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Abstract 

The Hilbert book test model is a purely mathematical test model that starts from a solid foundation 
from which the whole model can be derived by using trustworthy mathematical methods. The 
foundation restricts its extension. In addition, what is known about physical reality is used as a 
guidance, but the model is not claimed to be a proper reflection of physical reality.  

The mathematical toolkit still contains holes. These holes will be encountered during the 
development of the model and suggestions are made how those gaps can be filled. Some new 
insights are obtained and some new mathematical methods are introduced. The selected foundation 
is interpreted as part of a recipe for modular construction and that recipe is applied throughout the 
development of the model. This development is an ongoing project.  

The main law of physics appears to be a commandment: ά¢Ƙƻǳ ǎƘŀƭǘ ŎƻƴǎǘǊǳŎǘ ƛƴ ŀ ƳƻŘǳƭŀǊ ǿŀȅέΦ 
The paper reveals the possible origin of several physical concepts. This paper shows that it is possible 
to discover a mathematical structure that is suitable as an extensible foundation. However, without 
adding extra mechanisms that ensure dynamic coherence, the structure does not provide the full 
functionality of reality. These extra mechanisms apply stochastic processes, which generate the 
locations of the elementary modules that populate the model. 

All discrete items in the universe are configured from dynamic geometric locations. These items are 
stored in a repository that covers a history part, the current static status quo, and a future part. The 
elementary modules float over the static framework of the repository. Dedicated mechanisms ensure 
the coherent behavior of these elementary modules. Fields exist that describe these elementary 
modules. An encapsulating repository supports these fields. Both repositories are formed by 
quaternionic Hilbert spaces. 

¢ƘŜ ƳƻŘŜƭ ƻŦŦŜǊǎ ǘǿƻ ƛƴǘŜǊŜǎǘƛƴƎ ǾƛŜǿǎΦ ¢ƘŜ ŦƛǊǎǘ ǾƛŜǿ ƛǎ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ŀƴŘ ƻŦŦŜǊǎ ŦǊŜŜ ŀŎŎŜǎǎ ǘƻ 
all historic, current, and future dynamic geometric data that are stored in the quaternion-based 
eigenspaces of operators. Quaternions store the data in a Euclidean space-progression structure. The 
ǎŜŎƻƴŘ ǾƛŜǿ ƛǎ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΦ ¢ƘŜ ƻōǎŜǊǾŜǊǎ ŀǊŜ ƳƻŘǳƭŜǎ ǘƘŀǘ ǘǊŀǾŜƭ ǿƛǘƘ ǘƘŜ ǾŀƴŜΣ ǿƘƛch 
represents the static status quo. The observers only perceive information that comes from the past 
and that is carried by the field that embeds them. ThŜ ƻōǎŜǊǾŜǊΩǎ view sees the model as a spacetime 
based structure that stores its dynamic geometric data with a Minkowski signature. 
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If you think, then think twice. 

In any case, think frankly. 

1 Foreword by the author 
I am born with a deep curiosity about my living environment. When I became aware of this, I was 

astonished why this environment appeared to be so complicated and at the same time, it behaved in 

such a coherent way. In my childhood, I had no clue. Later some unique experiences offered me 

some indications. After my retirement, I started in 2009 a personal research project to discover some 

of the clues. 

The άHilbert Book Modelέ is the name of my personal research project. My interest in the structure 

and phenomena of physical reality started in the third year of my physics study when I was first 

confronted with how quantum mechanics was configured. I was quite astonished by the fact that its 

methodology differed fundamentally from the way that classical mechanics was done. So, I asked my 

very wise lecturer on what origin this difference is based. His answer was that the superposition 

principle caused this difference. I was not very happy with this answer because the superposition 

principle was indeed part of the methodology of quantum mechanics, but in those days, I did not 

comprehend how that could present the main cause of the difference between the two 

methodologies. I decided to dive into literature and after some search, I encountered the booklet of 

Peter Mittelsteadt, άtƘƛƭƻǎƻǇƘƛǎŎƘŜ Probleme der modernen Physikέ όмфсоύΦ ¢Ƙƛǎ ōƻƻƪƭŜǘ ŎƻƴǘŀƛƴŜŘ ŀ 

chapter about quantum logic and that appeared to me to contain a more appropriate answer.  

Garrett Birkhoff and John von Neumann published in 1936 a paper that published their discovery of 

ǿƘŀǘ ǘƘŜȅ ŎŀƭƭŜŘ άǉǳŀƴǘǳƳ ƭƻƎƛŎέ. Quantum logic is since then in mathematical terminology known 

as an orthomodular lattice. The relational structure of this lattice is to a large extent quite like the 

ǊŜƭŀǘƛƻƴŀƭ ǎǘǊǳŎǘǳǊŜ ƻŦ ŎƭŀǎǎƛŎŀƭ ƭƻƎƛŎΦ ¢Ƙŀǘ ƛǎ ǿƘȅ ǘƘŜ Řǳƻ ƎŀǾŜ ǘƘŜƛǊ ŘƛǎŎƻǾŜǊȅ ǘƘŜ ƴŀƳŜ άǉǳŀƴǘǳƳ 

ƭƻƎƛŎέΦ This was an unlucky choice because no good reason exists to consider the orthomodular 

lattice as a system of logical propositions. In the same paper, the duo indicated that the set of closed 

subspaces of a separable Hilbert space has exactly the relational structure of an orthomodular 

lattice. John von Neumann long doubted between Hilbert spaces and projective geometries. At the 

end, he selected Hilbert spaces as the best platform for developing quantum physical theories. That 

appears to be the reason why quantum physicists prefer Hilbert spaces as a realm in which they do 

their modeling of quantum physical systems. 

Another habit of quantum physicists also intrigued me. My lecturer thought me that all observable 

quantum physical quantities are eigenvalues of Hermitian operators. Hermitian operators feature 

real eigenvalues. When I looked around I saw a world that had a structure that was configured from a 

three-dimensional spatial domain and a one-dimensional time domain. In the quantum physics of 

that time, no operator represents the time domain and no operator was used to deliver the spatial 

domain in a compact fashion. After some trials, I discovered a four-dimensional number system that 

could provide an appropriate normal operator with an eigenspace that represented the full four-

dimensional representation of my living environment. At that moment, I had not yet heard from 

quaternions, but an assistant professor quickly told me about the discovery of Rowan Hamilton that 

happened more than a century earlier. Quaternions appear to be the number system of choice for 

offering the structure of physical reality its powerful abilities. Quaternions were already mentioned 

in the introductory paper of Birkhoff and von Neumann. Much later Maria Pia Soler offered a hard 

prove that Hilbert spaces can only cope with members of a division ring. Quaternions form the most 

extensive division ring. To my astonishment, I quickly discovered that physicists preferred a 

spacetime structure that features a Minkowski signature instead of the Euclidean signature of the 
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quaternions. The devised Hilbert Book Model shows that in physical reality, both structures appear in 

parallel. Observers only see the spacetime structure. 

My university, the TUE, targeted applied physics, and there was not much time nor support for diving 

deep into the fundamentals of quantum physics. After my study, I started a career in high-tech 

industry where I joined the development of image intensifier devices. There followed my 

confrontation with optics and with the actual behavior of elementary particles. See: http://www.e -

physics.eu/#_What_image_intensifiers reveal. 

Only after my retirement, I got sufficient time to dive deep into the foundations of physical reality. In 

2009 after the recovery of a severe disease, I started my personal research project that in 2011 got 

ƛǘǎ ŎǳǊǊŜƴǘ ƴŀƳŜ άThe Hilbert Book ModelέΦ The author takes the freedom to upgrade the related 

papers at a steady rate. 

1.1 My papers 
¢Ƙƛǎ ǇŀǇŜǊ ǎǳŎŎŜŜŘǎ ά¢Ƙe Hilbert Book Tesǘ aƻŘŜƭέΦ I use vixra.org as my personal e-print archive: 

http://vixra.org/author/j_a_j_van_leunen . Vixra provides full two-sided open access and has a 

flexible revision service, which I use extensively. In this way, it is possible to follow how my ideas 

evolved. I put preliminary papers on my website http://www.e -physics.eu . There my papers are 

available in .pdf and in .docx format. I do not request copyright on these documents.  

I try to avoid the burden of peer review publishing. The peer review publishing industry has turned 

into a complete chaos. Since no omniscient reviewers exist and most existing reviewers are biased, 

peer review publishing cannot realize its promise. Instead, I try to keep the quality of my papers at a 

high standard. Dutch is my native language. I use the language capabilities of the MS Word editor to 

keep the English text correct. 

The most recent versions of the authƻǊΩǎ ǇŀǇŜǊǎ ǿƛƭƭ ŀǇǇŜŀǊ ƻƴ Ƙƛǎ ǿŜōǎƛǘŜΦ aƻǎǘ ƻŦ ǘƘŜ ƻƭŘŜǊ ǇŀǇŜǊǎ 

are superseded by newer ones that got different names. Older papers started with the knowledge 

that was lectured in universities and or could be found in the literature. Newer papers also contain 

corrections and discoveries that are made by the author. 

Quite recently Microsoft introduced a new service. You can access it at http://www.docs.com . My 

personal link there is docs.com/hans-van-leunen. 

1.2 Text e-book 
άwŜǇƻǊǘ ƻŦ ά¢ƘŜ IƛƭōŜǊǘ .ƻƻƪ Model projectέ is aimed to be a comprehensive description of the 

project, which contains all items that cannot be easily found in the literature. Everybody is free to 

use or criticize its content. The author does not require copyrights. 

The author tries to derive everything from the selected foundation, but when necessary he accepts 

guidance from what he knows from the results of physical theories. In the first part of the paper, the 

story will be told with a minimum of symbols or formulas.  

In the second part, the results of the investigation are collected and reformulated by using symbols 

and formulas. This approach allows to deepen the investigation and offers a more precise 

formulation. 

The appendix contains subjects that are related to the project but are not easily found in the 

literature.  

http://www.e-physics.eu/#_What_image_intensifiers
http://www.e-physics.eu/#_What_image_intensifiers
http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/
http://www.docs.com/
http://www.docs.com/hans-van-leunen
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2 Motivation 
Some scientists start a research project that has as target to develop a theory of everything. This is 
an implausible enterprise because the target is far too complicated to be comprehended by a human 
being. In fact, what these scientists pursue is the discovery of a foundation, whose extension 
automatically leads to a theory that in principle can cover all aspects of physical reality. I never had 
the intention to develop a theory of everything. Instead, I am interested in the structure and the 
functioning of the lower levels of physical reality.  

I started a study in physics because I was interested in what destined my environment to be so 
complicated and yet controlled that environment such that what happens appears to be very well 
coordinated. The belief in a creator that settles everything seemed to me a far too simple solution. 
My environment must have a built-in principle that in one way or another installed the necessary 
coherence. That principle must, therefore, be incorporated in the foundation or in the lower levels of 
the structure of reality.  

If you think about it, then this foundation must be relatively simple. This means that this foundation 

can easily be comprehended by skilled scientists. The question now is how exactly this foundation is 

structured. A great chance exists that humans long ago discovered this structure. It is not necessary 

that they thought that this structure is the foundation of physical reality. They added this structure as 

a part to mathematics. Mathematics represents the library of self-consistent trustworthy exact 

human knowledge. Mathematicians support and maintain that library. Physicists apply that library. 

The challenge of the rediscovery of the founding structure is the fact that the 

extension of this structure to a more complicated structure must automatically 

restrict to a structure, which shows more features that can be recognized as 

features of physical reality.  

The simplest mathematical structures are sets and relational structures. Relational structures define 

what kind of relations between elements of a set are allowed. Relational structures exist in many 

forms. For example, the classical logic that we use to characterize a proper way of reasoning is, in 

fact, a relational structure. This logic describes what kind of statements are allowed and what 

relationships between these statements are tolerated. Sets that describe what kind of relationships 

between the elements of the set are tolerated are called lattices. 

The difficulty is not comprehending a suitable foundation. The difficulty is in finding a structure, 

whose extension is restricted such that it automatically leads to a base model, which has a similar 

structure and similar behavior as the lower levels of perceivable physical reality has. The most 

challenging requirement is that the foundation and its extensions must ensure the dynamic 

coherence of the developed model. 

If this is a proper reasoning, then a purely mathematical model can describe physical reality. 

History shows that the course of development of science does not always follow a logical route. The 

discoverers of the structure that act as a candidate for physical reality were searching for reasons 

why one of the known topological spaces could be used as a base for modeling quantum physical 

theories. They discovered that the set of closed subspaces of a separable Hilbert space has the 

relational structure of what they called quantum logic and what mathematicians later called an 

orthomodular lattice. 

This paper shows that it is possible to discover a mathematical structure that is suitable as an 

extensible foundation. However, without adding extra mechanisms that ensure dynamic coherence, 
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the structure does not provide the full functionality of reality. These extra mechanisms apply 

stochastic processes, which generate the geometric locations of elementary modules that populate 

the model. 

The author has long thought that the foundation and the lower levels of the structure of physical 

reality are not observable. However, recently the author concluded that an indication of these lower 

levels can be observed all over the universe. This indication is shown by the fact that all discrete 

objects in the universe are either modules or they represent modular systems. However, translating 

this indication into a mathematical structure requires deep insight in both modular construction and 

in mathematical structures. Here the author was helped with his experience in developing modular 

software generating systems. 

Besides of this, the generated model offers two interesting views. The first view offers access to all 

dynamic geometric data whether they belong to the past, to the present status quo, or to the future. 

I call that view the creator's view, but you can also call it the storage view. Besides of the creator's 

view, the model offers an observer's view. Observers are discrete objects that travel with the current 

static status quo They only get information from the past and that information is transferred to them 

by the fields that embed them. Relativity affects the view of observers.   
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3 Generating the base model 

3.1 Observation 
The foundation of physical reality must necessarily be very simple and therefore its structure must be 
easily comprehensible by skilled scientists. So, quite probably the structure was long ago discovered 
and added as a part to mathematics. Consequently, the best way to investigate the foundation of 
reality is to use mathematical test models. The rediscovery of this structure as a foundation of reality 
is a complicated task because extending this foundation must automatically lead to a higher level of 
the structure of physical reality that shows more features that can be recognized as features of 
physical reality. In addition, the lower levels of the structure of physical reality must leave some 
indications that are visible in many facets of the universe.  

Several of such indications exist. For example, the fact that all discrete items in the universe are 
either modules or they are modular systems is probably an indication of the foundation or of the 
lower levels of the structure of physical reality. Considering this observation as an indication requires 
the investigation of the peculiarities of modular design and modular construction. That analysis 
learns that relations between modules and relations that are relevant inside modules or modular 
systems play a major role. Especially the relations that determine that an object is a module or is part 
of a module are important. It is quite probable that the foundation of physical reality is a relational 
structure. A relational structure is a set in which the relations that can exist between the elements 
are restricted in a well-defined way.  

About eighty years ago, a relational structure was discovered, which was thought to play a significant 
role in the description of physical reality by physical theories. The discoverers of the relational 
structure caƭƭŜŘ ƛǘ άǉǳŀƴǘǳƳ ƭƻƎƛŎέΦ ¢ƘŜ ƳŀǘƘŜƳŀǘƛŎƛŀƴǎ ǳǎŜŘ ŀ ƳƻǊŜ ǘŜŎƘƴƛŎŀƭ ƴŀƳŜ ŀƴŘ ŎŀƭƭŜŘ ƛǘ 
άƻǊǘƘƻƳƻŘǳƭŀǊ ƭŀǘǘƛŎŜέΦ Lƴ ǘƘŜƛǊ ƛƴǘǊƻŘǳŎǘƻǊȅ paper, the discoverers Garrett Birkhoff and John von 
Neumann showed that the set of closed subspaces of the somewhat earlier discovered Hilbert space 
has exactly the relational structure of an orthomodular lattice. With other words, this Hilbert space is 
a realization of the orthomodular lattice. The question that arises now is whether this Hilbert space is 
also a realization of modules and modular systems. This question has a positive answer but the 
argumentation requires a deep dive into the concept of modularization and into advanced 
mathematics. In fact, the modules and modular systems form an atomic sub-lattice within the 
orthomodular lattice. The HBM interprets all modules and all modular systems as observers. 

More indications exist but in this paper, we first focus on this one. 

3.2 Task 
The base model must include a simple foundation from which a dynamic geometric universe can be 

derived by extending the selected foundation in a coherent and straightforward way. The toughest 

task is to find a foundation that puts sufficient restrictions to its own extension such that it becomes 

comprehensible why the resulting model shows the degree of coherence that we know from 

observing reality. The nice part of this task is that obviously, an important part of that foundation 

was discovered long ago. However, that part alone is not enough to ensure sufficient coherence. The 

foundation must be helped by mechanisms that ensure extra coherence. These mechanisms are not 

part of conventional physical theories. In this paper, we will try to get more information about these 

mechanisms. 
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4 Modular construction 
Diving deep into the fundamental structure of physical reality requires a deep dive into advanced 
mathematics. Usually, this goes together with formulas or other descriptions that are 
incomprehensible to most people. The nice thing about this situation is that the deepest foundation 
of reality must be rather simple and therefore it can be described in a simple way and without any 
formulas. For example, if the observed indication characterizes physical reality, then the most 
fundamental and most influential law of physical reality can be formulated in the form of a 
commandment:  

ά¢Ih¦ {I![¢ /hb{¢w¦/¢ Lb ! ah5¦[!w ²!¸έ 
 

This law is the direct or nearly direct consequence of the structure of the deepest foundation. That 

foundation restricts the types of relations that may play a role in physical reality. That structure does 

not yet contain numbers. Therefore, it does not yet contain notions such as location and time. 

This law is intentionally expressed in the form of a commandment. It is not possible to express this 

law in the form of a formula, such as ὑ ά ὥ or Ὁ  ά ὧ. At the lowest level, numbers that can 

be used as variables in formulas do not yet exist. The impact of the commandment is far more 

influential, than the impact of these famous formulas. 

Modular construction acts very economic with its resources and the law thus includes an important 

lesson:  

"DO NOT SPOIL RESOURCES!" 

4.1 Modular design 
Understanding that the above statements indeed concern the deepest foundation of physics requires 
deep mathematical insight. Alternatively, it requests belief from those that cannot (yet) understand 
this methodology. On the other hand, intuition quickly leads to trust and acceptance that the above 
major law must rule our existence! Modular design has the intention to keep the relational structure 
of the target system as simple as is possible. 
 
Modular design is a complicated concept. Successful modular construction involves the 
standardization of module types and it involves the encapsulation of modules such that internal 
relations are hidden from the outside. Systems become complicated when many relations and many 
types of relations exist inside that system, which must be reckoned when the system is analyzed, 
configured, operated, or changed. The reduction in relational complexity plays a significant role 
during system configuration. The ability to configure modular systems relies heavily on the ability to 
couple modules and on the capability to let these modules operate in concordance. 
 
The modular design method becomes very powerful when modules can be constructed from lower 
level modules. The standardization of modules enables reuse and may generate type communities. 
The success of a type community may depend on other type communities.  
 
An important category of modules are the elementary modules. These are modules, which are 
themselves not constructed from other modules. These modules must be generated by a mechanism 
that constructs these elementary modules. Each elementary module type owns a private generation 
mechanism.  
 
Another category is formed by modular systems. Modular systems and modular subsystems are 
conglomerates of connected modules. The constituting modules are bonded. Often the modules are 



 

14 
 

coupled via interfaces that channel the information paths that are used by the relations. Modular 
subsystems can act as modules and often they can also act as independent modular systems. 
The hiding of internal relations inside a module eases the configuration of modular (sub)systems. In 
complicated systems, modular system generation can be several orders of magnitude more efficient 
than the generation of equivalent monoliths. This means that stochastic modular system generation 
gets a winning chance against monolithic system construction. 
 
