust sum over disjoint discrepaparameter
spaces.

Rl G @ oo 0 GH@ A Ao ®
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5 Quaternionic and Maxwell field equations

In this section, we will copare two sets of differential equations. Both sets use pure space as part of
the parameter space.

1 Quaternionic differential equations
0 These equations use progressionoa® of its parameters
1 Maxwell based differential equations
0 These equations use quateomic distance as one of its parameters.

In this chapter, we will use a switth p that selects between two different sets of differential
calculus. One set concerns low order quaternionic differential calculus. The other set concerns
Maxwell based differential calculus. The switch will be used to highlight the great similarity and the
significant differences between these sets.

By introducing new symbots andA we will turn the quaternionic differential equations into
Maxweltlike quaternionic differential equations. We introduced a simple switch p that apart
from the difference between the parameter spaces, will turn one set of equations into the other set.

Maxwell based differential calculus splits quaternionic functions into a scalar function and a vector
function. Instead of the quaternionic blan n the Maxwell based equations use the scalar
operatorn  — and the vector nabla as separate operators. Maxwell equations use a switch

that controls the structure of a gauge equation.

L. amo @
T O
For Maxwell based diffential calculus is pandli  —. The switch value is p.
For quaternionic differential calculus| pandn  —. The switch value is p.

In thebookEMFT, the scalar fieldis taken as a gauge with
| p; Lorentz gauge
| 1, Coulombgauge
| p; Kirchhoff gauge.

We will use the definition of a scalar field

o
2‘(
Q~

K o« 0RO %o . 2

In Maxwell based differential calculus the scalar field ignored or it is taken equal to zero. As will
be shown, zeroing is not necessary for the derivation of the Maxwell based wave equation [14].
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Maxwell equations split the considerdgnctions irio scalar functions and vector functions. The
Maxwell differential operators are also split andnsequentlythey cannot be teated as multiplying
operators. We keep them together with curly brackets.

%0  %oh nh e f 3
% N oo { AlWO 4)
} ny Je Iow (5)

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra Maxwell
equations. Choice p conforms to the Lorenz gauge. We define extra symboblndA for
parts of the first order partial differential equation.

AK Ny e (6)
n o4 NNy N e ()
amMo nawd ahq@ (8)
NKJ @ ©)

These definitions imply:

oM OK 1, this equation not correct in quaternionic differential (10)
calculus, but it is a postulate in Maxwell equations.

n oA JoA (11
MO m (12
J A JalvO ah@ (13)
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Also, the following two equations are not genuine Maxwell equations, but they relate to the gauge
equation.

N% 11« t1aWO (14
J% N oJe tsammWO N e t 4 s v t ARG (15)
- n t 0RO - i - h R %o 6o (16)
- 11 f0hO N % t O6MO 17)
i nn t 0ohOw J% 4 t 4P (18)

- % t R O (19)

- n % t 0 Fﬂc’y (20)

i J %o vyt (21

} J% A4t P (22)

o t 4 ) v t Oh@ nn oy noye t o4 oy w
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Equation (21) reveals why Maxwell based differential equations use the gatagleer than accept
equation (4) as a genuine Maxwell equation.

"t Oh@ - n1no. (23)
z t 6h@ + n vy (24)

Thus, a simple change of a parameter and the control switdlirn quaternionic differential

equations into equivalent Maxwell differential equations and vice versa. This makes clear that both
sets represent two different viewan the sane subject, which is a field that can be stored in the
eigenspace of an operator that resides in the Gelfand triple.

Still, the comparison shows an anomaly in equation (21) that represents a significant difference
between the two sets of differential equatis thatgoesbeyond the difference between the

parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue comes
down to the conclusion that thiMaxwelltbasedequations do not lead via the coupling of two first

order quaternionic partial differential equations to a regular second order partial quaternionic
differential equation, buinstead the wave equation represents a coupling between two solutions of
different first order biguaternionic differential equations thase different parameter spaces. In the

Dirac equation, these solutions represent either particle behavior or antiparticle behavior.
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6 Genuine Maxwell wave equations

The scalar part of the genuine Maxwell based differential equals zero. The Lorenogaugsses
this.

The genuine Maxwell differential equations deliver different inhomogeneous wave equations:

4 K o« e (1)

NKJ ¥ )

The following definitions follow from the definitions éfand .