The generation of modules and the configuration of modular (sub)systems can be performed in a 
stochastic or in an intelligent way. Stochastic (sub)system generation takes more resources and 
requires more trials than intelligent (sub)system generation. An inexperienced modular designer 
must first learn to discern which relations are relevant and which relations can be neglected. 
Predesigned interfaces that combine provide-relations and require-relations can save many 
resources. 
 
If all discrete objects are either modules or modular systems, then intelligent (sub)system generation 
must wait for the arrival of intelligent modular systems. 
Intelligent species can take care of the success of their own type. This includes the care about the 
welfare of the types on which its type depends. Thus, for intelligent modular systems, modularization 
also includes the lesson 

ά¢!Y9 /!w9 hC ¢I9 ¢¸t9{ hb ²IL/I ¸h¦ 59t9b5έΦ 
 
In physical reality, the elementary modules appear to be generated by mechanisms that apply 
stochastic processes. In most cases, system configuration occurs in a trial and error fashion. Only 
when intelligent species are present that can control system configuration will intelligent design 
occasionally manage the system configuration and binding process. Thus, in the first phase, 
stochastic evolution will represent the modular system configuration drive. Due to the restricted 
speed of information transfer, intelligent design will only occur at isolated locations. On those 
locations, intelligent species must be present. 
 

  



 

15 
 

5 Mathematical model 
We will treat some aspects that involve advanced mathematics. We mainly do that in a descriptive 
way. However, if they really elucidate, then we will apply formulas. In this model, we give new 
names to items that we want to discuss in detail. This eases the discussion. 
 
In 1936 the discoverers of the orthomodular lattice published their discovery in a paper in which they 
ŎŀƭƭŜŘ ǘƘŀǘ ƭŀǘǘƛŎŜ άǉǳŀƴǘǳƳ ƭƻƎƛŎέΦ DŀǊǊŜǘt Birkhoff was an expert in lattice theory and John von 
Neumann was a broadly oriented scientist that was especially interested in quantum physics. 
άǉǳŀƴǘǳƳ ƭƻƎƛŎέ ƛǎ ŀ ǎǘǊŀƴƎŜ ƴŀƳŜ ōŜŎŀǳǎŜ ƛƴ ǘƘŜ ǎŀƳŜ ǇŀǇŜǊ ǘƘŜ Řǳƻ ǎƘƻǿŜŘ ǘƘŀǘ ǘƘŜ ǎŜǘ ƻŦ ŎƭƻǎŜŘ 
subspaces of a separable Hilbert spaces has exactly the relational structure of this orthomodular 
ƭŀǘǘƛŎŜΦ ¢ƘŜ ƴŀƳŜ άǉǳŀƴǘǳƳ ƭƻƎƛŎέ ƛǎ ƻƴƭȅ ŎƻƳǇǊŜƘŜƴǎƛōƭŜΣ ōŜŎŀǳǎŜ ǘƘŜ ǊŜƭŀǘƛƻƴŀƭ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘe 
orthomodular lattice is quite like the relational structure of classical logic and the elements of 
classical logic are logical propositions. It is not likely that the elements of the orthomodular lattice 
can be represented by logical propositions, but this immediately creates the question what kind of 
other objects the elements of the orthomodular lattice represent. The answer is that they represent 
storage locations of dynamic geometric data. 
 
In a modular system, relations play a major role. The success of the described modular construction 
methodology depends on a particular relational structure that characterizes modular systems. We 
call that relational structure a modular configuration lattice. It is a sub-lattice of the orthomodular 
lattice. This will be elucidated later. 

5.1 Separable Hilbert space 
The orthomodular lattice extends naturally into a separable Hilbert space. Separable Hilbert spaces 
are mathematical constructs that act as storage media for dynamic geometric data. Quantum 
physicists use Hilbert spaces as a base model in which they perform their quantum physical 
modeling. Each separable Hilbert space is a realization of the orthomodular lattice. 
 
Hilbert spaces are linear vector spaces and each pair of Hilbert vectors owns an inner product that 
represents a number, which is a member of a division ring. Hilbert spaces can only cope with number 
systems that are division rings. Each non-zero member of a division ring owns a unique inverse. The 
inner product of two perpendicular vectors equals zero.  
 
Quantum physicists use the Hilbert space as a storage medium for dynamic geometric data. That 
happens in the form of eigenvalues of operators, which map some of the Hilbert vectors onto 
themselves. Those vectors are the eigenvectors of the operator. 

The Hilbert space appears to be no more and no less than a flexibly structured repository for dynamic 
geometric data. However, the concept of the Hilbert space appears to be very flexible and very 
feature rich. This is mainly due to its support of division rings and its ability to embed separable 
Hilbert spaces inside an encapsulating non-separable Hilbert space. 

5.2 Division rings 
For a number system, being a division ring means that every non-zero element of that number 
system owns a unique inverse. Only three suitable continuum division rings exist. These are the real 
numbers, the complex numbers, and the quaternions. Their rational subsets form discrete division 
rings. The quaternions form the most elaborate division ring and comprise the other division rings.  
Number systems exist in several versions that differ in the way that they are ordered. For example, a 
selected Cartesian coordinate system can order multidimensional number systems and subsequently 
a polar coordinate system can order the result. The imaginary part of the quaternionic number 
system represents a three-dimensional space that can be ordered in eight independent ways by a 
Cartesian coordinate system. The ordering affects the arithmetic properties of the quaternions. Left 
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handed multiplying quaternions exist and right handed multiplying quaternions exist. The ordering 
also affects the behavior of functions under multidimensional integration. [6] [7] [8] 

 Representation of quaternions 
Quaternions will be represented by a scalar part that represents the real part of the quaternion and a 
three-dimensional vector part that represents the imaginary part of the quaternion. Bold typeface is 
used for the imaginary parts. The real parts get a suffix  . Sometimes suffix   or suffix   is used 
instead. In many applications, the real part represents progression, while the imaginary part 
represents a spatial location. This representation concerns dynamic geometric data. Quaternions can 
represent other subjects, but in this paper, the representation of dynamic geometric data plays a 
major role. 

 Quaternionic multiplication 
The quaternionic multiplication rule now follows from: 

 

Ὤ Ὤ ▐ Ὢ Ὣ Ὢ █ Ὣ ▌  

 

Ὤ Ὢ  Ὣ ἂ█ȟ▌ἃ 

 

▐ Ὢ ▌ ▌ Ὢ █▌ 

 

The  sign reflects that left handed and right handed quaternions exist.  

 Construction and dismantling of numbers 
Both Cayley and Conway-Smith produced formulas for constructing members of number systems 

from lower dimensional number systems [7]. The dimension increases with a factor two. The reverse 

process is also possible. The reverse procedure dismantles the numbers into two numbers that have 

a lower dimension. The dimension diminishes with a factor two. 

These procedures can be applied inside a quaternionic Hilbert space. There the procedure helps in 

constructing complex number based subspaces from two real number based subspaces or the 

construction of quaternion based subspaces from complex number based subspaces. The road back 

is also possible. These procedures may play a role in the pair creation and pair annihilation processes. 

5.3 Symmetry flavors 
Symmetry flavors represent a hardly known feature of quaternionic number systems. 

 Ordering 
Quaternionic number systems exist in many versions that differ in the way that these number 

systems are ordered. For example, it is possible to order the real parts of the quaternions up or 

down. A Cartesian coordinate system can be used to order the imaginary parts of the quaternions. If 

the orientation of the coordinate axes is kept fixed, then this Cartesian ordering can be done in eight 

mutually independent ways. It is also possible to apply spherical symmetric ordering by using a polar 

coordinate system. This can be done by starting with the azimuth and order it up or down and then 

order the polar angle and order it up or down. It is also possible to start with the polar angle. A 

spherical coordinate system starts from a selected Cartesian coordinate system. For unique 

(1) 

(2) 

(3) 



 

17 
 

coordinates, the sweep of the azimuth is 2ʌ radians and the sweep of the polar angle is ʌ radians. 

Polar ordering may be related to spin. 

 Defining symmetry flavors 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, ░, ▒ and 

▓; with ░▒▓  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions ή  that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems ή  correspond to 16 versions ή  of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus, the symmetry flavor 

influences the handedness. 

The superscript   can be  ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟÏÒ Ȣ  

Quaternionic number systems can be used to define parameter spaces. We use a superscript   to 

indicate the symmetry flavor of parameter space ד . For the reference parameter space ד  we 

often will neglect the superscript  . Later, we will use index   for the background parameter 

space. The imaginary part of the parameter space ד  gets a special symbol . We will call such 

parameter spaces symmetry centers. 
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 Private symmetry 
Elementary modules own a private symmetry center. The reference parameter space ד owns 

reference center . Graphically the symmetry flavor of ד can be represented by: 

 

The symmetry-related charge of a parameter space follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of symmetry center  with 

the spatial part  of the symmetry flavor of reference parameter space ד. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

We use the names of the corresponding particles that appear in the standard model to distinguish 

the different symmetry flavor combinations. Elementary fermions relate to solutions of a 

corresponding second order partial differential equation that describes the embedding of these 

particles.  

In a suggestive way, we use the names of the elementary fermions that appear in the Standard 

Model to distinguish the possible combinations of symmetry flavors. 

Fermion symmetry flavor 

Ordering 

x   y   z    Ű 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

  R N +0 neutrino 

  L R ī1 down quark 

  L G ī1 down quark 

  L B ī1 down quark 

  R B +2 up quark 

  R G +2 up quark 

  R R +2 up quark 

  L N ī3 electron 

  R N +3 positron 

  L R ī2 anti-up quark 

  L G ī2 anti-up quark 

  L B ī2 anti-up quark 

  R B +1 anti-down quark 

  R R +1 anti-down quark 

  R G +1 anti-down quark 

  L N ī0 anti-neutrino 

 

Spherical ordering can be done by first starting with the azimuth and next proceeding by the polar 

angle. Both can be done up or down.  

Fermions and bosons appear to differ in this choice. Quarks are fermions that are anisotropic and therefore they feature a color charge. 

That color charge becomes noticeable via the Pauli principle when quarks bind into hadrons. Whether bosons also feature color charge 

cannot be observed because the Pauli principle does not restrict their binding. A phenomenon that is known as color confinement 

counteracts the appearance of free unbounded quarks. 

Also, continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions  ή  and corresponding continuums do not switch to other symmetry flavors  .  
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The preferred symmetry flavor version  ή  of a continuous function  ή  is the symmetry 

flavor of the parameter space ή .  

If the continuous quaternionic function describes the density distribution of a set ὥ  of discrete 

objects ὥ , then this set must be attributed with the same symmetry flavor  . The real part 

describes the location density distribution and the imaginary part describes the displacement density 

distribution. 

This section shows that ordering of an embedded (parameter) space can represent specific properties of that space that 

distinguishes this embedded space from differently ordered embedded (parameter) spaces. This also holds for embedding 

fields. The consequences come to the front in situations where differences in ordering play an essential role. We will 

encounter that situation where different parameter spaces are used in the integration procedure as occurs in the extended 

Stokes theorem. First, we look at modules and especially the elementary modules will be investigated. Elementary modules 

appear to possess their own private parameter space. 

 Color shift 
Pairs of quaternions can shift other quaternions, sets of quaternions and complete quaternionic 

functions to a different symmetry flavor. The operation 

ὧ ὥ ὦȾὥȠ  ×ÈÅÒÅ ȿὥȿ ȿ╪ȿ 

rotates the imaginary part of ὦ that is perpendicular to ╪ over an angle that is twice the phase of the 

quaternion ὥ. If that phase equals “Ⱦτ radians, then that rotation occurs over “Ⱦς radians. The 

rotation axis is perpendicular to the imaginary parts of ὥ and ὦ. The direction of the rotation depends 

on the handedness of the involved numbers. 

Especially quaternions for which the size of the real part equals the size of the imaginary part can 

perform this trick in an interesting way. In this way, such quaternions can implement the behavior of 

gluons and quarks. 

This capability also supports the manipulation of tri -states. These are states that exist in three 

mutually independent versions. In fact, the color charge of quarks is an example of a tri-state. 

Isotropic particles are not affected by rotating and color shifting quaternions. However, the color 

confinement phenomenon indicates that the generation of anisotropic elementary particles may get 

disturbed by color shifts. The controlling mechanisms appear to react by conspiring with mechanisms 

that control the generation of other anisotropic elementary particles and cooperate in the common 

generation of isotropic conglomerates. These conglomerates are hadrons and the cooperation 

represents a binding of the concerned elementary particles. Hadrons have neutral color charge. 

  

(1) 
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5.4 Inner product 
Paul Dirac introduced a clear and simple notation for the inner product that is based on the existence 

of bras and kets. In a complex Hilbert space, the order of the vectors is important. In a quaternionic 

Hilbert space also the order of the factors is important. 

ộὼȿώỚ ộώȿὼỚz 

ộὼ ώȿᾀỚ ộὼȿᾀỚ ộώȿᾀỚ 

ộὼȿώỚ  ộὼȿώỚ 

ộὼȿώỚ ộὼȿώỚ ᶻ 

ộὼȿ is a bra vector. ȿώỚ is a ket vector.   and ộὼȿώỚ are quaternions. 

The version of the number system that is used for defining the inner product will obtain a special 

role. This version defines what we will call the background parameter space. 

5.5 Operators 
Hilbert space operators describe how Hilbert spaces map into other Hilbert spaces and can describe 
how Hilbert spaces map onto themselves. In the latter case, the inner product describes the relation 
between a Hilbert vector and its map. If the vector is mapped onto itself then the inner product adds 
an eigenvalue to that vector and the vector is called an eigenvector. Thus, eigenvalues of normal 
operators must be members of a division ring. If two eigenvalues differ, then their eigenvectors are 
perpendicular and the inner product of the two eigenvectors equals zero. 
 
Operators map Hilbert vectors onto other Hilbert vectors. For all Hilbert vectors ȿώỚ holds 

ộὝὼȿώỚ ộᾀȿώỚᵼ ộὝὼȿ ộᾀȿ 

Via the inner product, the operator Ὕ may be linked to an adjoint operator Ὕ .  

ộὝὼȿώỚḰộὼȿὝώỚ 

ộὝὼȿώỚ ộώȿὝὼỚz ộὝώȿὼỚz 

A linear quaternionic operator Ὕ, which owns an adjoint operator Ὕ  is normal when 

Ὕ Ὕ  Ὕ Ὕ   

If Ὕ is a normal operator, then Ὕ Ὕ  Ὕ Ⱦς is a self adjoint operator and ╣ Ὕ  Ὕ Ⱦς is an 

imaginary normal operator. Self adjoint operators are also Hermitian operators. Imaginary normal 

operators are also anti-Hermitian operators. 

 
Within a set of mutually orthogonal Hilbert vectors exists no notion of the closest member. Only the 

corresponding eigenvalues may provide a notion of neighborhood. But that is based on the distance 

in the eigenspace. 

Several mutual orthogonal eigenvectors of a normal operator may share the same eigenvalue. These 

eigenvectors span a subspace and in that subspace, all Hilbert vectors are an eigenvector of the 

normal operator. 

If eigenvalues differ, then the corresponding eigenvectors are mutually orthogonal. 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 
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The normal operator that represents an elementary module has no means for controlling the 

nearness of the subsequent eigenvalues. This normal operator only acts as a descriptor. It does not 

act as a controller of the nearness of the eigenvalues! In contrast, the mechanism that provides the 

eigenvalues of that operator controls the coherence of the swarm of the generated eigenvalues. It 

selects the values from the platform on which the elementary particle resides. The mechanism 

resides outside the Hilbert space. 

5.6 Countable infinity 
The dimension of a separable Hilbert space can be countable infinite ᴥ. It means that all its base 

vectors can be enumerated with a natural number. This holds for the real number based separable 

Hilbert space, but it also holds for the quaternionic separable Hilbert space. The base vectors can also 

be enumerated by the rational members of the number system. 

These facts play a significant role when the real number based Hilbert space is considered embedded 

inside the quaternionic Hilbert space. 

Physical reality appears to apply finite subspaces of infinite dimensional separable Hilbert spaces. 

Only infinite dimensional separable Hilbert spaces own a unique non-separable companion Hilbert 

space. Non-separable Hilbert spaces feature operators with uncountable eigenspaces. These 

eigenspaces are continuums, but these continuums may contain point-like artifacts and discrepant 

regions. 

5.7 The real number based separable Hilbert space 
Inside the real number based separable Hilbert space only operators that feature real number valued 

eigenvalues appear. We can construct such operator by starting from an orthonormal base that 

spans this Hilbert space. Next, we take all rational numbers and use them to enumerate the base 

vectors. The corresponding Hermitian operator connects the enumerator with the base vector and in 

this way, they become eigenvalue and eigenvector. This real number based separable Hilbert space 

can be embedded into a complex number based Hilbert space or in a quaternionic number based 

Hilbert space. In that case, the eigenspace of the specified Hermitian operator can be used as a 

model wide clock. All infinite dimensional separable Hilbert spaces own a unique, non-separable 

companion Hilbert space. 

5.8 Reference operators in a quaternionic separable Hilbert space 
Number systems that are division rings can be used to define a category of operators that we will call 
reference operators. The rational values of the number system are used to enumerate the members 
of an orthonormal base of the Hilbert space. The reference operator connects the enumerator with 
the base vector and in this way, they become eigenvalue and eigenvector. Each reference operator 
implements a parameter space that is defined by its eigenspace. Functions use parameter spaces to 
create a target space. The parameter space is flat. The target space need not be defined for all 
parameter values. This can happen for point-like artifacts and for closed regions of the parameter 
space. In a subsequent section, we will use the reference operators and the functions to define new 
operators. 
 
Reference operators are normal operators and normal operators can be split into a Hermitian 
operator that has an eigenspace, which is formed by all rational real numbers and an anti-Hermitian 
operator that has an eigenspace, which is formed by the imaginary parts of the eigenvalues of the 
normal operator. For each real eigenvalue, the Hermitian part of the reference operator owns a 
complete subspace that is spanned by corresponding eigenvectors. The anti-Hermitian part of the 
reference operators treats the spatial part of the reference operator. 
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The Hilbert space can harbor multiple reference operators and in that way, it can harbor multiple 
parameter spaces. Those parameter spaces will in general not share their geometric origins. Thus, 
their geometric centers can float with respect to each other.  

 Families 
In a family of reference operators, the anti-Hermitian parts are ordered such that the Cartesian 

coordinate axes run in parallel to each other.  

A subset of the reference operators can be part of the household of the Hilbert space. These 
reference operators form a family. The household family members all share the eigenvectors of the 
Hermitian operator that has been assigned the task to act as a model wide clock. A special member 
of this family plays the role of the generator of the background parameter space. It uses the version 
of the quaternionic number system that is used to define the inner products of pairs of Hilbert 
vectors. The parameter spaces that are generated by other family members can float with respect to 
the background parameter space and they can float with respect to each other. 
The clock relates to the kinematics of the geometric centers of these floating parameter spaces. 
 
In the separable quaternionic Hilbert space, each reference operator that is a family member 
represents a hopping path of the geometric center of the eigenspace of the anti-Hermitian operator 
through the eigenspace of the anti-Hermitian operator that corresponds to the background 
reference operator. 

 Platforms 
Platforms are eigenspaces of a selected family of reference operators. The background platform 
belongs to this family. Thus, platforms are considered to belong to the household of the Hilbert 
space. Apart from the background platform will other platforms represent floating parameter 
spaces. Each platform owns a geometric center. The anti-Hermitian part of the platform operator 
describes a symmetry center. This is the spatial representative of the platform. The clock operator 
relates the hopping path of the considered platform operator with the platform of the background 
platform operator. Later we will see that that these platform symmetry related charges. These 
changes are located at the geometric centers of the platforms. 
 
What happens on a platform can to some extent be investigated independently from what happens 
in the other part of the Hilbert space. 