4 K ¥ Je )
amMOK a0 aha @)
NK oA ()
a M OK ©6)
J AKJawO ah@ (1

The Lorenz gaugeeans:

v amwO m (8)

The genuine Maxwell based wave equations are:

(o)]
o ¢
Q
O
z(
Q

©)

(o)]
2 ¢
?
C
2
=
A

(10)
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7 Dirac equation

7.1 The Dirac equation in original format
In its originaform, the Dirac equation is a complex equation that uses spinors, matrices, and partial
derivatives.

I — we want to useoperators n h

Instead of theusual —

The subscripg indicates the scalar parBold facdandicates the vector part.

The operator relates to the applied parameter space. This means that the parameter space is also
configured of combination® @ he of a scalaty and a vectom. Alsothe functionsQ "t}
can be split in scalar functiof@and vector functionffj

The local parameted @ represents the scalar part of the applied parameter space.

Dirac was searching for a split of the Ki&€ardon equation into two first ordedifferential
equations.

rarQr QrQ P @)
re teo tTw Ta

nn 6hOQ Q a’Q ()
Here nn ohha GKS RQ!f SYOSNI 2LISNI (2N

Dirac used a combination of matrices and spinors to reach this result. He applied then&aicks
to simulate the behavior of vector functions under differentiation.

Theunity matrix‘Gand thePaulimatrices, h, h, are giverby [15}

ho, (©)

o P T \
m p T

For one of the potential orderings of the geanionic number system, the Pauli matrices together
with the unity matrixX@elate to the quaternionic base vectops:; andZ

M, (4)

”n " n N c \IH r]" ” n " c \I ” r]" ” ”n "N c \-I ” (5)
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The different ordering possibilities of the quaternionic number system correspond to different
symmetry flavors. Half of these possibilities offer a right handed external vector product. The other
half offer aleft-handed external vector product.

We will regularly use:

olav e S M W op (7
With

n N tS)
follow

n. NQ ©)

Ry \J (10)

72 5ANF OQa | LILINE I OK
TheoriginalDiracequation uses 4x4 matricesk Y R i ® ®T 8

» and! arematricesthat implement the quaternion arithmetic behavior includitige possible
symmetryflavorsof quaternionic number systems and continuums.

T, ()
, T
f p T 2
T p
It O ©)
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The interpretation of the Pauli matrices asepresentationof a special kind of angular momentum
has led to thehalf-integereigenvalue of the corresponding spin operator.

5ANI OQa aStSOlAz2y fSIFRa G2
N O Gd T (4)

* is a fourcomponent spinor.

Which splits into
N OOhe GG T (5)
and
N he & e I (6)
e ande are spinor components. Thus, the original Dirac equation splits into:
;NG T ()
;NG om ®)

This split does not lead easily to a second order partial differential equation that looks liKéethe
Gordonequation.

7.3 Relativistic formulation
LyadSIFER 2F 5ANIOQa& 2NAIAYLFE F2NNAf6.0A2y S dzadz f @&

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different
choice influences t form of the equations that result for the two spinor components.

Co N pitio @

2
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The matriX anti-commutes with all other gamma matrices.

{ SOSNIf RAFFSNByld asSida 2F 3IFLYYF YFIONROSa | NB LJRa
of the form

P adwe T ()

R | ®
p m !l noo@hd 4 p oo ©
m pro WO @ Vot p°
gyp T_ nJ Yp m ° - (10)
m pr1o J mM omMp °
a (11
48 oo
T a (12
48 N n

Alsq this split does not easily lead to a second order partial differential equation that looks like the
KleinGordonequation.

7.4 A betterchoice
Another interpretation of the Dirac approach repla¢eswith| [17]:

! T T a @

2
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3)

T[AFUO’ dp
T Mo TT

T
p I

This invites splitting of the forwomponent spinor equation into two equations for the two
components andl of the spinor

W R @ %r (4)
un e vaah @ %( ()
\ JT %r (6)
NI %r @)

This looks far more promising. We can insert the right part of the first equation into the left part of

the second equation.

\ SN ST LT ahO r (8)
O(\l J
5 [ [

L 9
ahO r —T ©)
\ JoN JT ST ahO r (10)

a\l J
5 [ [
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Q\

This is what Dirac wanted to achieve. The two first order differential equationgleinto a second
order differertial equation that is equivalent to kleinrGordonequation. The homogeneous version
of this second order partial differential equation is a wave equation and offers solutions that are
waves.

The nabla operator acts differently onto the two component spifo and [

7.5 The quaternionionablaand the Dirac nabla
The modified Pauli matrices together with a 2x2 identity matrix implement the equivalent of a
guaternionic number system with a selected symmetry flavor.

0 21 gmn T\rl imn np ﬁm” AV 1 @)

The modified Pauli matrices together with ti@matrix implements another structure, which is not a
version of a quaternionic number system.

\Y m p Nt 2
M R o M

Both the quaternionicablaand the Dirac nabla implement a way to let these differential operators
act as multipliers.

The guaternionic nabla is defined as
;0 Q voah O (3)
’ ! (4)

For scalar functions and for vector funct®hold:

(o)]
¢
Q

()

The Dirac nabla is defined as
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7.5.1 Prove
We use

This results in
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N B BN SAVEN | (10)

5o ;0 (11

i ond
7.5.2 Discussion
For| p the equations
) “"Q ahoQ 1)
B B ah Ol @
work for both parts of a quaternionic functiof "Q I
For| \l the equations
T TR0 ahoQ ©)
A A ah Ol 4)

work separately foscalarfunction"Qand vector functi0|l The right sides of the equations work for
guaternionic functions. Thus

Q. Q ahoOQ (5)
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is a valid equation for quaternionic functioif@&and"Q
¢ Kdzda = G KS p&dawr £ SY o6 S NIl @s a valid quaternionic operator.

The nabla operatoreeflectthe structure of the parameter space of the functions on which they

work. Thus, the quaternionic nabla operator reflects a quaternionic number system. The Dirac nabla
operator reflects the structure of the parameters of the two component spinors thatdiguthe

modified Dirac equation.

Between the two spinor components andf , the scalar part of the parameter space appears to
change sign with respect to the vector part.

Applied to a quaternionic function, the quaternionic nabla results agairgimagernionicfunction.

%o %o IONN |  afp e BB (6)

Applied to a quaternionic function, the Dirac nabla results limgaaternionicfunction.

\ o vo afg e v R )

Neither the Dirac nabla nor its conjugat® “ delivers quaternionic functions from quaternionic
functions. They are not proper quaternionic operators.

ThusG KS RQ! f SYOSNI 2LISNY 02N Olyyz23G 06S aLit Ad Ayda2
onto quaternionic functions.

In contrastthe operators * , and ° are all three proper quaternionic operators.

7.6 Quaternionic format of Dirac equation
The initial goal of Dirac was to split tKéeinGordonequation into two first order differential
equations. He tried to achieve this via the combination of matrices and spinors. This leads to a result
that does not lead to an actual second order differential equation,isiead it leads to two
different first order differential equations for two different spinors that can be coupled into a second
order partial differential equation that looks likekdeinGordonequation. The homogeneous version
of the KleinGordonequation is a wave equation. However, tleguation misses an essential right
part of the KleinGordon equation.

Quaternionic differential calculus supports first order differential equations that in a natural way lead
to a second order partial differential equation that differs significantyrfra wave equation.

The closest quaternionic equivalents of the first order Dirac equations for the electron and the
positron are:
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2y © e ahOe & o )

A similar equation exists for spherical coordinates.

These second order equatioase not waveequations. Their set of solutions does not include waves.

7.7 Interpretation of the Dirac equation
The original Dirac equation can be split into two equations. One of them describes the behavior of
the electron. The other equation describes the behavior ofgihsitron

The positron is the anparticle of the electron. These particles feature the sass mass, but other
characteristics such as their electric charge differ in signpdbironcan be interpreted as an
electron that moves back in time. Sometimes the electron is interpreted as a hole in a sea of
positrons These interpretations indicatthat the functions that describe these patrticles feature
different parameter spaces that differ in the sign of the scalar part.

7.7.1 Particle fields
The fields that characterize different types of particles can be related to parameter spaces that
belong to diferent versions of the quaternionic number system. These fields are coupled to an
embedding field on which the particles and their private parameter spaces float.