5.9 The scanning vane 
If the family of a certain reference operator, such as the background reference operator, is singled 
out, then a special subspace of the Hilbert space can be specified that represents the current static 
status quo of the Hilbert space. In the subspace, all eigenvalues of the selected reference operator 
share the same real part. This specification divides the Hilbert space into three subspaces. The first 
subspace represents the historic part. The third part represents the future. If the selected real value, 
which represents progression, increases, then the second subspace represents a vane that scans over 
the Hilbert space. This simple model represents a very powerful dynamic mathematical test model. 
 
Several processes occur that have a fixed duration. This means that for such processes the passage of 
the vane has this duration. For example, the duration may define the regeneration cycle of a 
category of discrete objects. This can apply to the stochastic processes that (re)generate the swarm 
of the hop landing locations of these objects. For these processes, it takes a while before statistical 
characteristics mature. The fixed duration enables the capability to discern properties of certain 
objects and/or enables the definition of their types. 

5.10 Defined operators 
By starting from a selected reference operator, it is possible to define a category of defined normal 
operators that use a mostly continuous function to replace the parameter value by the function 
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value and connect this value as an eigenvalue of the defined operator and share the corresponding 
eigenvector of the reference operator. In fact, the reference operators are special versions of the 
defined operators for which the defining functions use the parameter value as the function value. 
This procedure is very powerful and merges Hilbert space operator technology with function theory. 

 Mostly continuous function 

A mostly continuous function is specified as a continuous function in the main part of a parameter 
space that is spanned by a version of the quaternionic number system apart from a finite set of 
closed regions that are covered by a parameter space, which are spanned by different versions of the 
quaternionic number system. In those regions, other functions may be defined. The discrepant 
regions may shrink to point-like locations. The discrepant parameter regions are covered by 
eigenspaces of symmetry centers. Inside the scanning vane the discrepant parameter spaces shrink 
to point-like regions. There rays represent the discrepant parameter spaces. 

 The reverse bra-ket method 
Reference operators and defined operators can be described with the help of the reverse bra-ket 

method. The following procedure defines the background reference operator ד. 

We start with a very simple defining function דή ή and the corresponding operator ד.  

Let ή  be the set of rational quaternions in a selected quaternionic number system and let ȿήỚ be 

the set of corresponding base vectors. They are the eigenvalues and the eigenvectors of a normal 

operator ד. Here we enumerate the base vectors with index Ὥ. 

ḰȿήỚήộήȿד ȿήỚᴘήộήȿ  

 is the configuration parameter space operator. ᴘή is a quaternionic function, whose target ד

equals its parameter space. The definition also covers the situation where the dimension of the (sub) 

space is infinite. 

This reverse bra-ket notation must not be interpreted as a simple outer product between a ket 

vector ȿήỚ, a quaternion ή and a bra vector ộήȿ. In fact, it involves a complete set of eigenvalues 

ή  and a complete orthomodular set of Hilbert vectors ȿήỚ. It implies a summation over these 

constituents, such that for all ÂÒÁȭÓ ộὼȿ and all ËÅÔȭÓ ȿώỚ the fornula: 

ộὼȿד ώỚ ộὼȿήỚήộήȿώỚ 

holds. Thus, formula (2) represents the full definition for the shorthand (1). ᴘ is a special operator. It 

can be considered as a property of the combination of the separable Hilbert space ᴎ and one of the 

existing versions of the quaternionic number system. 

ד ד ד  Ⱦς is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the 

eigenvectors by enumerating them with the real eigenvalues. The ordered eigenvalues can be 

interpreted as progression values.  

ד ד  Ⱦς is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial locations and can be ordered in several 

ways. For example, eight independent ways exist to order the 3D spatial domain by using Cartesian 

coordinates. Below, we will use special indices to attach operators to versions of number systems. 

Let Ὢή be a continuous quaternionic function. Now the reverse bra-ket notation defines operator Ὢ 

as: 

ὪḰȿήỚὪήộήȿ  

(1) 

(2) 

(3) 
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Ὢ defines a new operator that is based on function Ὢή. Here we suppose that the target values of Ὢ 

belong to the same version of the quaternionic number system as its parameter space does. 

Operator Ὢ has a countable set of discrete quaternionic eigenvalues. 

For this operator, the reverse bra-ket notation (3) is a shorthand for 

ộὼȿὪ ώỚ ộὼȿήỚὪήộήȿώỚ 

Alternative formulations for the reverse bra-ket definition are: 

ὪḰȿήỚὪήộήȿ ȿήỚộὪήήȿ ȿήỚộὪήȿ ȿὪᶻήήỚộήȿ ὪήỚήộήȿ 

Here we used the same symbol for the operator Ὢ and the function Ὢή . For this operator, 

usually the eigenvalues of the Hermitian part Ὢ Ὢ  Ὢ Ⱦς are not interpreted as 

progression values. Often (not always!), these values can be interpreted as dynamic location 

density descriptors. Similarly, usually the eigenvalues of the anti-Hermitian part  █ Ὢ  Ὢ Ⱦς 

are not interpreted as spatial location values. The eigenspace of normal operator Ὢ will 

represent fields. 

The left side of (4) only equals the right side when the domain over which the summation is taken is 

restricted to the region of the parameter space ד where Ὢή is defined on a coherent parameter 

space. 

If the function Ὢ is mostly continuous, then the formula becomes more complicated.  

ộὼȿὪ ώỚ ộὼȿήỚὪ ή ộήȿώỚ 

The superscript   indicates the identity of local parameter space. Function Ὢ  reigns in that local 

parameter space. The parameter spaces are disjoint. 

5.11 Symmetry centers 
Reference operators are a special kind of defined operators. The target space of the defining function 

equals the parameter space. The anti-Hermitian parts of the reference operators that belong to the 

family of the background reference operator play a special role and we will use special symbols for 

them. 

We can define a category of anti-Hermitian operators that have no Hermitian part and that are 

distinguished by the way that their eigenspace is ordered by applying a Cartesian coordinate system. 

In addition, a polar coordinate system can be applied. We call them symmetry centers . A polar 

ordering always starts with a selected Cartesian ordering. The geometric center of the eigenspace of 

the symmetry center floats on a background parameter space of the normal reference operator ד, 

whose eigenspace defines a full quaternionic parameter space. The eigenspace of the symmetry 

center  acts as a three-dimensional spatial parameter space. The super script   refers to the 

symmetry flavor of . The subscript  enumerates the symmetry centers. Sometimes we omit the 

subscript. 

 

ȿỚ ộ ȿ 

 

(4) 

(5) 

(6) 

(1) 
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It must be noticed that the eigenvalues of the symmetry center operator have no real part! However, 

when mapped to another parameter space, the geometric center location of the symmetry center 

eigenvalues can be a function of progression. 

The symmetry centers can be ordered with the help of a Cartesian coordinate system as well as with 

the help of a polar coordinate system. In the platform family, the ordering of the symmetry center is 

defined relative to the ordering of the background platform. This ordering determines the 

symmetry flavor of the symmetry center. The difference of the symmetry flavor of a selected 

symmetry center with the symmetry flavor of the background platform determines the symmetry 

related charge of the selected symmetry center. This charge can be split in an isotropic part, an 

anisotropic part, and a spin.  

The short list of isotropic symmetry related charges covers: 3, 2, 1, 0, +1, +2, +3. For historical reasons, these 

numbers must be divided by 3 to get the equivalent electric charges. The anisotropic symmetry related charges 

correspond to color charges and correspond with the three perpendicular directions and the opposite directions in 

which ordering anisotropy can manifest itself. 

Symmetry center  Ŏŀƴ ōŜ ǊƻǘŀǘŜŘ ōȅ ŀ ǇŀƛǊ ƻŦ ǉǳŀǘŜǊƴƛƻƴǎ ǘƘŀǘ ŀǊŜ ŜŀŎƘ ƻǘƘŜǊΩǎ ƛƴǾŜǊǎŜΦ {ǇŜŎƛŀƭ 

quaternions exist of which the size of the real part equals the size of the imaginary part. These 

special quaternions can shift the anisotropy of a symmetry center to another dimension. 

 Discrepant parameter spaces 
The eigenspaces of symmetry centers are discrepant parameter spaces. Discrepant parameter spaces 

play an important role in the definition of mostly continuous functions. 

5.12 Non-separable companion Hilbert space 
Each infinite dimensional separable Hilbert space owns a unique companion non-separable Hilbert 
space that features operators, which have continuum eigenspaces. Such eigenspaces can form flat 
parameter spaces or dynamic fields. This can easily be comprehended when in the non-separable 
Hilbert space a similar procedure is used for specifying defined operators as we applied in the 
separable Hilbert space. In that procedure, we specified reference operators and we defined normal 
operators by using continuous functions. This time we not only use the rational members of the 
number system, but we also apply the irrational members and we use the same continuous 
functions. The consequence is that the notion of dimension of the subspaces may lose its sense. The 
procedure that creates defined operators now links operator technology with function technology, 
differentiation technology, and integration technology. 
The separable Hilbert space can be considered embedded in its non-separable companion. 
Platforms that step in the separable Hilbert space will float in the non-separable companion Hilbert 
space. In a similar way, progression steps in the separable Hilbert space and progression flows in its 
non-separable companion.  
Here we keep the difference between the separable Hilbert space and its non-separable companion 
alive. The scanning vane can be interpreted as the scene of a progressive embedding of the separable 
Hilbert space into its non-separable companion. 
 
In the non-separable Hilbert space, the reverse bracket method applies integration rather than 
summation to define operators that have continuum eigenspaces. 
For the shorthand of the reverse bra-ket notation of operator ꞈ  the integral over ή replaces the 

summation over ή. 

(2) 
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ộὼȿꞈ ώỚ ộὼȿήỚꞈ ήộήȿώỚ ộὼȿήỚꞈ ήộήȿώỚ Ὠή 

 

The integral only equals the sum sufficiently close when the function ꞈή is sufficiently continuous 
in the domain over which the integration takes place. Otherwise the left side only equals the right 
side when domain is restricted to the region of the parameter space ᴘ where ꞈ ή is sufficiently 
continuous. 

 Platform dynamics 
In the separable Hilbert space, platforms can step relative to the background platform. This can occur 

with a minimal spatial step size. In the non-separable Hilbert space, the corresponding platforms 

float relative to the background platform. 

 

 Artifacts 
Nearness between mutually orthogonal Hilbert vectors is not defined. Only via eigenvalues of 

eigenvectors, the nearness of the eigenvectors makes sense. In an infinite dimensional separable 

Hilbert space, it is always possible to add or subtract base vectors without changing the dimension of 

the Hilbert space. After enumerating an orthonormal base with an ordered set of equidistant rational 

numbers it is possible to add base vectors that disrupt the equidistant ordering. These additional 

base vectors will act as artifacts in the eigenspace of the operator that uses the orthonormal base as 

its eigenvectors. Artifacts may occur collected in coherent swarms and the swarm may feature its 

own internal ordering that differs from the ordering of the original orthonormal base. Adding a new 

base vector that does not disrupt the equidistant ordering will not produce a noticeable artifact but 

that addition is impossible inside infinite equidistant sets. 

In the non-separable Hilbert space, the addition of a single base vector or of a coherent swarm of 

ordered base vectors will always present artifacts. 

5.13 Modules as subspaces 
In the view of the discoverers of the orthomodular lattice, the elements of the lattice can be 
represented as closed subspaces of a separable Hilbert space. It also has sense to consider a subset 
of these elements as representatives of modules or modular systems. Thus, not every closed 
subspace of a separable Hilbert space represents a module or modular system. However, a closed 
subspace of the separable Hilbert space represents every module and every modular system. 
Compared to generally closed subspaces of the Hilbert space, will modules and modular systems 
have extra characteristics. 

5.14 Elementary modules and empty space 
In the Hilbert space, an elementary module cannot be represented by a single Hilbert vector, 
because that single vector can on the utmost correspond to a static geometric location and from 
reality we know that modules possess a dynamic geometric location and that fact also holds for the 
elementary modules. However, elementary modules cannot be split into other modules. Thus, the 
subspaces that represent elementary modules must have multiple dimensions. Still, it is possible that 
at each progression instant each module represents exactly one spatial location. This is a very special 
condition, but we postulate that this special condition is valid for all elementary modules. Because of 
this postulate, the vane contains representatives of elementary modules that are one-dimensional 

(1) 
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subspaces. They cannot be split into lower level modules. One-dimensional subspaces of the Hilbert 
space are called rays. 
The postulate forbids that two elementary modules with identical properties at the same progression 
instant take the same geometric location.  
The vane contains many subspaces that do not contain Hilbert vectors that represent an elementary 
module. These subspaces are representing empty space. 

 Modular configuration lattice 
In the vane, a ray represents every elementary module. These elementary modules and the modules 
and modular systems that they configure represent a sub-lattice of the orthomodular lattice. We call 
this sub-lattice a modular configuration lattice. This lattice represents a recipe for modular system 
generation. 

The fact that elementary modules are representatives of atoms of the modular configuration lattice destines them to 

behave as fermions. No two different elementary modules can own the same properties and dynamic location. 

Consequently, bosons are not elementary modules. They must be composites. They act as temporary storage containers for 

mass and energy. 

5.15 Germ operators 
The elementary modules are represented by a new category of operators that differ from reference 
operators and that differ from defined operators but that describe the dynamics of elementary 
modules. This means that they are coupled to the clock operator, but they are not a member of an 
operator family. The dynamic location of elementary modules hops as a function of progression. 
After a while, the hops form a swarm and both the hopping path and the swarm represent the 
elementary module. These structures determine the properties of the elementary particle. The 
location of the swarm corresponds to its geometric center. The operators will be called germ 
operators. We will use symbol ᴤ for the germ operators. The germ operators are controlled by 
mechanisms that apply stochastic processes for the generation of the dynamic locations.  
The germ operator uses its own private reference operator. This means that the elementary modules 
reside on their own platform, which applies its own private parameter space that may float with 
respect to the selected background parameter space. The eigenvalues of the anti-hermitic part of the 
germ operator correspond exactly with the eigenvalues of the anti-hermitic part of the 
corresponding platform operator. The germ operators are decoupled from the ordering of the 
family operators. Spatial ordering will destroy their coupling to the clock operator. The hop landings 
act as point-like artifacts! 

5.16 Hopping paths and swarms 
After generation, the dynamic locations of an elementary module will be ordered with respect to the 
real value of the quaternions that represents the dynamic location. After ordering of the progression 
values, the elementary module appears to walk along a hopping path and the landing positions form 
a location swarm. An uncontrolled generation would produce an arbitrary hopping path and a 
chaotic hop landing location swarm. The mechanism is supposed to ensure that a coherent swarm is 
generated. 
 
The hops that cause field vibrations in form of spherical shape keeping fronts will be called clamps. 
After integration over a long enough period, a clamp results in the DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ of the field. The 
DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŘŜǎŎǊƛōŜǎ Ƙƻǿ ǘƘŜ ŦƛŜƭŘ ǊŜŀŎǘǎ ƻƴ ǘƘŜ ƘƻǇΦ 
 
This means that elementary modules are represented by closed subspaces of a Hilbert space that 
may have a huge dimension. However, at a single progression instant, each elementary module is 
represented by a subspace that is spanned by a single Hilbert vector. We call such a subspace a ray. 
Thus, a subset of the orthomodular lattice represents modules and modular systems. Within that 
subset, the elementary modules are represented by elements that act as atoms of the subset. 
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If the swarm contains many hop landing locations, then its geometric center will move in a much less 
chaotic way. A large number of elements also means an equivalently long regeneration cycle of the 
swarm. Increasing the number of hop landings will increase the inertness of the swarm. 

5.17 Mechanisms 
From reality, we know that the hopping path is not an arbitrary path and the location swarm is not a 
chaotic collection. Instead, the swarm forms a coherent set of locations that can be characterized by 
a rather continuous location density distribution. That does not say that the hopping path is not a 
stochastic path! The location swarm integrates over the regeneration cycle. Its characteristics are 
statistical characteristics. 
 
Each mechanism that supplies an elementary particle with its hopping locations applies a stochastic 
process. A characteristic function characterizes that process. This characteristic function is the 
Fourier transform of the location density distribution that characterizes the swarm of hop landing 
locations. 
 
From physics, we know that elementary particles own a wave function and the squared modulus of 
that wave function forms a continuous probability density distribution, which can be interpreted as a 
location density distribution of a point-like object. The location density distribution owns a Fourier 
transform and therefore the swarm owns a displacement generator. This means that at first 
approximation the swarm can be considered to move as one unit. Thus, the swarm is a coherent, 
rather smoothly moving object, which represents the violent stochastic hopping of a point-like 
object. For a large part, this is because the swarm contains a huge number of locations that is 
refreshed in a cyclic fashion.  
 
The fact that at every progression instant the swarm owns a Fourier transform means that at every 
progression instant the swarm can be interpreted as a wave package. Wave packages can represent 
interference patterns; thus, they can simulate wave behavior. The problem is that moving wave 
packages tend to disperse. The swarm does not suffer that problem because at every progression 
instant the wave package is regenerated. The result is that the elementary module shows wave 
behavior and at the same time it shows particle behavior. When it is detected it is caught at the 
precise location (the exact swarm element) where it was at this progression instant.  
 
The Hilbert space is nothing more and nothing less than a structured storage medium for dynamic 
geometric data. It does its storage task in a very precise way, thus without any uncertainty! Neither 
the separable Hilbert space nor its non-separable companion does contain functionality that ensures 
the coherent dynamic behavior of the location swarms. Dedicated mechanisms, which do not belong 
to the household of the Hilbert spaces fill the eigenspaces of the stochastic germ operators that 
control the elementary modules. The hopping path only stops when the elementary module is 
άŘŜǘŜŎǘŜŘέ ŀƴŘ ǘƘŜ ŎƻƴǘǊƻƭƭƛƴƎ ƳŜŎƘŀƴƛǎƳ ŎƘŀƴƎŜǎ ǘƻ ŀ ŘƛŦŦŜǊŜƴǘ ƳƻŘŜ ƻŦ ƻǇŜǊŀǘƛƻƴΦ 

5.18 Fermions and bosons 
The swarm and the hopping path determine the properties of the elementary particle. The swarm that 

represents the elementary particle owns a geometrical center. For fermions, the Pauli principle states that two 

elementary particles that possess the same properties cannot share the same geometrical center. Fermions 

possess a half-integer spin. Separate elementary particles own private platforms that correspond to a private 

symmetry center. The Pauli principle states that these platforms cannot share the map of their geometric 

centers onto the background parameter space. 

Fermions appear to be the elementary modules that appear in stable modular systems. 
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Bosons with identical properties can share the same geometrical location. Bosons possess integer spin. The 

platforms of elementary bosons can share the map of their geometric centers onto the background parameter 

space. 

6 Dynamic model 

6.1 Exploring the dynamic model 
We did construct a vane that splits the Hilbert space such that all elementary module eigenvalues 
that have a selected real value have the corresponding eigenvector inside the vane. The vane splits 
the Hilbert space in a historic part, the vane itself and a future part. The vane then represents a static 
status quo that corresponds to the current state of the universe. 
 
This represents an interesting possibility. The Hilbert space is a storage medium that contains a 
repository of all historic, present, and future data. It can also be interpreted as a scene that is 
observed by modules and modular systems that travel with the vane. These observers might know 
part of the stored history, but have no notion of the future. Depending on their capabilities, the 
observers reflect only a part of their history. Information that inside the vane is generated at a 
distance has still to travel through an information-carrying field that acts as the living space for the 
elementary modules to reach the observer. The encounter will take place in the future. Information 
that reaches the observer arrives from the past. Those kinds of information travel via information 
carriers. In addition, the observers meet new conditions when the vane passes over them. 
 
The vane forms a subspace of the Hilbert space and for each elementary module that subspace 
contains a single Hilbert vector that plays as eigenvector for the corresponding geometric location. 
This location is the landing point of a hop rather than the geometric center of the location swarm. 
 

 Two views 
The dynamic model offers two interesting views. The creator of physical reality can view all dynamic 
geometric data that are stored in eigenspaces of operators. We will call this the ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ. 
Sometimes we will also call it the storage view. ¢ƘŜ ƻōǎŜǊǾŜǊΩǎ ǘǊŀǾŜƭ ǿƛǘƘ ǘƘŜ ǾŀƴŜ ŀƴŘ Ŏŀƴ ƻƴƭȅ 
receive information that comes to them from the past. We will call this the ƻōǎŜǊǾŜǊΩǎ ǾƛŜw. The vane 
represents a static status quo of the model. Within the vane, nothing happens. The dynamics that 
affects the observer occur in the region at the history side of the vane and the dynamics that is 
actuated by the observer occur in the region on the future side of the vane. 
The information that reaches the observers is transported to them via fields. Fields feature a 
maximum speed of information transfer. The differential field equations determine the speed of 
information transfer of the fields. In ǘƘŜ ŎǊŜŀǘƻǊΩǎ view, this information transport can be modeled in 
a simple way. Lƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ ǊŜƭŀǘƛǾƛǘȅ Ǉƭŀȅǎ ƛǘǎ ǊƻƭŜ. It means that the Lorentz transform 
governs observed dynamic behavior of elementary modules. 
 
Quaternionic platforms can be converted into two complex number based platforms and two complex number based 

platforms can be converted into a quaternionic platform. At conversion, the quaternionic platforms mirror at the vane. The 

mirrors carry a particle at one side and an anti-particle at the other side. The conversion takes a fixed duration. Number 

construction procedures or number dismantling procedures may support the processes. 

 Scientific method 
The scientific method requires experimental verification of every significant physical statement. This 

ǊǳƭŜ Ŏŀƴ ƻƴƭȅ ōŜ ƻōŜȅŜŘ ƛƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΦ Lǘ ƳŀƪŜǎ ƴƻ ǎŜƴǎŜ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ 

6.2 Defining fields 
Fields are eigenspaces of defined operators that reside in the companion non-separable Hilbert 
space and that have continuum eigenspaces. This enables the treatment of fields independent of 
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their defining functions and the corresponding parameter spaces. However, if the dynamic behavior 
of fields must be investigated, then the quaternionic differential calculus must be applied to 
formulate corresponding defining functions and defined operators. 
The embedding field is a superposition of the contributions of the elementary modules to the 
deformation of this field. Or more in detail, it is the superposition of the contributions of the clamps 
to the deformation of this field. Thus, if no clamps are present then the embedding field is flat. 

6.3 Living space 
The germ operators have no equivalent inside the non-separable Hilbert space. However, their 
eigenvalues may be sensed by a field that exists as eigenspace of a defined operator, which resides in 
the non-separable Hilbert space. The considered field is a descriptor of the involved clamps. This can 
occur when the separable Hilbert space is embedded in its non-separable companion Hilbert space. 
We will call the mentioned field the embedding field or the living space of the modules and modular 
systems, or we will use the nickname Palestra for this field. 
 

The hops in the hopping path generate vibrations of the Palestra. These vibrations are solutions of a homogeneous second 

order partial differential equation. Differential equations are treated later. The concerned solutions are spherical shape 

keeping fronts. We will call them clamps. After integration over a sufficiently long period, each front forms the DǊŜŜƴΩǎ 

function of the field that describes the deformation of the field. This deformation is the effect of the hop. Spurious hops can 

also occur, they create spurious clamps. 

 
The hopping path that represents an elementary module, corresponds to a coherent location swarm, 
which is characterized by a location density distribution. Via the convolution of the DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ 
of a field and this location density distribution, the swarm corresponds to a deformed part of the 
field. In this way, the field describes the existing elementary modules. The description of a nearby 
located elementary particles deforms the field in that region. The convolution means that the 
DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ōƭǳǊǎ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴΦ ¢Ƙƛǎ Ŏŀƴ ōŜ ƛƴǘŜǊǇǊŜǘŜŘ ŀǎ ƛŦ ǘƘŜ ƘƻǇǇƛƴƎ 
landing locations influence the field, but the alternative interpretation is that the field is a kind of 
blurred descriptor of the hopping landing locations. Anyway, the landing locations and the discussed 
field are intimately coupled. The deformed field can be interpreted as the living space of the modules 
and modular systems. 

6.4 Stochastic processes 
The mechanisms that generate the hopping landing location control the dynamics of the model. 
These mechanisms use stochastic processes. These processes appear to belong to a category which is 
mathematically known as inhomogeneous spatial Poisson point processes. In more detail, these 
processes probably are like modified Thomas processes. 
 
This fact is supported by an indication that is visible in the visual trajectory of a category of living 
species that are called vertebrates. It appears that the visual trajectory of all vertebrates is optimized 
for low dose rate imaging. This visual system contains noise filters that block information for which 
the signal to noise ratio is too low. This signal to noise ratio is typical for information generated by 
Poisson processes that are attenuated by subsequent binomial processes that are implemented by 
spatial point spread functions. The mechanisms appear to apply inhomogeneous spatial Poisson 
Ǉƻƛƴǘ ǇǊƻŎŜǎǎŜǎΦ {ŜŜΥ ά[ƻǿ 5ƻǎŜ wŀǘŜ LƳŀƎƛƴƎέΤ http://vixra.org/abs/1606.0329 . Humans are 
vertebrates and at starlight conditions, the described processes govern their visual perception. 
 
Physical theories stop at the wave function of particles. This exposure of the mechanisms dives 
deeper and reaches the characteristic function of the stochastic process that controls the generation 
of the landing locations that form the hopping path. 

http://vixra.org/abs/1606.0329
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6.5 Self-coherence 
It is difficult to believe in a creator that installs separate mechanisms, which ensure the dynamic 

coherence of the generated modules. It is easier to accept that the relation between the generated 

location swarms and the field that describes these swarms is based on a mathematically explainable 

kind of self-coherence. In the case of self-coherence, the interaction between the field and the 

swarm restricts the possible location density distribution. As is indicated earlier, this restriction may 

be influenced by the number of elements that are contained in the swarm. This fact may explain the 

existence of generations of elementary modules. A larger number of elements increases the 

inertness of the swarm. However, also the living space field takes a role in the self-coherence of the 

swarm. 

Lƴ ǘƘŜ ǊŜƭŀǘƛƻƴ ōŜǘǿŜŜƴ ǘƘŜ ǎǿŀǊƳ ŀƴŘ ǘƘŜ ŦƛŜƭŘΣ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘ Ǉƭŀȅǎ ŀƴ ƛƳǇƻǊǘŀƴt 

role. It plays the role of a potential that implements an attracting force. Another factor is the kind of 

stochastic process that generates the individual locations. This process belongs to the category of the 

inhomogeneous spatial Poisson point processes. Each hop tries to displace the geometric center of 

the swarm. This displacement represents an acceleration of the geometric center of the swarm.  

[Ŝǘ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǊŜǇǊŜǎŜƴǘ ŀ ǎŎŀƭŀǊ ǇƻǘŜƴǘƛŀƭΦ ²ƘŜƴ ǘƘŜ ǇƭŀǘŦƻǊƳ ƻƴ ǿƘƛŎƘ ǘƘŜ ŜƭŜƳŜƴǘŀǊȅ 

object resides moves with a uniform speed with respect to the background parameter space, then 

the scalar potential will in that coordinate system turn into a vector potential. Differential calculus 

learns that the dynamic change of the vector field goes together with a new field that counteracts 

the acceleration. This effect is like the phenomenon that is known as inertia. It looks as if the center 

of geometry of the swarm is attracting the accelerating hopping elementary object. This is an 

effective kind of self-coherence that is installed via the living space field that we call Palestra. 

This obscure description is elucidated more clearly with appropriate formulas in the section about 

force raising fields. 

 Test function 
For the description of the location swarm by the field, tƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ōƭǳǊǎ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ 

distribution of the swarm. If the location density distribution has the form of a Gaussian distribution, 

then the blurred function is the convolution of this location density distribution and the GǊŜŜƴΩǎ 

function. The shape of this example is given by: 
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In this function, every trace of the singularity ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ has disappeared. It is due to the 

distribution and the huge number of participating hop locations. This is just an example. Such extra 

potentials add a local contribution to the field that acts as the living space of modules and modular 

systems. The shown extra contribution is due to the local elementary module. Together, a myriad of 

such bumps constitutes the living space. 

6.6 The symmetry-related field 
The convolution of the location density distribution of the swarm with ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ involves 

an integration. The local contribution to the integral involves two parameter spaces. One of them is 

the background parameter space. These parameter spaces may differ in their ordering. To cope with 

(6) 
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this difference, the platform on which the elementary object resides must be encapsulated. The 

integration is an application of the generalized Stokes theorem. This theorem converts an integral 

over a volume into an integral over the boundary of that volume. The boundary must only cross 

regions of the parameter spaces where the field and the extra potential are both continuous and the 

amplitude of the extra potential must become negligible. In fact, the influences of the ordering 

characterize the parameter spaces rather than the deformed fields. For the parameter spaces, the 

condition is automatically fulfilled and therefore the shape of the boundary does not matter. For that 

reason, we select a boundary that has the form of a cube, whose axes are aligned along the axes of 

the Cartesian coordinate systems that is used to order the background parameter space. This 

procedure enables the correct accounting for the differences in the ordering. This accounting process 

reveals values that we will call charges that go together with the difference in ordering. This reveals 

the short list of electric charges and the color charges that appear in the Standard Model. The 

charges will be anchored on the geometric centers of the floating platforms. These symmetry related 

charges are the source of a new separate basic field that we will call the symmetry related field. We 

will use the nickname Electra for this field. This field differs fundamentally from the field that 

represents the living space of the elementary modules. 

The contribution to the field that we called Palestra by the influence of the clamps, couples to the 

new symmetry related field via the geometric centers of the platforms that carry the swarm 

elements. The ŎƻƴǾƻƭǳǘƛƻƴ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ tŀƭŜǎǘǊŀ ŀƴŘ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ 

distribution, which characterizes the location swarm, determine the concerning contribution. 

6.7 Partial differentiation 
In this section, we intensively use formulas. These formulas keep the description compact and 

comprehensive.  

We use the quaternionic nabla ɳ to provide a compact description of quaternionic partial 

differentiation. 
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This form of the partial differential equation highlights the fact that in first order and second order 

partial differential equations the nabla operator and some of the related differential operators can 

be applied as a multiplier. This means that we can apply the quaternionic multiplication rule. 

Therefore, these partial differential operators can be used to define corresponding fields and their 

operators. The following equation defines the first order change ɳ   of field . 

 

     ♠  ɳ  ♩   ⱶ  

 ἂ♩ȟⱶἃ ⱶ ♩ ♩ ⱶ 

(1) 

(2) 

(3) 
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   ἂ♩ȟⱶἃ 

 

♠ ⱶ ♩ ♩ ⱶ 

 

These equations invite the definition of derived vector fields. We use symbols that corresponding 

Maxwell equations also use: 

 

Ḱ ᶯⱶ ♩  

 

Ḱ♩ ⱶ 

 

The  sign indicates that the nabla operator is also afflicted by symmetry properties of the applied 

quaternionic number system. The above equations represent only low order partial differential 

equations. Thus, these partial differential equations represent approximations rather than precise 

descriptions of the considered change. In this form, the equations can still describe point-like 

disruptions of the continuity of the field. We can take the conjugate: 

 

 ᶻ ᶻ ᶻᶻᶸς ♩ ⱶ 

 

ᶻᶻᶻᶻ ᶻ  ᶻ 

Two different non-homogeneous second order partial differential equations exist that offer 

different views on the embedding process. The equation that is based upon the double 

quaternionic nabla ṱ ᶻ cannot show wave behavior. However, the equation that is based 

ÏÎ Äȭ!ÌÅÍÂÅÒÔȭÓ ÏÐÅÒÁÔÏÒ  acts as a wave equation, which offers waves as part of its set of 

solutions. Both second order partial differential operators can be applied as multipliers. 

 

ṱ Ḱᶻ ᶻ  ộ♩ȟ♩Ớ 

 

Ḱ  ộ♩ȟ♩Ớ 

 

ṱ represents the quaternionic variance of field . 

In isotropic conditions the homogeneous equations look like: 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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These equations have special solutions in odd numbers of participating dimensions in the form of 

shape-keeping fronts. 

The Äȭ!ÌÅÍÂÅÒÔȭÓ ÅÑÕÁÔÉÏÎ ÏÆÆÅÒÓ ÓÏÌÕÔÉÏÎÓ ÉÎ ÔÈÅ ÆÏÒÍ ÏÆ ×ÁÖÅÓȢ 4ÈÁÔ ÄÏÅÓ ÎÏÔ ÈÏÌÄ ÆÏÒ ÔÈÅ 

double nabla operator ṱ that is defined in (10). That equation can be split into two first order 

partial differential equations: 

 

    

 

” ᶻ   ᶻ  

 

The similarity to Maxwell equations is not accidental. Equation (4) has no equivalent in Maxwell equations. In physics, 

special gauge equations compensate this lack. The Maxwell equations use coordinate time where the quaternionic 

equations use proper time. 

 Other partial differential equations 
Other second order partial differential equations are: 

 

ộ♩ȟ♩ ⱶỚ π 

 

ộ♩ ♩ȟⱶỚ  

 

♩ ♩ⱶ ♩ ♩ ⱶ  ♩ộ♩ȟⱶỚ ộ♩ȟ♩Ớⱶ 

 

 

 

 The contracted equations 
The partial differential equations can be contracted by replacing the spatial nabla ♩ by a normalized 

vector ▪ that is perpendicular to a selected plane surface Ὓ. 

 

  ♩  ⱶ  ἂ♩ȟⱶἃ ♩ ♩ ⱶ ▪  ἂ▪ȟⱶἃ ▪ ▪ ⱶ 

 

♩ ♩ ⱶ  ♩ộ♩ȟⱶỚ ộ♩ȟ♩Ớⱶ  ▪ ▪ ⱶ  ▪ộ▪ȟⱶỚ ộ▪ȟ▪Ớⱶ 

 

(13) 

(14) 

(1) 

(2) 

(3) 

(1) 
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These contractions lead to the generalized Stokes theorem 

6.8 Elementary behavior 
Fields act on point-ƭƛƪŜ ŀǊǘƛŦŀŎǘǎ ƛƴ ŀƴ ŜƭŜƳŜƴǘŀǊȅ ǿŀȅΦ ¢ƘŜ ŘΩ!ƭŜƳōŜǊǘΩǎ operator  offers plane and 

spherical waves and both second order equations offer shape-keeping fronts as elementary 

solutions. 

 Waves 
²ŀǾŜǎ ŀǊŜ ǎƻƭǳǘƛƻƴǎ ƻŦ ǘƘŜ ǿŀǾŜ Ŝǉǳŀǘƛƻƴ ǘƘŀǘ ǳǎŜǎ ŘΩ!ƭŜƳōŜǊǘΩǎ ƻǇŜǊŀǘƻǊ : 

 

 Ὢ  ộ♩ȟ♩Ớ Ὢ π 

 

Ὢ ἂ♩ȟ♩ἃὪ Ὢ 

 

For Cartesian symmetry conditions this leads to: 

 

Ὢ†ȟ● ὥÅØÐ ●ὧ†ȿ ●ȿ Ƞ ὧ ρ 

 

In spherical symmetric conditions, equation (2) leads to a category of solutions that are known as solutions of the 

Helmholtz equation. However, here proper time † replaces coordinate time. 

 One dimensional fronts 
These solutions proceed in one spatial dimension, but they may act in a three-dimensional spatial 

setting. Thus: 
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We try a solution in the form • Ὢᾀ†: 
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This is solved when  ᴜ. 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 
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For the first kind of the second order partial differential equation this means:   ░, where ░ is a 

normalized imaginary quaternion. With Ὣᾀ Ὢ ᾀ follows: 

 

• Ὣᾀ ░ † 

 

The function Ὣ represents a shape-keeping front. It also keeps its amplitude. It is not a wave. 

The imaginary ░ represents the base vector in the ὼȟώ plane. Its orientation — may be a function of 

ᾀ. 

 

For the second kind of the second order partial differential equation, this means  . With 

Ὣᾀ Ὢ ᾀ follows:  

• Ὣᾀ † 

 

The corresponding hop landing that represents the continuity disturbing artifact will be called warp. 

A warp corresponds to the hop of the geometric center of the platform on which the corresponding 

elementary particle resides. Thus, the location of the hop is defined relative to a geometric location 

on the carrier field that is defined with respect to the background parameter space. The platform 

carries its own private parameter space. Subsequent warps occur at equidistant instants ƛƴ άƭƛƴŜŀǊέ 

strings that follow the deformation of the carrier field. Such strings will be called messengers. Warps 

can also occur as single hops. Warp hops shift the geometric centers of parameter spaces relative to 

the background parameter space. As solutions of the second order partial differential equation, the 

warp shifts the map of the geometric center of the platform onto the carrying field to a subsequent 

location on that carrying field.  

Combined in strings the warps can only shift empty platforms. Any clamp in the platform would 

conflict with the warp speed. 

Warps appear to be emitted from the geometric centers of platforms and when they are absorbed, then they 

appear to be absorbed at the geometric center. This requires incredible aiming capability. At the utmost, this 

Ŏŀƴ ōŜ ŎƻƳǇǊŜƘŜƴŘŜŘ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ In that view, an absorption is a reverse emission. In physical 

theories, the messengers are called photons. 

 Spherical fronts 
Next, we focus on the three-dimensional spherical symmetric condition.  

In that case, writing  ὶ •ὶȟ† separates the equation. 
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With other words  fulfills the conditions of the one-dimensional case. Thus, solutions in the form 

• Ὢὶ†Ⱦὶ will fit. 

(5) 

(6) 

(1) 
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For the first kind of the second order partial differential equation that uses the ṱ operator, this 

means   ░, where ░ is a normalized imaginary quaternion. With Ὣὼ Ὢ ὼ follows: 

 

• Ὣὶ ░ †Ⱦὶ 

 

░ represents a base vector in radial direction. 

The corresponding hop landing that represents the continuity disturbing artifact will be called a 

clamp. The clamp corresponds to a hop relative to the geometric center of the platform on which the 

elementary particle resides. Thus, the location of the hop is defined relative to this geometric 

location. The description uses the parameter space that is private to the platform and the 

elementary particle. This description is mapped onto the background parameter space and 

subsequently, it is embedded into the field that represents the living space of the elementary 

modules. This procedure represents an interaction between the hopping module and the living 

space. Clamps occur in coherent swarms. All swarm elements share the same platform. Thus, the 

swarm moves as a single unit. 

For the second kind of the second order partial differential equation, this means  . With 

Ὣὶ Ὢ ὶ follows: 

 

• Ὣὶ †Ⱦὶ 

 

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminishes as ρȾὶ 

with distance ὶ from the sources. When integrated over a long enough period of progression the 

ǊŜǎǳƭǘ ǘŀƪŜǎ ǘƘŜ ŦƻǊƳ ƻŦ ǘƘŜ ŦƛŜƭŘǎ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ 

 DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ 
At every progression instant, the hop landing locations cause the emission of a spherical shape-

keeping front. That front keeps its shape, but the amplitude of that shape diminishes as ρȾὶ with 

distance ὶ from the emission location. The fronts proceed outwards with a fixed speed. The shape-

keeping front is a solution of the homogeneous second order partial differential equation that 

describes the dynamic behavior of the affected field. Later we will identify both the hop and the 

corresponding solution by using the name clamp for these phenomena. If this effect is integrated 

ƻǾŜǊ ǘƘŜ ǊŜƎŜƴŜǊŀǘƛƻƴ ŎȅŎƭŜ ƻŦ ǘƘŜ ǎǿŀǊƳΣ ǘƘŜƴ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǊŜǎǳƭǘǎΦ ¢ƘŜ ƛƴǘŜƎǊŀǘƛƻƴ ǘǳǊƴǎ 

the homogeneous second order partial differential equation into an inhomogeneous second order 

partial differential equation. The extra term that makes the equation inhomogeneous concerns the 

DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ ¢ƘŜ ŀƳǇƭƛǘǳŘŜ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŀƭǎƻ ŘƛƳƛƴƛǎƘŜǎ ŀǎ ρȾὶ with distance ὶ from the 

emission location. 