The reversdra-ket method shows how fieldsan on the one handpe coupled to eigenspacesd
eigenvectors of operators which reside in quaternionic4separable Hilbert spaces and on the
other hand can be coupled to pairs of parameter spaces and quaternionic functions. Quaternionic
functions can be split into scalar functions and vector fioms. In a quaternionic Hilbedpace

several different natural parameter spaces can coexist. Natural parameter spaces are formed by
versions of the quaternionic number system. These versions differ in the way that these number
systems are ordered.

The aiginal Dirac equations might represent this coupling between the particle field and the
embedding field.
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7.8 Alternatives

7.8.1 Minkowski parameter space
In quaternionic differentiatalculusthe local quaternionic distance can represent a scalar that is
independent of the direction of progression. It corresponds to the notion of coordinate tinis
means that a small coordinate time st¥pequals the sum of a small proper time stépand a
small pure space steye. In quaternionic forrat, thestep ¥t isa real number. The space st¥p is
an imaginary quaternionic number. The original Dirac equation does not pay attention to the
difference between coordinate time and proper time, but the quaternionic presentation of these
equations show that a progressi independent scalar can be useful as the scalar part of the
parameter spaceThis holds especially for solutions of the homogeneous wave equation.

In thisway, coordinate time is a function of proper timieand distance in pure spag¥es

Y Yts Fes

Togetheroand e deliver a spacetime model that has a Minkowski signature.

Yts Y& Yes
7.8.2 Other natural parameter spaces
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each
20 KSNRA& | dzF G S Ny AngayiAidple@entg Badxibic doBjubationKA® adapted
conjugation matrix can apply anisotropic conjugation. This concerrjagations in which only one
or two dimensions get a reverse ordering. In that case the equations handle the dynamic behavior of

anisotropic particles such as quarks. Quarks correspond to solutions that have anisotropic parameter
spaces. Also for these quarexist advanced particle solutions and retarded antiparticle solutions.
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8 Lorentz transformation

Differences between positions in subsequent members of the sequerstataf status quos of the
Hilbert Book Modetan be intepreted as displacement3hedisplacement is a coordinate
transformation. For the properties of thieansformation it does not matter where the displacement
starts or in which direction it is taken.

To simplify the description, we will use the naiigbert Book pageor sheetfor a static status quo of
the Hilbert Book model.

8.1 Lorentz transformation from group postulates
The same holds fatisplacements that concesequence members that are located further apart.
The corresponding displacements form a group. The displaceimarfunction of both the position
and the sequence number. The displacem@mit® & fd can be interpreted as eoordinate
transformation and can be described by a matkHereois coordinate time.

o I 1 0 (1)

The matrix elements are iatrelated. When the displacement concerns a uniform movement, the
interrelations of the matrix elements become a function of the spgedereu is the speed
measured as displacement per progression inter/ak group propertiefogether with the
isomoiphism of spacéix the interrelations.

o~ P Qbo )

L b p «q

If 'Qis positive, then there may be transformations wih | p which transform progression into a
spatial coordinate and vice versa. This is considered unphysical. The Hilbert book model also supports
that vision.

The conditionQ  Ttcorresponds to &alilean transformation

3)

The conditionQ  Ttcorresponds to a Lorentz transformation. We can'&bt P, wheredis an
invariant speed that corresponds to the maximunuvof

oTh vTO P Ug"b 0 (4)
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The Lorentz transformation correspontdsthe situation in which a maximunpsed occurs.

Since in each progression step photons step with azen space step and both step sizes are fixed,
the speed of the photon at quantum scale is fixed. No other particle goes faster, sonmote a
maximum speed occurs. With other words when sequence members at different sequence number
are compared, then Lorentz transformations can describe the corresponding displacements.

Lorentz transformations introduce the phenomena that go together withtiety, such asength
contraction, time dilatation andrelativity of simultaneitythat occur when twdnertial reference
framesare considered.

Yo Yo Yaordh T p 0 Fo (5)
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The termYa 0F® introduces time dilatationlf Yo  ttthen depending om and Y& the time
differenceYo is nonzero.

Progression, interpreted as proper time, is a Lorentz invariant scalar. Therefore, the quaternionic first
order partial differential equations arLorentz covariant. The same holds for the quaternionic
second order partial differential equations.

8.2 The hyperbolic transformation
In afield, vibrations move with maximum speed. It means that
O W © 0o
This holds in all inertial frames. With other words, for fram@® and o hold:
® 0o ® ®Oo
The equality also holds for transformations in which discrete objects move with a uniform velocity

which is lower than cThisdefines a transformation that can be implemented by a hyperbolic
transformation:
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Parameter is the rapidity, also called the relativistic velocity. It only has the characteristics of a
velocity when] is very small.