 Sets of clamps, sets of warps, and regeneration cycles 
The homogeneous second order partial differential equation offers two kinds of solutions that 

represent shape-keeping fronts. One kind concerns the spherical shape-keeping fronts. The second 

kind acts in one-dimension and not only keeps its shape, it also keeps its amplitude. 

(2) 

(3) 
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6.8.5.1 Swarms of clamps 

Hops that correspond to solutions, which represent spherical shape-keeping fronts will be called 

clamp hops or clamps. The same name is used for this type of solutions of the homogeneous second 

order differential equations. Clamps occur in swarms and reside on a platform that if the elementary 

module exists is private to that elementary module. During that episode, the symmetry center carries 

an ordered parameter space. Each elementary module type exists in a set of generations and each of 

these generations shows a cyclic regeneration period. The swarms have a corresponding number of 

elements. 

LƴǘŜƎǊŀǘƛƻƴ ƻŦ ŎƭŀƳǇ ǎƻƭǳǘƛƻƴǎ ƻǾŜǊ ǘƘŜ ǊŜƎŜƴŜǊŀǘƛƻƴ ŎȅŎƭŜ ǘǳǊƴǎ ǘƘŜƳ ƛƴǘƻ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴǎΦ 5ǳǊƛƴƎ 

that operation, the violent varying function that describes the living space field changes in a rather 

coherently varying function that represents a blurred representation of the original field. This blurred 

field represents the living space potential. From now on, if we speak about the living space, then we 

mean the living space potential. 

The living space potential may also cover spurious clamps. 

6.8.5.2 Strings of warps 

Hops that correspond to solutions, which represent one-dimensional shape-keeping fronts will be 

called warps. The same name is used for this type of solutions of the homogeneous second order 

differential equations. Among other possibilities, warps correspond to hops of platforms on which 

elementary modules may reside. Such warps occur in isolation or equidistant in strings. The warps do 

not deform their carrying field. Thus, the movement of the platform on which a swarm resides may 

be related to a spurious warp. 

Warp strings feature a spatial and a temporal frequency. We postulate that locally and in the same 

progression period, the warp strings will feature a fixed duration and a fixed spatial length that are 

the same for all warp strings. This makes it possible to distinguish the individual warp strings via their 

frequency. This frequency determines the information capacity of the string. Each string member 

carries a unit of information. The spatial length of the warp string is measured inside and with 

respect to the carrying field. Thus, the path of the string follows the deformation of the carrying field.  

The symmetry-related field Electra depends on the nearby existence of symmetry related charges 

and for that reason, it is not a good carrier for the long-range warps. In contrast, the Palestra exists 

always and everywhere and for that reason, it is a proper candidate as a carrier for long-range-warps. 

The homogeneous second order partial differential equation of the carrying field describes the 

corresponding warp solutions. These solutions feature a fixed speed. The spatial length determines 

the passage duration of an information messenger. That duration equals the (re)generation cycle of 

the string. 

The behavior of the warp strings invites their interpretation as information messengers. The spatial 

length postulate only holds locally. Taken over huge ranges of the carrying field or over a long period, 

the spatial length may vary in a smooth way. This phenomenon is the subject of the equivalent of 

IǳōōƭŜΩǎ ƭŀǿ. 

6.9 The Planck-Einstein relation 
The Planck-Einstein relation states that the frequency of an information messenger is proportional to 

the energy of the messenger string. Together with the fixed speed of the warps, this means that each 

member of the string carries a standard bit of energy and that, at least locally, all messenger strings 

feature the same length. 
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The consequence of the Planck-Einstein relation is that processes that are related to the emission or 

absorption of information messengers have a standard duration. This duration takes a fixed number 

of progression steps. 

It means that the model features two standard clocks. The first clock determines the rate at which 

the vane steps. The second clock determines the number of progression steps that the generation of 

information messengers take. 

6.10 Messenger redistribution and messenger redirection 
Some types of modular (sub)systems, which we will call atomic modular systems are capable of 

splitting information messengers into a set of new information messengers. Further, they can absorb 

information messengers and emit information messengers. During the split action, the hops are 

redistributed over the resulting parts, such that each part has again the correct spatial length. The 

emission can occur in a direction that is independent of the direction of which the messenger was 

absorbed. The duration of the absorption processes and the duration of the emission processes must 

be in concordance with the local passage duration of the information messengers.  

If the absorption takes place at a location that is a huge distance away from the emission location, 

then a difference between absorption spectra and emission spectra can occur. In physics, this 

phenomenon is known as cosmological redshift. 

The absorption and emission processes must obey spectral rules that determine the absorption and 

emission spectra. 

6.11 The symmetric pair production and annihilation process 
The pair creation and pair annihilation processes may be supported by procedures that construct quaternions from two 

complex numbers or that dismantle quaternions into complex numbers. 

Lƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΣ ǘƘŜ symmetric pair annihilation incident appears as if a pair of elementary 

ƳƻŘǳƭŜǎ ǘƘŀǘ ŀǊŜ ŜŀŎƘ ƻǘƘŜǊΩǎ ŀƴǘƛǇŀǊǘƛŎƭŜ ŎƻƴǾŜǊǘ ƛƴǘƻ ŀ ǇŀƛǊ ƻŦ ƭƛƴŜŀǊ ƳŜǎǎŜƴƎŜǊǎ ǘƘŀǘ ƭŜŀǾŜ ƛƴ 

opposite directions. It is the simplest pair annihilation process. In this process, each clamp element 

of the hopping path of the arriving elementary (anti)particle converts into a warp element of a linear 

hop string of a leaving messenger. The messengers leave in a direction that is perpendicular to the 

direction into which the elementary modules were approaching each other.  

The chance that the geometric centers of the elementary modules will meet head-on is very low. A 

ƳƻǊŜ ŀǇǇǊƻǇǊƛŀǘŜ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴ Ŏŀƴ ōŜ ƳŀŘŜ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǎǳŎƘ ǘƘŀǘ at the conversion 

instant the particle reflects against the vane and turns into the corresponding antiparticle that travels 

in the reverse direction of progression. Thus, not two particles appear to annihilate each other, but 

instead, a single particle converts into its antiparticle. ¢Ƙƛǎ ƛǎ ƻƴƭȅ ǇƻǎǎƛōƭŜ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ At 

the reflection point, each reflecting clamp causes the emission of two warps that leave in opposite 

directions, which are perpendicular to the direction of the original elementary particle. 

The model represents messengers as strings of equidistant hops in a complex number based 

subspace. The complex numbers represent function values. The leaving messengers are strings of 

warps that transport empty and thus massless platforms. The number of elements in the leaving 

strings reflect the number of clamps in the annihilated/reflected elementary modules. The spatial 

length of the information messengers determines the duration of the annihilation/reflection process. 

If each warp in the string carries a fixed bit of energy, then this process explains the mass-energy 

equivalence. 
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In line with the perception of the observers, during the pair annihilation process, the symmetry 

centers of the platforms are annihilated and therefore the symmetry related charges vanish. In the 

ŎǊŜŀǘƻǊΩǎ view, the charge just switches its sign. 

6.12 Pair creation 
Lƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΣ ŀt pair creation, the reverse process takes place. Two strings of warps that 

have a sufficient number of elements that enter from opposite direction combine to generate two 

swarms of clamps that constitute a particle-antiparticle pair. During the creation process, the 

symmetry centers of the platforms are created. Therefore, the symmetry related charges will 

emerge. 

In the creators view, the particle reflects on the future side of the vane. This reflection goes together 

with the reflection of a warp string at the history side of the vane. The electric charges exchange sign. 

6.13 Interpreting the pair creation/annihilation process 
¢ƘŜ ŎǊŜŀǘƛƻƴ ΨŜǾŜƴǘΩ ŀƴŘ ǘƘŜ ŀƴƴƛƘƛƭŀǘƛƻƴ ΨŜǾŜƴǘΩ ƻŎŎǳǊ ƛƴ ǘƘŜ ƴŜƛƎƘōƻǊƘƻƻŘ ƻŦ ǘƘŜ ǾŀƴŜΦ ¢ƘŜǎŜ 

processes are not occurring instantaneously. They take a fixed duration. However, each conversion of 

a clamp into a warp can take a single instant. In reverse, each conversion of a warp into a clamp can 

also take a single instant. Similarly, the emission and absorption processes of atomic modular 

systems take the same duration. Thus, the surround of the vane is reserved for these processes. 

Generations of elementary particles involve different numbers of swarm elements, but if no 

observable difference exists between the duration of the passage of the involved warp strings, then 

the active region around the vane can be subdivided in multiple step numbers. These subdivisions 

correspond to elementary module types and elementary module generations. 

Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ view, multiple reflections correspond to a zigzag progression travel of elementary 

modules. Thus, at a single passage of the vane the same elementary module can exist multiple times. 

6.14 Moving elementary modules 
On average, clamp swarms will not move with respect to the geometric center of its platform. The 

mechanism that ensures coherence of the swarm will ensure that the geometric center of the swarm 

will on average stay in the geometric center of the platform. The regeneration process can at the 

utmost generate some jitter  of the geometric center of the swarm with respect to its platform.  

Isolated warps and strings of warps may cause the hopping of the platform with respect to the 

background parameter space. Consequently, the platform hops with respect to the field that 

represents the living space of the elementary modules. Thus, a mixture of clamps and warps may 

cause the movement of the swarm relative to the geometry of this carrying field. 

It is not yet clear what causes the extra insertions of warps, however, a uniform movement of a 

platform already requires the regular insertion of isolated warps. This insinuates that isolated wraps 

can be generated due to the action of something that generates the displacement. These isolated 

wraps concern the hop of the platform as well as the hop landing location and the corresponding 

solution of the second order partial differential equation. 
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Part two 
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1 Task 
We will first recollect and deepen what we have achieved. After that, we will further extend the 

model by using results of what experimental observation of reality has revealed. In the resulting part 

of the paper we will use symbols for new and existing concepts and when appropriate, we will use 

these symbols in equations. In addition, we will refer to scientific documents that support the 

approach that is taken in this paper. 

2 The test model 
The Hilbert Book Test Model ︢  is based on a foundation that has the relational structure of an 

orthomodular lattice [1] [2]. Nearly a century ago, in 1936, the discovery of this lattice was published 

by the duo Garrett Birkhoff and John von Neumann in a paper in which they also explained its 

relation to the notion of a separable Hilbert space [3] [4]. The orthonormal lattice does not contain 

the notion of number systems. Thus, this foundation cannot represent the concepts that define 

dynamic geometric data, such as time and location. These notions emerge by extending this 

foundation in the direction of the separable Hilbert space. By selecting this extension of the 

foundation, the freedom of selection of derived concepts is significantly restricted. The separable 

Hilbert space provides operators that have countable eigenspaces that are filled with eigenvalues 

that must be members of division rings [5]. Only three suitable division rings exist. These are the real 

numbers, the complex numbers, and the quaternions. The separable Hilbert space can only cope 

with the rational versions of these number systems. These restrictions appear very favorable for the 

pursued model building process. It strongly limits the range of choices. Still the resulting possibilities 

appear to be flexible enough to generate a powerful base model. The combination of the infinite 

dimensional separable Hilbert space and its non-separable companion Hilbert space appears to 

represent a very feature rich and flexible model. 

The restrictions limit the freedom of model generation, but if the orthomodular lattice indeed 

represents the foundation of reality, then at the same time these restrictions limit the way that 

reality can develop. It means that reality must also show the structure and the behavior that the 

Hilbert spaces show. 

︢  does not interpret  the orthomodular lattice as a logical system and it does not interpret the 

elements of the lattice as separate spatial locations, which feature a progression stamp. Instead 

︢  interprets atomic elements of the orthomodular lattice as storage places for dynamic 

geometric data. In addition, ︢  interprets the atoms of a subset of the orthomodular lattice as 

elementary modules that are represented by hopping paths and corresponding location swarms. 

These objects are elementary modules of a modular system. These elementary modules are 

represented by subspaces of a separable Hilbert space, but these subspaces contain a huge 

number of dimensions. However, at each progression instant, these subspaces reduce to a ray, 

which is a subspace that is spanned by a single Hilbert vector. Therefore, ︢  interprets  the sub-

lattice of the orthomodular lattice as part of a recipe for modular construction. The sub-lattice 

will be called a modular configuration lattice.  

Modular construction represents a very beneficial strategy that strongly reduces the relational 

complexity of the target system. For very complex systems the modular construction strategy is 

orders of magnitude more efficient than a monolithic approach. Modular construction uses its 

resources in an optimally economic fashion. ︢  applies modular construction as a general 

strategy. Modular construction requires the encapsulation of modules, such that internal 

relations are hidden inside the capsule of the module. In some way, ︢  must implement that 

encapsulation. 



 

43 
 

Reality offers huge resources in available time and in numbers of building components. In this 

way, even stochastic design as is applied by nature can reach high levels of complexity. In the 

beginning, the model will apply a stochastic design as its generation strategy. This will change 

when the model has achieved a level in which intelligent species appear. From that instant on 

the efficiency of the modular construction strategy, will  on some locations increase significantly. 

Intelligent design and construction wil l use far less design and generation time and other 

required resources. This will clearly affect the evolution of the model. Due to the limited  speed of 

information spread, these effects will appear at isolated locations.  

As indicated earlier the selection of modular configuration by the creator includes important 

lessons for intelligent designers. 

 

ά¢Ih¦ {I![¢ /hb{¢w¦/¢ Lb ! ah5¦[!w ²!¸έ 
"DO NOT SPOIL RESOURCES!" 

ά¢!Y9 /!w9 hC ¢I9 ¢¸t9{ hb ²IL/I ¸h¦ 59t9b5έΦ 
άtw9{9w±9 ¢I9 ²9[C!w9 hC ¸h¦w [L±LbD 9b±Lwhba9b¢έΦ 

 

︢  applies the fact that the set of closed subspaces of a separable Hilbert space has the relational 

structure of an orthomodular lattice. Not all closed subspaces of a separable Hilbert space 

represent modules or modular systems, thus the notion of a module must be further restricted. 

︢  applies the fact that separable Hilbert spaces can only cope with number systems that are division 

rings. We use the most elaborate category of these division rings. That category is formed by the 

quaternionic number systems [8]. Quaternionic number systems exist in multiple versions, that differ 

in the way that they are ordered. This ordering may influence the arithmetic properties of the 

number system. For example, right handed multiplying quaternions and left handed multiplying 

quaternions exist. Further, as will be shown in this paper, it appears that ordering influences the 

behavior of quaternionic functions under integration. This fact has astonishing consequences. It 

enables the distinction of elementary modules into a small series of types. 

Another important fact is that every infinite dimensional separable Hilbert system owns a companion 

Gelfand triple, which is a non-separable Hilbert space [10]. Where the separable Hilbert space can 

only handle discrete data, is the Gelfand triple capable of handling continuums. ︢  uses both kinds of 

Hilbert spaces as structured storage media, in a model in which discrete quaternionic data as well as 

quaternionic manifolds can be archived. By applying Hilbert spaces ︢ accepts that the model uses a 

storage medium in which all its activities are precisely archived. This repository covers history, the 

present status quo, AND the future! A vane that represents the current static status quo scans over 

this repository. Observation only occurs inside this vane. The observers are modules and modular 

systems that travel with the vane. 

Even though the passage of the vane takes a small instant, the perception of information may take 

many steps, but each of these steps takes place when the vane passes at that progression instant. 

︢  uses a separable Hilbert space ᴎ to archive countable sets of discrete quaternionic data and 

︢  uses the companion Gelfand triple ꞊  to archive continuous quaternionic manifolds. ꞊  also 

contains an image of the content of ᴎ. ︢  uses this fact to describe the embedding of the separable 

Hilbert space into its Gelfand companion. ︢  considers the embedding as an ongoing process. In 

taking this view ︢  selects between two possible views. The view that is usually taken, classifies the 

model as a dynamic model. It also ŎƭŀǎǎƛŦƛŜǎ ǘƘŜ ǾƛŜǿ ŀǎ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΦ ¢ƘŜ ƻōǎŜǊǾŜǊǎ ǘǊŀǾŜƭ 
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with the vane. In the vane, the separable Hilbert space is embedded into its non-separable 

companion Hilbert space. The alternative view accepts that besides the historic data and the static 

status quo, the Hilbert spaces already contains the future data. This classifies this view as the 

ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ We also call this view the storage view. In this alternative view a subspace that splits 

the Hilbert space into three parts. We call this subspace the vane:  

¶ The past history part of the model 

¶ The current static status quo, which is represented by the subspace  

¶ The future part of the model 

¢ƘŜ ŎǊŜŀǘƻǊΩǎ view treats these three parts as sections of a model that is created as one whole 

system. 

︢  introduces the reverse bra-ket method and uses this method to relate operators and their 

eigenspaces to pairs of functions and their parameter spaces [9]. In this way, subspaces act as Hilbert 

space domains in relation to which manifolds are defined. This method allows differential operators 

to be treated as Hilbert space operators. 

In the ƻōǎŜǊǾŜǊΩǎ view, the base version ִי  of ︢  consists of the foundation, a quaternionic 

separable Hilbert space, its companion Gelfand triple and a set of mechanisms  that control the 

dynamic split of this base version ִי  in a historic part, a part that represents the present static status 

quo and a part that represents the future.  

The ƻōǎŜǊǾŜǊΩǎ view shifts the equivalent of the mystery of the origin of the dynamics of physical 

reality to the mysteries of a set of mechanisms that control the coherence of the dynamics of the 

model. In fact, it uses the characteristic function of the stochastic process that is applied by the 

private mechanism instead of the private wave function of the elementary module. 

︢  applies an extended version of the generalized Stokes theorem to describe the split of the Hilbert 

space into the mentioned three parts [11] [12]. The split implements the vane that travels through 

the base model. The vane represents a static status quo of the model. The generalized Stokes 

theorem enforces the encapsulation of artifacts that disrupt the continuity of the manifolds. This 

introduces an extra splitting of the base model in which elementary artifacts and domain cavities are 

set apart from the domains of the continuous parts of the manifolds.  

Via the reverse bra-ket method, smoothing operators are introduced that convolute the defining 

function of a primary operator with a blurring function. With an appropriate selection of the blurring 

ŦǳƴŎǘƛƻƴΣ ǘƘŜ ŜƛƎŜƴǎǇŀŎŜ ƻŦ ǘƘŜ ǎƳƻƻǘƘƛƴƎ ƻǇŜǊŀǘƻǊ ǿƛƭƭ ǊŜǇǊŜǎŜƴǘ ǘƘŜ άƻōǎŜǊǾŀōƭŜέ ǾŜǊǎƛƻƴ ƻŦ ǘƘŜ 

primary manifold. IŜǊŜ άƻōǎŜǊǾŀōƭŜέ ƳŜŀƴǎ ǘƘŜ ǿŀȅ ǘƘŀǘ ŘƛǎŎǊŜǘŜ ƻōƧŜŎǘǎ ǎŜƴǎŜ ǘƘŜ ƛƴŦƭǳŜƴŎŜ ƻŦ ǘƘŜ 

local disruptions of the continuity of the primary manifold that are caused by other discrete objects. 

In this way ︢  introduces notions such as the wave function, the uncertainty principle, and the 

equivalent of the gravitation potential. 