Qi Qt Q6 Qo Qo Qa
Since thufuhd is the Euclidean structure of the quaternions, in whiclbplays the roleof

guaternionic distance, the world of the observers is a spacetime world with a Minkowski
structure.

9 Tensor differential calculus
We restrict to 3+1 D parameter spaces.

Parameter spaces can differ in the way they are ordered and in the way the scalezlptes to the
spatial part.

Fields are functions that have values, which are independent of the selected parameter space. Fields
exist in scalar fields, vector fields and combined scalar and vector fields.

Combined fields exist as continuum eigenspaifasormal operators that reside in quaternionic ron
separable Hilbert spaces. These combined fields can be represented by quaternionic functions of
guaternionic parameter spaces. However, the same field can also be interpreted as the eigenspaces
of the Hemitian and antiHermitian parts of the normal operator. The quaternionic parameter space
can be represented by a normal quaternionic reference operator that features a flat continuum
eigenspace. This reference operator carspét ina Hermitian and an @airHermitian part.

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number
system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16
versions that differ in their Cartesian orderingspherical ordering is pursued, then for each

Cartesian start orderings two extra orderings are possible. All these choices correspond to different
parameter spaces.

Further, it is possible to select a scalar part of the parameter space that is a agattioh of the
guaternionic scalar part and the quaternionic vector part. For example, it is possible to use
guaternionic distance as the scalar part of the new parameter space.

Tensor differential calculus relates components of differentials with cornedipg parameter
spaces.

Components of differentials are terms of the corresponding differential equation. These terms can be
split in scalar functions and in vector functions. Tensor differential calculus treats scalar functions
different from vector fundbns.

Quaternionic fields are special because the differential operators of their defining functions can be
treated as multipliers.

9.1 The metric tensor
¢tKS YSGNRO (Sya2N) RSGSNX¥AySa (GKS t20Ft aRA&GE YOS
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The consequences of coordinate transformatiéhert ‘Q & define the elementsQ as
QO )
0
‘
9.2 Geodesic equation

The geodesic equation describes the situation of a-actelerated object. In terms of proper time
this means:

T w o Qoo @)
Tt ' QtTQT

In terms of coordinate time this means:

T ® o0 o o Qo ' 2
10 ' QoQo Qo QoQo

9.2.1 Derivation:
We start with the double differential. Let us investigate adiion twthat has a parameter space
existing of scalat and a threedimensional vecto® & ho fio . The functiond represents three
dimensional curved space. The geodesic conditions are:

T & . ()
5 TIL pklo
Tt
First, we derive the firstrder differential.
16 @)
‘Q&‘) _"Ql)
Tw

We can use theummation convention for subscripts and superscripts. This avoids the requirement
for summation symbols.

XD T w (3)
Ot T Qf
R~ I B T “)
Q(}) —‘Q(}) Q}) < < QA)

Tw Tl w

Now we obtained the double fierential equation.
Q0 TOQw T O W 5)
— —_———— Tt
Qf Tow QF Twlw Qtat

The geodesic requirement results in:

T Qw T o W w (6)
Tw O Twlw QTQfT

If we use summation signs:
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We apply the fact:
Tw!T® :
TOT®
This results into:
Tw TOT®
Without summation signs:
i~ s Tw T ®
Qo W K ———
TwoTwlw
Qw X o
(9:) QtQf
Qw Tw 1T ® X o
(9:) TOTWI QtQf
Qw Tw T X ' Tw T ® X ' '
(9] TOTOTO® Q0Q0 TAOTwWTw QOQOQO
9.3 Toolbox
Coordinate transformations:
oy T : T‘ T‘ v
TwTo!l
The Christoffel symbol plays an important role:
0 0 0
0 I : ) ‘ ) ‘
Tw Tw Tw
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Covariant derivative | and partial derivativk ) of salars

T ®)
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Covariant derivative @ and partial derivativé @ of vectors
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A A 6— is Jacobian (13)
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Tensor

Y  wframe

Y  wframe

y
TwTo
ToTw

. ToTow

W —— W
) Tw

W W 0w w Y

If a tensor is zero in one frame, then it is zero in all frames.
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