︢  allows two interpretations of the living space of modules and modular systems. One 

interpretation sees the living space as a field that describes the swarms that are formed by the 

landing locationǎ ƻŦ ǘƘŜ ƘƻǇǇƛƴƎ ǇŀǘƘǎ ƛƴ ŀ ǿŀȅ ǘƘŀǘ ƛǎ ōƭǳǊǊŜŘ ōȅ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘΦ 

¢Ƙŀǘ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ŀǾŜǊŀƎŜ ƻǾŜǊ ǘƘŜ ǊŜƎŜƴŜǊŀǘƛƻƴ ŎȅŎƭŜ ƻŦ ǘƘŜ ŘȅƴŀƳƛŎ ǊŜǎǇƻƴǎŜ ƻŦ 

the field to the hop landings. Special spherical symmetric solutions of the homogeneous second 

order partial differential equation that describes the dynamic behavior of the field describe these 

responses. During the travel, away from the hopping location, these solutions keep the shape of the 

moving front. 
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The second interpretation sees the hop landings as the actors that influence the field by deforming it. 

These different interpretations do not affect the model. 

The fact that ︢  steps with model wide steps in the separable Hilbert space ᴎ and flows in the 

companion Gelfand triple ꞊ is the reason to use the name Hilbert Book Model  for  ︢ .  

The author extends the name to Hilbert Book Test Model  to warn that ︢  is not meant to be a 

physical model. Instead ︢  is a pure mathematical test model that is used to investigate the 

mathematical tools and methods that can be use to describe a physical model. A separate static 

status quo of the Hilbert Book Model will be called a Hilbert book page or sheet.  
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2.1 Elementary module 
The symmetry center  defines a private platform    with identity   and type  . Together with the 

private mechanism  the symmetry center and the platform form a conglomerate that constitute 

the elementary module ɧ . The platform    floats over the background parameter space ד. The 

symmetry flavor of the platform determines the type of the elementary module ɧ . This includes the 

symmetry related charges and the spin of the elementary module. The mechanism  applies a 

stochastic process that has a characteristic function Ὢ . This characteristic function is the Fourier 

transform of the location density distribution ”  of the swarm hop landings that corresponds to the 

hopping path of the point-like elementary module ɧ .The location density distribution equals the 

squared modulus of the wave function of the elementary module. 

The hop landings trigger the clamps and the clamps deform the field in which the elementary particle 

is embedded. The swarm is continuously regenerated until the mechanism  changes the 

operation mode of the stochastic process. This occurs for example when the elementary module is 

detected. In that case the swarm and its location density distribution collapses. Reflection against a 

boundary will also affect the generation process. 

3 Partition of change 

3.1 Domains and parameter spaces 
The quaternionic domain ɱ is supposed to be defined as a closed part of the domain ᴘ of a 

reference operator ᴘ that resides in the non-separable quaternionic Hilbert space ꞊ . The reverse 

bra-ket method relates the eigenspace ή of reference operator ᴘ to a flat quaternionic function 

ᴘή. The target of function ᴘή equals its own parameter space ή. Here we explicitly use the 

same symbol ᴘ for all directly related objects. In  , ᴘή is always and everywhere continuous. 

 

ᴘ ȿήỚᴘήộήȿ ȿήỚήộήȿ 

 

The domain ᴘ is spanned by the eigenvectors ȿήỚ of operator ᴘ.  

The reverse bra-ket method also relates the eigenspace ᴘ to an equivalent eigenspace ד of a 

reference operator ד, which resides in the infinite dimensional separable Hilbert space ᴎ. Both 

eigenspaces are related to the same version of the quaternionic number system. However, the 

second eigenspace ד only uses rational quaternions ή.  

 

ד ȿήỚᴘήộήȿ ȿήỚήộήȿ 

 

Quaternionic number systems exist in several versions that differ in the way that they are ordered. 

Reference operator ד corresponds to the version of the quaternionic number system that is used for 

defining the values of the inner products of the Hilbert vectors. The parameter space that 

corresponds to the eigenspace of ד will be called the background parameter space.  

Quaternionic number systems can be ordered in several ways. Operator ד corresponds with one of 

these orderings. ד is supposed to be Cartesian-ordered. ד is a normal operator and its eigenspace is 

countable. Cartesian ordering means that the set of eigenvectors of ד can be enumerated by the 

(1) 

(2) 
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separate eigenvalues of ד. The eigenspace is the Cartesian product of four partially ordered sets in 

which the set, which represents the real part takes a special role. The eigenspace of the Hermitian 

part ד ϵ ד ד  of normal operator ד, can be used to enumerate a division of ᴎ into a 

countable number of disjunctive subspaces, which are spanned by eigenvectors of ד. Cartesian 

ordering means partial ordering of the eigenvalues of ד  and additional ordering of the eigenvalues 

of the anti-Hermitian operator ϵ ᴘ ᴘ  by selecting a Cartesian coordinate system. Eight 

mutually independent Cartesian coordinate systems exist. ד ד ד  Ⱦς is a self-adjoint 

operator. The ordered eigenvalues of ד  can be interpreted as progression values. The eigenvalues 

of  can be interpreted as spatial location values. This differs from the physical notions of time and 

space that contemporary physics uses. Physical spacetime has a Minkowski signature. Here we are 

talking about a mathematical test model. This test model uses a Euclidean space-progression 

structure ŦƻǊ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ŀƴŘ ŀ ǎǇŀŎŜǘƛƳŜ ǎǘǊǳŎǘǳǊŜ ǿƛǘƘ ŀ aƛƴƪƻǿǎki signature for the 

ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ. 

Parameter spaces, as well as domains, correspond to closed subspaces of the Hilbert spaces. The 

domain subspaces are subspaces of the domains of the corresponding reference operators. A 

selected coordinate system brings ordering to the parameter spaces. A part of the eigenspace of 

reference operator ᴘ represents the ɱ domain. The flat quaternionic function ᴘή defines the 

parameter space ᴘ. ᴘ has a Euclidean signature. It installs an ordering by selecting a Cartesian 

coordinate system for the eigenspace of its anti-Hermitian part ϵ ᴘ ᴘ . Several mutually 

independent selections are possible. The chosen selection attaches a corresponding symmetry flavor 

to this parameter space. In the mathematical test model, this symmetry flavor will become the 

reference symmetry flavor. Thus, the symmetry flavor of parameter space ᴘ  may be distinguished 

by its superscript  . 

The manifold which is  is also defined as the continuum eigenspace of a defined normal operator  

related to domain   and to parameter space ᴘ  via function . Within this parameter space,  may 

have discontinuities, but these must be excluded from the domain over which integration takes 

place. This exclusion will be treated below. 

3.2 Floating symmetry centers 
Symmetry centers are described by eigenspaces of special anti-Hermitian operators. The eigenspace 

acts as a spatial parameter space. Their geometric center can float as a function of progression over 

the background parameter space. Elementary modules reside on a private symmetry center. At every 

progression step, the residing elementary module uses only one location of the symmetry center. In 

combination, this produces a well-ordered operator where a single progression value corresponds 

with a single spatial location. A private mechanism applies a stochastics process, which owns a 

characteristic function, determines the spatial location. The mechanism produces a coherent 

location swarm that is characterized by a location density distribution, which is the Fourier transform 

of the characteristic function of the stochastic process. Further, a progression value can enumerate 

all swarm elements and in this way that procedure forms a stochastic hopping path. If the generated 

location is embedded in the embedding continuum, then the ordering of the symmetry center may 

conflict with the ordering of background parameter space that is used to define the embedding 

continuum. In that case, the embedded location acts as an artifact. The artifact will create a point-

like discontinuity in the embedding continuum. 
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3.3 Stokes theorem without discontinuities 
The generalized Stokes theorem stands for a combination of a series of integral continuity equations. 

Without discontinuities in the manifold a simple formula represents the generalized Stokes , 

theorem [11] [12]. 

 

Ὠ Ḱ    

 

The theorem can be applied when everywhere in ɱ the derivative dexists and when everywhere in  

ɱ the manifold  is continuous and integrable. The domain ɱ is encapsulated by a boundary ɱ. 

 

ɱṒɱ 

 

Ὠ. is the exterior derivative of   

3.4 Interpreting the exterior derivative 
In this paper, the manifolds and Ὠrepresent quaternionic fields  and Ὠ   , while inside ɱ the 

manifold represents the quaternionic boundary of the quaternionic field . These fields and  

manifolds correspond to defining functions ή and Ὠ ή. 

ᴘ is a flat quaternionic manifold, which is represented by the target of function ᴘήḰή. 

We presume that the exterior derivative Ä  of  can be interpreted by the following equations: 

 

Ä Ὡ


ὼ
Ὠὼ ὩὨὼ Ὡ



ὼ
Ὡ Ὀ  

 

Ὀ ḰὨὼ 


ὼ
 

 

Thus Ä  is represented by a tensor. Tensor equations acknowledge the applied coordinate systems. 

This is not a very attractive presentation. It is elaborate and rather obscure. It is more convenient to 

treat the change along the directions in which change takes place in accordance to the first order 

partial differential equations. This opens the possibility to apply the corresponding conventional 

Stokes and Gauss theorems. 

Due to their reliance on tensor equations, the exterior derivative differs from the partial differentials 

that appear in partial differential equations. 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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Ὡ Ὡ  

ᶯ Ὡ


ὼ
Ὡ Ὡ



ὼ
ὩὩ Ὡ   

 

In the right parts of the above formulas, the summation rules for subscripts and superscripts are 

applied.  

In contrast to the terms in tensor equations, the terms in the partial differential equations follow the 

directions in which change takes place. 

The first order partial differential equation describes the total change and it divides this change along 

the lines in which that change takes place. This partitioning can also be applied to the integral 

balance equation. 

First, we focus onto the spatial part  of the quaternionic parameter space ᴘ. It means that we only 

use the spatial parts ộȟỚ,  and  of the first order differential equation. 

 

ᶯ ᶯ ộȟỚ ᶯ  

 

If  represents a rather static living space potential, then in this formula the black terms on the right 

side can be considered small and will be neglected. 

This corresponds with a directed partitioning perpendicular to a surface element: 

 

♩ ♩ ộ♩ȟỚ  ♩ ᵼ▪ ▪ ộ▪ȟỚ  ▪   

 

Here, ▪ is the normalized vector that is placed perpendicular in the center of the surface element. 

 

The generalized Stokes theorem represents the integral based balance equation that is equivalent to 

the differential based equation that represents the partition of change along the lines in which 

change takes place. That same partition is possible in the integral balance equations. 

If in a spatial domain, function  obeys the homogeneous equation 

 

♩♩ π 

 

then the function  and the corresponding field  is considered regular in that domain. For functions 

 that are this kind of regular in spatial domain ὠ hold: 

(3) 

(4) 

(5) 
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♩ ▪  

 

ḁ ♩ ḃ ▪  (gradient theorem) 

 

ḁ ộ♩ȟỚ ḃộ▪ȟỚ (divergence theorem) 

 

ḁ ♩ ḃ ▪  (curl theorem) 

 

If we try to interpret these integrals, then they compute the contributions to the balance of change 

in the closed boundary that in each of its points locally is perpendicular to unit vector ▪. 

 

♩ ᵼ▪  

 

ộ♩ȟỚᵼộ▪ȟỚ 

 

♩ ᵼ▪   

 

♩ ᵼ▪  

 

In fact, equation (10) comprises equation (11) through (13). 

 

♩ ♩ ộ♩ȟỚ  ♩ ᵼ▪ ▪ ộ▪ȟỚ  ▪   

 

If variation with progression is included two extra terms appear. They represent the change with 

progression  ɳ : 

 

ᶯ ᶯ ᶯ ộȟỚ  ɳ  

 

The conventional generalized Stokes theorem is, in fact, a combination of multiple versions. One is 

the using the divergence part of the exterior derivative ὨIt is also known as the generalized . 

divergence theorem. Another version uses the curl part of the exterior derivative. In fact, all these 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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versions concern separate terms that exist in the first order partial differential. Thus, the partition of 

the generŀƭƛȊŜŘ {ǘƻƪŜǎ ǘƘŜƻǊŜƳ ŘƛǾƛŘŜǎ ǘƘŜ ƛƴǘŜƎǊŀǘƛƻƴ ŀƭƻƴƎ ǘƘŜ άƭƛƴŜǎέ ƛƴ ǿƘƛŎƘ ŎƘŀƴƎŜ ǘŀƪŜǎ ǇƭŀŎŜΦ  

The conventional version of the Stokes theorem does not apply all terms of the first order partial 

differential. For quaternionic manifolds, all terms can be combined in one formula. This results in the 

quaternionic generalized Stokes theorem and that is the version that will be used here. Usually, the 

domains cover a static status quo or we integrate over the regeneration period such that variation 

with time becomes small or negligible. The static status quo is characterized by three changes, a 

divergence, a gradient and a curl. The other two changes concern what disappears into history and 

what comes in from the future. The parts concern the change of the scalar and vector fields that 

often represent blurred views of weighted location density distributions. 

Without discontinuities in the quaternionic manifold a simple formula represents the quaternionic  

generalized Stokes theorem.  

 

Ὠ Ḱ    

 

The theorem can be applied when everywhere in ɱ the derivative dexists and when everywhere in  

ɱ the manifold  is continuous and integrable. The domain ɱ is encapsulated by a boundary ɱ. 

 

ɱṒɱ 

 

3.5 Handling artifacts 
Via quaternionic defining functions, the reverse bra-ket method couples the separable Hilbert space 

to its non-separable companion.  

The defining function ꞈ Ñ links the integral over the full quaternionic ή numbers to the 

summation over the rational ήnumbers. 

 

ộὼȿꞈ ώỚ ộὼȿήỚꞈ ήộήȿώỚ ộὼȿήỚꞈ ήộήȿώỚ Ὠή 

 

This corresponds to: 

 

ꞈ ꞈ ộὼȿήỚꞈ ήộήȿώỚ 

 

Ὠꞈ ộὼȿήỚꞈ ήộήȿώỚ Ὠή 

(16) 

(3) 

(1) 

(2) 

(3) 
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This divides the region over which the equation works into two parts. One in which summation 

equals integration and a region or a set of regions where integration does not work properly due to 

the existence of discontinuities of ꞈή in those sub-regions. Exchanging ꞈή against a smoothed 

version can completely or partly cure this problem. 

The quaternionic generalized Stokes theorem allows circumventing the inclusion of artifacts in the 

integration domain. In that case, the artifacts must be encapsulated and treated separately. 

3.6 A special domain split 
In the special splitting case that is investigated here, the quaternionic generalized Stokes theorem 

constructs a vane ●ȟ† between the past history of the field ●ȟὸ  and the future 

●ȟὸ  of that field. It means that the boundary ●ȟ† of field ●ȟὸ  represents a 

universe wide static status quo of that field.  

More specifically, the form of the generalized Stokes theorem for the sketched situation runs as: 

 

Ä ὼ ᶯ ὼ Ὠὼ᷈Ὠώ᷈Ὠᾀ Ὠ᷈† ●Ὠ●  

 

ὼ ● † 

 

Here ●ȟὸ  represents the static status quo of a quaternionic field at instance †. ὠ represents 

the spatial part of the quaternionic domain of , but it may represent only a restricted part of that 

parameter space. This last situation corresponds to the usual form of the divergence theorem. 

Great care must be taken by interpreting the wedge product in  

Ä ὼ ᶯ ὼ Ὠὼ᷈Ὠώ᷈Ὠᾀ᷈Ὠ†. 

Due to the danger of misinterpretation, we will avoid the wedge products that appear in the middle 

part of equations (1) and (3). In the right part of the equation, only the divergence, the curl, and a 

gradient play a role. The split that has been selected, sets a category of operators apart that are all 

Cartesian-ordered in the same way as operator ד is. It enables a space-progression model in which 

progression steps in the separable Hilbert space ᴎ and flows in its non-separable companion ꞊ . Via 

the reverse bra-ket method the Cartesian-ordering of ד can be transferred to ᴘȢ 

 Interpretation of the selected encapsulation 
The boundary ɱ is selected between the real part and the imaginary part of domain ᴘ. But it also 

excludes part of the real part. That part is the range of the real part from † to infinity. Parameter † is 

interpreted as the current progression value.  

The boundary ɱ has one dimension less than the domain ɱ. The form of the partition and the 

failing dimension correspond to directed partitioning perpendicular to a surface element of the 

differential equation.  

 

(1) 

(2) 

(3) 
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♩ ♩ ộ♩ȟỚ  ♩ ᵼ▪ ▪ ộ▪ȟỚ  ▪   

 

In the special split, the vane that represents the static status quo of the model represents the 

splitting boundary. This includes most of the three-dimensional spatial part of the parameter space 

that corresponds to the vane. The theorem does not specify the form of the partition but requires 

that the partition form does not traverse discontinuities or regions in which the defining function is 

not defined. Thus, if the partition wipes through the parameter space and encounters discontinuities 

or regions in which the defining function is not defined, then the partition must encapsulate these 

objects while it passes them. These encapsulating partitions become part of a separate set of 

boundaries. In this way, these objects stay outside of the boundary ɱ. In this way, symmetry 

centers and space cavities become objects that float as encapsulated modules over the domain ɱ. If 

they enter the partition ƛƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ, then they can be considered created. If they keep 

floating with the partition, then these objects are alive. If they have completely passed the partition, 

then they can be considered to have been annihilated. Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΣ ŀ long lifetime will 

correspond to a tube-like history and a corresponding tube-like future. In this view, at some 

progression instants, the tube may reflect against the current vane. Thus, ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΣ the 

tube paints a zigzag path through the space-progression domain ɱ. 

The future ᴘ ɱ is kept on the outside of the boundary ɱ. Consequently, the mechanisms that 

generate new data, operate on the rim ɱ between past ɱ and future ᴘ ɱ. Two interpretations 

are possible. Either, the mechanisms generate data that was not yet present in the Hilbert spaces, or 

the mechanisms represent the data that are encountered during the passage of the partition. The 

observers ƻƴƭȅ ǇŜǊŎŜƛǾŜ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ. They see a creation or an annihilation of the observed 

elementary module pair ǿƘŜǊŜ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǊŜǾŜŀƭǎ ŀ ǊŜŦƭŜŎǘƛƴƎ ƭƛŦŜ ǘǳōŜ. Model  is not 

affected by the selected view. It enables both views.  

In  the observers live inside the wiping boundary (the vane). In the ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ, the creator of 

the model appears to throw dices!  

In ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ, a set of dedicated mechanisms represents the activity of the creator. These 

mechanisms apply stochastic processes. Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΣ ŀll generated dynamic geometric data 

are created and stored in a single stroke. In this view, causality only makes sense after ordering of 

ǘƘŜ ǇǊƻƎǊŜǎǎƛƻƴ ǇŀǊǘ ƻŦ ǘƘŜ ΨŘȅƴŀƳƛŎΩ ƎŜƻƳŜǘǊƛŎ ŘŀǘŀΦ 

The described split of quaternionic space results in a space-progression model that resembles a 

significant extent the way that physical theories describe their space-time models. However, the 

current physical theories do not explicitly distinguish between the observerΩs view and the storage 

view. ¢ƘŜ ŀŘƘŜǊŜƴǘǎ ƻŦ ǘƘŜ ǎŎƛŜƴǘƛŦƛŎ ƳŜǘƘƻŘ ƻƴƭȅ ŀŎŎŜǇǘ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΦ  

The quaternionic storage model is strictly Euclidean. ¢ƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǊŜǇǊŜǎŜƴǘǎ ǘƘƛǎ storage view. 

¢ƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ ǊŜǇǊŜǎŜƴǘǎ ŀ ǎǇŀŎŜǘƛƳŜ ǎǘǊǳŎǘǳre, which has a Minkowski structure. 

The paper does not claim that this quaternionic space-progression model reflects the structure and 

the habits of physical reality. The quaternionic space-progression model is merely promoted as a 

mathematical test model. 

It is possible to see what in accordance with the selected interpretation happens in the mathematical 

test model as an ongoing process that embeds the subsequent static status quos of the separable 

Hilbert space into the Gelfand triple. 

(1) 
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Controlling mechanisms act as a function of progression † in a stochastic and step-wise fashion in the 

realm of the separable Hilbert space. The results of their actions are stored in eigenspaces of 

corresponding stochastic operators that reside in the separable Hilbert space. These stochastic 

operators differ from the kind of operators that are handled by the reverse bra-ket method. 

However, if the stochastic mechanisms that provide the stochastic operators with their eigenvalues 

produce coherent swarms that feature a continuous location density distribution, then that 

distribution corresponds with an operator that is defined by this distribution via the reverse bra-ket 

method. 

The tube reflection instants indicate the existence of an interaction between the location generating 

mechanisms and the field that gets deformed by the clamps. If the deformation of the affected field 

gets so strong that the clamp can no longer extend over a barrier, then the clamp reflects and the 

swarm of clamps moves into the reflected direction. It means that the surface direction vector ▪ 

switches sign. ♩ switches into ♩. The platform on which the elementary module resides, switches 

its symmetry flavor. 

At a single progression instant, the part that belongs to the current static status quo in the separable Hilbert space is 

embedded into its companion Gelfand triple. The controlling mechanisms will provide all generated data with a progression 

stamp that equals the progression instant †. This progression stamp reflects the state of a model wide clock tick. The whole 

model, including its άphysicalέ fields will proceed with these progression steps. However, in the Gelfand triple this 

progression can be considered to flow.  

The model does not change by selecting one of the two possible views. However, the selected view has significant 

consequences for the description of the model. In ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΣ any forecasting will be considered as mathematical 

cheating. Thus, at the vane, the uncertainty principle does not work for the progression part of the parameter spaces. 

Differential equations that offer advanced, as well as retarded solutions, must reinterpret the advanced solutions and turn 

them into retarded solutions, which in that case represent another kind of object. If the original object represents a 

particle, then the reversed particle is the anti-particle. Thus, the events that represent appearing or disappearing 

elementary modules ƛƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ will show as reflections at the boundary of the path of a single elementary 

module in ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ. In absence of creation and annihilation events ƛƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿΣ the tube that represents 

ǘƘŜ ŜƭŜƳŜƴǘŀǊȅ ƳƻŘǳƭŜ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ passes undisturbed through the boundary. The tube zigzags through the 

space-ǇǊƻƎǊŜǎǎƛƻƴ ŘƻƳŀƛƴ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿΦ The cause of the reflections is still obscure. 

Because of the construct, the history, which is stored, free from any uncertainty, in the already processed part of the 

eigenspaces of the physical operators, is no longer touched. Future is unknown or at least it is inaccessible for observation. 

3.7 Integrating irregular functions  
We can use the gradient of the inverse of the spatial distance ȿ▲ ╬ȿ. 

 

♩
ρ

ȿ▲ ╬ȿ

▲ ╬

ȿ▲ ╬ȿ
 

 

The divergence of this gradient is a Dirac delta function. 

 

▲ ╬
ρ

τ“
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ρ

ȿ▲ ╬ȿ
Ớ

ρ

τ“
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ȿ▲ ╬ȿ
 

 

This means that: 

(1) 

(2) 
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‰╬ ▲▲‰ ╬
ρ

τ“
‰▲ộ♩ȟ♩Ớ

ρ

ȿ▲ ╬ȿ
 

 

As alternative, wŜ Ŏŀƴ ŀƭǎƻ ǳǎŜ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ Ὃ▲ of the partial differential equation. 

 

‰╬ ‰▲Ὃ▲ ╬ 

 

For the Laplacian ộ♩ȟ♩Ớ this obviously means: 

 

ộ♩ȟ♩Ớ ‰▲ 

 

Ὃ▲ ╬
ρ

ȿ▲ ╬ȿ
 

 

However, ǿƘŜƴ ŀŘŘŜŘ ǘƻ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΣ every solution Ὢ of the homogeneous equation 

 

ộ♩ȟ♩ỚὪ π 

 

is also a solution of the Laplace equation. 

 

‰╬
‰▲

ȿ▲ ╬ȿ
 

 

Function ‰╬ can be interpreted as the potential that is raised by charge distribution ‰▲. 

In pure spherical conditions the Laplacian reduces to: 

 

ộ♩ȟ♩Ớ ὶ
ρ

ὶ



ὶ
ὶ
 ὶ

ὶ
 

 

For the following test function ὶ this means [13]: 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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ὶ
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Thus, for a Gaussian location distribution ”ὶ of point-like artifacts the corresponding contribution 

to field ὶ equals an error function divided by its argument. At first sight this may look in 

contradiction with equations (4)  (8), but here the distribution of artifacts extends over the 

boundary of domain ὠ. 
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Figure 1. Close to the geometric center, the singularities are converted into a smooth function. 

Further from the center, ǘƘŜ ŦƻǊƳ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ (1/r) is retained. 

The test function does not represent the action of a mechanism that ensures the dynamic coherence of a real object. It is 

a pure mathematical example. 
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3.8 The detailed generalized Stokes theorem 
We separate all point-like discontinuities from the domain ɱ by encapsulating them in an extra 

boundary. Symmetry centers represent spherically ordered parameter spaces in regions (  that float 

on a background parameter space ᴘ. The boundaries (  separate the regions (  from the domain 

ɱ. The regions (  are platforms for local discontinuities in basic fields [x]. These fields are 

continuous in domain ɱ (.  

 

Ὄ (  

 

The symmetry centers  are encapsulated in regions (  and the encapsulating boundary (  is 

not part of the disconnected boundary which encapsulates all continuous parts of the quaternionic 

manifold .that exist in the quaternionic model  

 

Ὠ 
᷾

  

 

In fact, it is sufficient that (  surrounds the current location of the elementary module. We will 

select a boundary, which has the shape of a small cube of which the sides run through a region of the 

parameter spaces where the manifolds are continuous. 

If everywhere on the boundary we take the unit normal to point outward, then this reverses the 

direction of the normal on ( , which negates the integral. Thus, in this formula, the contributions 

of boundaries (  are subtracted from the contributions of boundary ɱ. This means that ɱ also 

surrounds the regions ( . This fact renders the integration sensitive to the ordering of the 

participating domains. 

Domain ɱ corresponds to part of the reference parameter space ᴘ . As mentioned before the 

symmetry centers  represent encapsulated regions (  that float on parameter space ᴘ . 

The geometric center of symmetry center  is represented by a floating location on parameter 

space ᴘ . 

The relation between the subspace Ὓ that corresponds to the domain ɱ and the subspace Ὓᴘ that 

corresponds to the parameter space ᴘ  is given by: 

 

ɱṒᴘ
ᴘ

 

Similarly: 

 

(1) 

(2) 

(3) 

(4) 
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3.9 Symmetry flavor and the origin of the symmetry related charge 
The symmetry center  is characterized by a private symmetry flavor. That symmetry flavor relates 

to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is 

fixed, then eight independent Cartesian orderings are possible. We use the Cartesian ordering of ᴘ  

as the reference for the orientation of the axes. ᴘ  has the same Cartesian ordering as ד  has. 

 

Ὠ   

 

In this formula, the boundaries ⸗♦ and ⸗╗▪
● are subtracted from each other. The difference in 

ordering of the domains ɱ and (  controls this subtraction. 

Due to the smoothness of the embedding field, we have some freedom with the spatial placement of the encapsulating 

boundaries. We exploit that freedom by selecting a cubic, rather than a spherical encapsulation of the point-like 

discontinuities. The cube is aligned along the coordinate axes. This enables us to correctly determine the influence of the 

differences in ordering along the coordinate axes. 

The consequence of the differences of the symmetry flavor on the subtraction can best be 

comprehended when the encapsulation (  is performed by a cubic space form that is aligned along 

the Cartesian axes. Now the six sides of the cube contribute different to the effects of the 

encapsulation when the ordering differs from the Cartesian ordering of the reference parameter 

space ᴘ . Each discrepant axis ordering corresponds to one third of the surface of the cube. This 

effect is represented by the symmetry related charge and the color charge of the symmetry center. 

It is easily related to the algorithm which is introduced for the computation of the symmetry related 

charge. Also, the relation to the color charge will be clear. Thus, this effect couples the ordering of 

the local parameter spaces to the symmetry related charge of the encapsulated elementary 

module. The differences with the ordering of the surrounding space determines the value of the 

symmetry related charge of the object that resides inside the encapsulation! 

The symmetry-related charge and the color charge of symmetry center  are supposed to be 

located at the geometric center of the symmetry center. ! DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǘƻƎŜǘƘŜǊ ǿƛǘƘ ǘƘŜǎŜ 

charges can represent the local defining function • ή of the contribution •  to the symmetry 

related field  within and beyond the realm of the floating region ( . 

Nothing else than the discrepancy of the ordering of symmetry center  with respect to the 

ordering of the parameter spaces ד and ᴘ  causes the existence of the symmetry related charge, 

which is related to the symmetry center. Anything that resides on this symmetry center will inherit 

that symmetry related charge. 

3.10 Single symmetry center 
(  is a spatial domain. The regions (  that are combined in Ὄ are excluded from domain ɱ. The 

Stokes theorem does not hold for the separate regions ( . Instead, the difference between the 

integrals defines a potential. In case of isotropic symmetry flavor of the symmetry center  holds: 

 

ὗ ȿ▲ ╬ȿ Ὠ   

(1) 

(1) 
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╬ is the geometric center of symmetry center . Value ὗ  is the symmetry related charge. This 

corresponds to the symmetry related potential • ή that exists at the outskirts of the 

encapsulation. 

 

• ▲
ὗ

ȿ▲ ╬ȿ
Ὠ  

 

The potential • ▲ Ἣ  contributes to the symmetry related field . 

3.11 Bounded center 
A locally a spatially connected union ὌṞ of encapsulations (  is defined by: 

 

ὌṞ (  

ὌṞ encapsulates multiple symmetry centers. In case that ὌṞ exists, we consider the objects that 

reside within that encapsulation ὌṞ as bounded by the symmetry related charges. 

 

‰ ▲
ὗ

ȿ▲ ╬ȿ
 

 

At large enough distance from this bounded center, all charges can be considered merged in a single 

charge with symmetry-related potential function ‰ή: 

 

‰ή
В ὗ

ȿ▲ ►ȿ
 

 

►
ρ

ὔ
╬ 

 

3.12 Discrepant regions 
The symmetry centers correspond to point-like discontinuities. However, also large connected 

regions of ᴘ  may exist that disrupt the continuity of the manifold. For example, a region that is 

surrounded by a boundary where the deformation is so strong that information contained in ʖ 

cannot pass the boundary of this region. These regions must also be separated from domain ɱ. In 

this way, these regions will correspond to cavities in the domain ɱ. The information contained in the 

(2) 

(1) 

(2) 

(3) 

(4) 
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manifold cannot pass the surface of the cavity. The cavities act as information holes. Within the 

cavity, the manifold can be considered non-existent or it is defined in a different way. Within that 

region, it has no or a different defining function. 

Current mathematical integration technology appears to lack proper solutions for this situation. 

Discrepant regions cannot be hidden by applying a smoothing operator to the underlying field. 

¢ƘŜ ŘƛǎŎǊŜǇŀƴǘ ǊŜƎƛƻƴǎ ŀǊŜ ǘƘŜ άōƭŀŎƪ ƘƻƭŜǎέ ƻŦ ǘƘŜ ƳƻŘŜƭΦ 
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4 Compartments 
The universe can be divided into compartments that act as envelopes of black holes. An event 

horizon characterizes the black hole. That horizon corresponds to the boundary where the escape 

speed exceeds the speed of light. 

4.1 Clamps and the event horizon 
The test function ὉὶὪὶȾὶ describes the deformation of the embedding field that a Gaussian 

distribution of hop landings generates in free space. First, we consider the situation that the 

presence of a barrier in the form of an event horizon does not hamper the spread of the clamps. This 

result only occurs when the density of the clamps stays low enough.  

If the region is covered by a swarm of clamps and a location density distribution ”ή characterizes 

the location swarm, then the clamps cause a deformation of the embedding field that is given by the 

convolution of ”ή with the DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ Ὃ▲. 

The undisturbed clamp function 
 ȿ▲ ►ȿ

ȿ▲ ►ȿ
 is the solution of the homogeneous second order partial 

differential equation:  

ᶯɳᶻ  ᶯᶯ ộȢỚ π  

In free space after integration over a long enough period, ǘƘŜ ŎƭŀƳǇ ǊŜǎǳƭǘǎ ƛƴ ŀ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ 

'Ἱ Ἲ ᷿
 Ὢὧ†ȿ▲ ►ȿ

ȿ▲ ►ȿ
Ὠ†

Á

ȿἹ Ἲȿ
 

The integration effectively converts the homogeneous second order partial differential equation into 

an inhomogeneous second order partial differential equation. 

ộȢỚὋ ὀ ὀ  τ“ Á ὀ ὀ  

This can be comprehended via the reactions of the field on point-like disturbances.  

 

ρ

ȿὀ ὀȿ

ὀ ὀ

ȿὀ ὀȿ
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ȿὀ ὀȿ
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This DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƛǎ ŎƻƴǾƻƭǳǘŜŘ ǿƛǘƘ ǘƘŜ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ ƭƻŎŀǘƛƻƴǎ ƻŦ ǘƘŜ ƘƻǇǎ ǘƘŀǘ 

initiate the clamps. 

 ‰Ἱ ḁ ”▲'Ἱ Ἲ Ὠ► ḁ ”᷿▲
 ȿ▲ ►ȿ

ȿ▲ ►ȿ
Ὠ►Ὠ†  

This equation describes the situation in free space and in the absence of an event horizon. The 

existence of the event horizon blocks the free spread of the clamp. This can be solved by splitting the 

integral into a volume integral and a surface integral.  

 

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 
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ộȟỚ ộἶȟἶỚ Ƞ×ÈÅÒÅ  ”ʐ Ὃ 

 

In the selected boundary surface, each clamp is represented by a contribution that equals the effect 

ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻƴ ǘƘƛǎ ōƻǊŘŜǊΦ  

 

ộȟỚὋ Ὃ  
Á

ȿἹ Ἲȿ
 

 

Independent of the surface of the boundary, each clamp imposes the same effect to the boundary. 

Each clamp takes the same amount of boundary area.  

The effect of each contributing clamp to the mass and thus the energy equivalent of the clamp is 

independent of that area. The mass of the enclosed region is proportional to the number of clamps. 

If the trace of each clamp takes a fixed area on the event horizon and if the area of this horizon is 

completely covered with these patches, then the black hole is optimally packed with clamps and the 

ōƭŀŎƪ ƘƻƭŜΩǎ Ƴŀǎǎ ƛǎ ǇǊƻǇƻǊǘƛƻƴŀƭ ǘƻ ǘƘŜ ŀǊŜŀ ƻŦ ǘƘŜ ŜǾŜƴǘ ƘƻǊƛȊƻƴΦ ¢Ƙƛǎ ŦŀŎǘ may give rise to the 

interpretation of the ensemble of clamps as the entropy of the enclosed region. It is proportional to 

the amount of hidden information.  

We postulate that the horizon of the black hole is optimally packed with traces of clamps. The 

horizon is the place where the deformation of the embedding field inhibits the further extension of 

clamps of which the triggers are located inside that horizon. Each addition of a trigger location must 

add a standard patch to the surface of the horizon. 

The black hole itself is enclosed by an envelope that corresponds to the densest packaging of 

entropy. The amount of entropy that is enclosed is proportional to the area of the enclosure. For 

each enclosure holds that the enclosure represents a description of all enclosed clamps and warps 

that are enclosed. 

The number of clamps ὔ in a black hole is proportional to the area ς“Ὑ  of its enclosure. It is 

proportional to the mass ὓ of the black hole. 

ὓ  ς“Ὑ  

If the clamps have a Gaussian location distribution, then the test function offers a suitable 

description of a spherical black hole. It means that the potential does not show a singularity. 

For the black hole, the radius for the escape velocity of the fronts lays within the range of the 

distribution of the clamps. 

This escape velocity Ὑ equals  

Ὑ
ςὋὓ

ὧ

τ“ὋὙ

ὧ
 

At this radius, the clamps can no longer leak away and must contribute to the deformation. 

(8) 

(9) 

(10) 

(11) 
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4.2 Photon bending 
Somewhat further away than the event horizon exists a surface where photons keep encircling the 

black hole. This is an unstable state. Inside that surface, most of the photons turn back to the black 

hole. Outside of this surface photons that are directed in a tangent direction are bend toward the 

black hole but do not enter the surface. This effect is known as lensing. 

4.3 Inside the event horizon 
Inside the event horizon. still a continuous distribution of clamps can exist. Just as with the field in 

the direct environment of elementary modules, the field will not feature a singularity. Thus, also here 

the test function will give an idea of the field inside a black hole. 

While elementary modules can zigzag in free space, a similar zigzag can occur inside the black hole. 

The reflection points are located at the boundary. This would mean that at the reflection points 

photons will be emitted. Most of these photons will be bent back to the black hole. 

4.4 The holographic principle 
At every enclosure that surrounds the event horizon of a black hole, the space beyond the black hole 

will be relatively simple. Every enclosed clamp will have a representation on the enclosure. The event 

horizon of the black hole encloses the most efficient packaging of clamps. 

4.5 The black hole as a black body 
The collection of clamps and warps that exist in a black body must be treated with the equations of 

Planck. Clamps and warps do not represent electromagnetic radiation. 

5 Elementary modules 
Each elementary module resides on a private platform, whose spatial part corresponds to a private 

symmetry center. A symmetry flavor characterizes that symmetry center. Symbol ▪
● will represent 

the symmetry center. The superscript refers to the type of the elementary module and the subscript 

refers to the identity of the elementary module inside its type group. A germ operator ᴤ  generates 

the hopping path and the location swarm that correspond to the identity of the elementary module. 

The mechanism that ensures the dynamic coherence of the location swarm picks the eigenvalues of 

the germ operator ᴤ  from the platform that corresponds to symmetry center ▪
●. 

For the operator ᴤ  that describes via its eigenvalues ǘƘŜ ΨƭƛŦŜΩ ƻŦ ǘƘŜ ŜƭŜƳŜƴǘŀǊȅ ƳƻŘǳƭŜΣ Ŝach 

subsequent real progression value is accompanied by an imaginary part and together these parts 

form the eigenvalue that belongs to the Hilbert vector, which at this progression instant represents 

the elementary module. This single value has not much to say about the owner of this eigenvalue. 

Only a series of subsequent eigenvalues can do that job. A large series of these numbers can tell the 

types of elementary modules apart. These subsequent quaternionic numbers form a hopping path. 

After a while these numbers form a dynamic location swarm. The spatial parts of these numbers are 

taken from symmetry center ▪
●. that due to this role determines part of the properties of the 

elementary module. Thus, the hopping path and the location swarm reside on the platform that 

corresponds to the symmetry center. Thus, all elementary modules reside on their own individual 

symmetry center. The symmetry center covers a closed subspace and the module covers a subspace 

of that subspace. The private symmetry center floats over a background parameter space and the 

map of its center location onto the background parameter space is a function of progression.  

The map of the location of the geometric center of the floating symmetry center onto the 

background parameter space is not part of the eigenspace of the anti-Hermitian operator ▪
●, but it 

is a property of the symmetry center. This floating location is also a property of the elementary 



 

65 
 

module and is formulated in terms of a value of the background parameter space ᴘ. This reference 

operator is a normal operator and provides full quaternionic eigenvalues that can represent 

progression values as well as spatial locations. 

The model embeds the swarm into the Palestra field that represents its living space. This embedding 

act deforms the field. The action involves a convolution of the location density distribution of the 

swarm ǿƛǘƘ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘ ǘƘŀǘ ǊŜǇǊŜǎŜƴǘǎ ǘƘƛǎ ƭƛǾƛƴƎ ǎǇŀŎŜΦ ¢ƘŜ ǎǿŀǊƳ is, in fact, 

ŀƴ ƛƴǘŜƎǊŀǘƛƻƴ ƻǾŜǊ ǘƘŜ ǊŜƎŜƴŜǊŀǘƛƻƴ ŎȅŎƭŜ ƻŦ ǘƘŜ ƘƻǇǇƛƴƎ ǇŀǘƘ ŀƴŘ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ is, in fact, an 

integration over the dynamic response of the field during this regeneration cycle. Similarly, the 

DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ is, in fact, an integration over the regeneration cycle of the dynamic response of the 

living space field in reaction on the corresponding hop landing. Each landing location in the hopping 

path corresponds with a sudden point-like trigger that affects the field. A special solution of the 

homogeneous second order partial differential equation describes that response. The response 

represents the behavior of the field when such artifacts trigger this field. The response deforms this 

field and the convolution accounts for the deformation due to all triggers that are members of the 

location swarm. The convolution involves an integral. This reasoning implies that the generation of 

the swarm is an ongoing process.  

If the generation stops, then the swarm collapses. This collapse includes the collapse of the 

corresponding location density distribution. The reason can be that the mechanism, which is 

responsible for the generation of the swarm decides to switch to another operation mode. 

Two fields are involved. One field represents the living space Palestra. The result of the convolution is 

the living space potential. The other field is the symmetry related field Electra. The integral that 

concerns the symmetry related field must take the differences in the ordering of the involved 

platforms in the account. The generalized Stokes theorem best explains this. That theorem converts 

an integral over a volume into an integral over the boundary that encapsulates this volume. 

Depending on the ordering, the contribution is added or subtracted. If the encapsulation is located 

such that at these locations the added function values are negligible, then only the contributions of 

the difference in parameter space ordering result. In that case, these differences will reveal the 

symmetry related charges. The symmetry-related charges are supposed to be located at the 

geometric center of the platform on which the elementary module resides. Thus, for the symmetry 

ǊŜƭŀǘŜŘ ŦƛŜƭŘΣ ǘƘŜ ǾƻƭǳƳŜ ƛƴǘŜƎǊŀƭ ƛƴǾƻƭǾŜǎ ŀ ǎƛƴƎƭŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ 

5.1 Module content 
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

ǎǘŀǘŜǎΥ άLŦ ŀ ƴƻǊƳŀƭ ƻǇŜǊŀǘƻǊ ƳŀǇǎ ŀ ŎƭƻǎŜŘ ǎǳōǎǇŀŎŜ ƻƴǘƻ ƛǘǎŜƭŦΣ ǘƘŜƴ ǘƘŜ ǎǳōǎǇŀŎŜ ƛǎ ǎǇŀƴƴŜŘ ōȅ ŀƴ 

orthonormal base consisting of eigenvectors of the ƻǇŜǊŀǘƻǊΦέ ¢ƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ŜƛƎŜƴǾŀƭǳŜǎ 

characterize this closed subspace. 

Germ operator ᴤ  only acts as a descriptor. It describes a hopping path. The operator does not 

generate its own eigenvalues. It has eigenvalues that are generated by a mechanism , which is 

not part of the Hilbert space. 

 Progression window 
Operator ᴤ  is a stochastic operator. It is a normal operator. Its eigenvalues are not ordered in the 

way that the eigenvalues of reference operators are ordered. Still the real parts of operator ᴤ  are in 

sync with the eigenvalues of the clock operator. Due to the integration over the regeneration cycle, 

the stochastic ordering of the spatial part of the eigenvalues will become hidden. In fact, the location 

density distribution implements a spatial reordering of the hopping locations.  
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Thus, it is possible to define a quaternionic normal operator ּך  for which a subset of the 

eigenvectors span the same closed subspace as is spanned by the eigenvectors of ᴤ  and the 

corresponding eigenvalues of this new operator describe the reordered dynamic geometric data of 

this elementary module such that they fit in the ordering of the eigenvalues of symmetry center ▪
●. 

After that ordering process, they form a subset of the eigenvalues of ▪
●. The integration over the 

regeneration cycle can be installed as a smoothing effect, which dampens the kinematic actions of 

the eigenvalues of ּך . In this way, the geometric data become new functions of what we already 

have called progression. The new operator ּך  describes the module content in a reordered fashion 

that can be interpreted as a location swarm that resides on its private platform.  

The determination of the location density distribution of the swarm integrates over the regeneration 

cycle and turns the hopping path into a location swarm. The integration turns the spherical shape 

ƪŜŜǇƛƴƎ ŦǊƻƴǘǎ ǘƘŀǘ ŀǊŜ ŎŀǳǎŜŘ ōȅ ǘƘŜ ƘƻǇ ƭŀƴŘƛƴƎǎ ƛƴǘƻ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŜƳōŜŘŘƛƴƎ ŦƛŜƭŘΦ 

¢ƘŜ ŎƻƴǾƻƭǳǘƛƻƴ ƻŦ ǘƘƛǎ DǊŜŜƴΩǎ function with the location density distribution of the swarm of hop 

landing locations results in the deformation of the embedding field that is caused by the presence of 

the elementary particle. 

A companion normal reference operator  provides a normal capsule for the anti-Hermitian 

symmetry center ▪
●. On the other hand, it also covers the progression window of operator ᴤ  It can 

be considered as the capsule or as the encapsulating operator for the elementary module. Its 

eigenspace can be viewed as a tube in which the elementary module travels. The operator ᴤ  can be 

considered as the descriptor of an inner tube. It gets its data from a private stochastic mechanism. 

The operator stores these data into the separable Hilbert space. The progression window covers a 

harmonica of sheets in which the model steps from sheet to sheet. Outside of the harmonica the 

model, is considered to flow. 

The operator ▪
● that describes the symmetry center is only a descriptor. This also holds for the 

operators ᴤ ךּ , , and  that describe the content and the direct environment of the corresponding 

elementary module. The real actor is the controlling mechanism , which is responsible for 

establishing the characteristics that are typical for the elementary module. These characteristics are 

the statistical characteristics and the symmetry of the swarm and the dynamic characteristics of the 

corresponding hopping path. The mechanism  takes care of the fact that the swarm is a coherent 

swarm and stays that way. This is partly ensured by the fact that the private mechanism uses a 

stochastic process that owns a characteristic function. 

Stochastic processes that are controlled by dedicated mechanisms provide the elementary modules 

with dynamic geometric data. Here we only consider elementary modules for which the content is 

well-ordered. This means that in the eigenspace of the selected operator every progression value is 

only used once. 

For the most primitive modules, the closed subspace may be reduced until it covers a generation 

cycle in which the statistically averaged characteristics of the module mature to fixed values. The 

resulting closed subspace acts as a sliding progression window. This sliding window corresponds to a 

regeneration cycle. The sliding window covers a (large) series of sheets that act as static status quos. 

A cycle of operator  describes it. 

What happens can be integrated over the progression window. This turns the germ operator, which 

describes the hopping path, into a swarm operator ּך ȿׂשỚׂשộׂש . 

For observers, the sliding window separates a deterministic history from a partly uncertain future. 

Inside the sliding window a dedicated mechanism  fills the eigenspace of operatorּך . The 
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mechanism is a function of progression. If it is a cyclic function of progression, then its private 

mechanism recurrently regenerates the module. 

¢ƘŜ ǇƘǊŀǎŜ άǊŜŎǳǊǊŜƴǘƭȅ ǊŜƎŜƴŜǊŀǘŜŘέ ƛǎ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ interpretation of the model where mechanisms generate 

new eigenvalues in contrast to the alternative interpretation where the boundary is passing over data that already exist as 

eigenvalues in the Hilbert space. These interpretations do not influence the model. For describing the model, the paper 

mostly follows the first interpretation. However, it is also good to keep the ŎǊŜŀǘƻǊΩǎ interpretation in mind. It throws a 

slightly different light upon the model. 

5.2 Interaction with a continuum 
The swarm is defined with respect to the parameter space that resides on the platform of the 

symmetry center. To define the interaction with the living space field Palestra, the swarm must be 

reinterpreted with respect to the background parameter space, which is used as parameter space by 

the Palestra. We will not redefine the swarm, but instead, we formulate the location density 

distribution such that it uses the background parameter space as its parameter space.  

By imaging the discrete eigenvalues into a reference space, the discrete eigenvalues form a swarm 

שׂ , which is a subset of the rational quaternions  that are eigenvalues of the symmetry center 

on which the module resides. At the same time the discrete eigenvalues form a hopping path. They 

form a subset of the eigenvalues of tube operator . With other words the swarm forms a spatial 

map of the dynamic hopping of the point-like object. The swarm and the hopping path conform to a 

stochastic operator ᴤ  that is well ordered with respect to its progression values, but is not ordered 

in spatial sense like reference operators ד or . The swarm is spatially reordered to construct the 

location density distribution. To prepare this map, the collection ׂש  must be reordered such that it 

conforms to the ordering of the background parameter space. This results in collection ּׁש . Here the 

superscript is removed. This collection is eigenspace of operator ּך. 

ךּ ȿּׁשỚּׁשộּׁש  

In approximation, operator ּך can be considered as a defined operator that uses the location density 

distribution ּך as its defining function. 

The image ּׁש of hop landing location ׂש  represents a point-like artifact that leads to a dynamic 

response of the living space field in the form of a spherical shape-keeping front that after integration 

ƻǾŜǊ ǘƘŜ ǊŜƎŜƴŜǊŀǘƛƻƴ ŎȅŎƭŜ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ƭƛǾƛƴƎ ǎǇŀŎŜ ŦƛŜƭŘ ŀƴŘ ǘƘǊƻǳƎƘ 

the convolution with location density distribution ּך leads to a local contribution to the living space 

field ᴡ. ¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ōƭǳǊǎ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴΦ The contribution  of the 

elementary module to the Palestra ᴡ is the gravitation potential of the elementary module. 

The deformed field ᴡ represents a conglomerate of descriptors of the location density of location 

swarms. Where the location density becomes negligible the field ᴡ describes the background 

parameter space. The convolution process must convert the symmetry flavors of the location swarms 

to the symmetry flavor of the background parameter space. 

In the previous paragraphs, the field is viewed as being deformed by the discrete objects that disturb its continuity. It is also 

possible to view the field as a descriptor that describes the location density distribution of the discrete objects. These views 

correspond to different interpretations of the same model. The interpretations do not influence the model. However, the 

selected interpretation does affect the description of the model. This duality indicates that there is nothing mysterious 

about the fact that the field and the discrete objects appear to interact. However, the situation will look mysterious if 

information transfer will use the deformed field as its carrier. That is what happens in physical reality. 

The generalized Stokes theorem shows that in the integration process the discrepant regions must be separately handled 

and for that reason, it is necessary to encapsulate the discrepant locations. The corresponding contributions must account 

the difference in symmetry flavor. 



 

68 
 

The interaction process influences none of the eigenspaces of the parameter space operators. Only 

this last step causes space curvature in the deformable target field. The embedding of each of the 

swarm elements lasts only a short instant and is immediately released. What results is the impact on 

the smoothed field ᴡ. Field ᴡ is not only blurred in a spatial sense. It is also averaged over the 

progression window. 

5.3 Coherent elementary modules  
A coherent location swarm characterizes elementary modules that behave in a coherent dynamic 

way. The coherent elementary modules are directly related to an individual symmetry center. The 

elements of the coherent location swarm that characterizes the coherent elementary module are 

taken from this symmetry center. These elements are ordered with respect to progression, but 

spatially they are selected in a stochastic fashion. This selection is described by germ operator ᴤ . In 

the map onto the reference continuum, coherent elementary modules feature a hopping path. Inside 

the symmetry center the hopping path is on average closed. It means that on average it has a static 

geometric center. That center is supposed to correspond to the geometric center of the symmetry 

center. Further, for coherent elementary modules, the map of the location swarm into the reference 

continuum corresponds to a density operator ” that is defined by a continuous function. ” 

approximates ּך.That continuous function is a normalized location density distribution and it has a 

Fourier transform. This Fourier transform equals the characteristic function of the stochastic process 

that is used by the mechanism, which generates the hop landing locations of the elementary module. 

Due to the existence of this Fourier transform, the swarm owns a displacement generator and as a 

further consequence in first approximation the swarm will move as one unit. Another consequence 

of the existence of the Fourier transform is that the swarm behaves like a wave package and the hop 

landing locations may form an interference pattern.  

¢ƘŜ ŦŀŎǘ ǘƘŀǘ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ ǎǿŀǊƳ Ŏŀƴ ōŜ ŎƻƴǾƻƭǳǘŜŘ ǿƛǘƘ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘ to 

compute the interaction indicates that the contributions of the separate hops can be superposed to deliver the total effect 

of the swarm. 

The new operator ” has ד and thus ᴘ as the parameter space of the defining function ”. It tends 

to describe the swarm as a single unit. It no longer describes the hopping path. The operator ” is 

no more than a special descriptor. It does not affect the distribution of the density of the 

locations that is described by this operator and its defining function. 

The private mechanism  that selects the eigenvalues such that a coherent swarm is generated 

ensures the coherence.  

This paper gives no full explanation for this special habit of the mechanism. However, this habit is essential for the 

coherence of the whole model. Some guesses about the way that mechanism  works are possible. Due to his experience 

with low dose intensified imaging, the author assumes that the mechanisms apply something that looks like a combination 

of a Poisson process and a binomial process. Together they form an inhomogeneous spatial Poisson point process. The test 

function shows that such a combination results in a coherent swarm. A combination of a Poisson process and a binomial 

process that is implemented by a spatial spread function can establish a location density distribution, which approaches the 

Gaussian distribution, which underlies the described test function. This might provide a partial indication of how the 

mechanism works. A Poisson process that is combined with an attenuating binomial process can again be considered as a 

Poisson process that has a lower local efficiency than the homogeneous spatial Poisson point process. Thus, in this 

interpretation, the spread function defines the spatial spread of the efficiency of the local Poisson processes. See the 

section on low dose rate imaging. 

The symmetry flavor of their symmetry center  also characterizes coherent elementary modules. 

When mapped into a reference continuum that is eigenspace of reference operator 

ᴘ ή Ớή ộή  the module is characterized by a symmetry related charge, which is located at 

the center of symmetry. The symmetry related charge is a property of the local symmetry center . 
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The symmetry related charge corresponds to an isolated point-like artifact of the symmetry related 

field . This symmetry related field  will be treated later. 

 

The size and the sign of the symmetry related charge depends on the difference of the symmetry 

flavor of the local symmetry center with respect to the symmetry flavor of the surrounding reference 

continuum ד . The coherent swarm ׂש  inherits the symmetry flavor of the local symmetry center 

. However, the controlling mechanism  picks the elements of this set in a spatially stochastic 

way instead of in a spatially ordered fashion. Thus, the stochastic operator ᴤ that reflects the 

stochastic selection by , corresponds with another operator, this time a density operator ּך  that 

reflects the spatial ordering and characterizes the coherent stochastic mechanism  with respect 

to its achievement to establish spatial coherence.  

5.4 The function of coherence 
Embedding of sets of point-like objects into the affected embedding continuum spreads the reach of 

the separate embedding locations and offers the possibility to bind modules. ¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ 

defines the spread of a single embedded point-like object. ¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ 

integral over the regeneration cycle of the dynamic response of the field to a short trigger. The 

trigger corresponds with a hop landing and is immediately released. The homogeneous second order 

partial differential equation describes the dynamic response of the field. The integration turns the 

homogeneous equation into an inhomogeneous equation in which the extra term represents the 

DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ  

Spurious embedding locations have not enough strength and not enough reach to implement an 

efficient binding effect. In contrast, coherent location swarms offer enough locality, enough spread, 

and enough embedding strength to bind coherent swarms that are sufficiently close. The reason is 

that the swarms contain a huge number of elements and the location density distribution is very high 

in a large part of the volume that is covered by the swarm. 

For example, a Gaussian distribution of the location swarm would turn the very peaky DǊŜŜƴΩǎ 

functions into a rather broad spherical painting brush that can be described by the potential: 

 

•ὶ
ὉὙὊὶ

ὶ
 

 

This is a smooth function without a trace of a singularity. Thus, the coherent swarm bends the 

embedding field in a smooth fashion! We will give this special function a name and call it test 

function. At the center location, the amplitude of the test function equals about 1,128379. The test 

function has a standard spread. The standard deviation is about 0,598758. A graph of function •ὶ 

was shown in figure 1. 

The actual location density distribution may differ from the Gaussian distribution. The amplitude of the resulting function 

will depend on the form of the density distribution and will depend on the number of participating point-like obstructions. 

For large numbers of participating point-like obstructions, the coherence of the swarm ensures that the smoothed 

embedding field stays integrable, while each of the elements of the swarm would separately cause a singularity. The actual 

smoothness of the affected field will depend on the number of participating obstructions. This plays a greater role in the 

outskirts of the distribution. In that region, the signal to noise ratio is much lower than in the center. This results in a larger 

local relative variance in the outskirts.  

(1) 
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We assumed that all obstructions have a similar impact on the affected field. However, the process that governs the 

generation of the obstructions has a stochastic nature. The characteristics of this process depend on the properties of the 

controlling mechanism. The number of elements in the coherent swarms that corresponds to actual elementary modules 

depends on the type of the module. For most types of elementary modules, this number is huge. If the generator of the 

obstructions is a Poisson process in combination with a binomial process that is implemented by a known spatial spread 

function, then the local signal to noise ratio can be calculated at any location where the number of participating 

obstructions is still large enough. This is because a Poisson process in combination with a binomial process is again a 

Poisson process with an attenuated efficiency. An object that will approach these outskirts will sense the local relative 

variance of the field and may act accordingly. Therefore, its behavior in response to the local field value may appear to 

show some turbulence. Closer to the center of the swarm the signal to noise is much larger and the behavior of the 

respondent will become more consistent. 

If for some reason the generation process is halted, then the controlling mechanism changes to another control mode and 

because of that the discrete nature of the swarm will become noticeable. In this case, the last location in the location 

swarm indicates the exact location where the generation process was disrupted. After this instant, the previous location 

density distribution has lost its validity and collapses. In physics the group of physicists that support the Copenhagen 

interpretation named ǘƘƛǎ ǇƘŜƴƻƳŜƴƻƴ άǘƘŜ ŎƻƭƭŀǇǎŜ ƻŦ ǘƘŜ ǿŀǾŜ ŦǳƴŎtionέ. 

Imaging of the location swarm onto the reference continuum is only used to define coherence and it 

is used to indicate the influence of the symmetry related charges. The embedding onto the affected 

continuum ᴡ is used to exploit the corresponding potential binding effect of the swarm. The 

stochastic process that implements the stochastic location distribution under control of mechanism 

 is the de facto actuator in establishing the coherent swarm. The embedding field ᴡ is not 

affected by symmetry differences. In contrast the symmetry related field  is caused by these 

differences. Thus ᴡ and  differ fundamentally! For the elementary module, the symmetry center 

couples the two fields. The coupling is located at the geometric center of the symmetry center. 

5.5 The effect of the blur 
The coherent swarm represents an effective blur of every observation of the spatial location of the 

corresponding object. All information about the swarm will be transmitted via the fields that are 

influenced by the presence of the swarms. The model does not support other information carriers. 

In this aspect, the model differs from theories that postulate the existence of force carriers. This model does not support 

force carriers. Nor does it support the corresponding force fields. However, the basic fields can cause acceleration of the 

discrete objects that reside on symmetry centers. The notion of force carriers imposes a dilemma: What supports the force 

carrier? On the other hand, the variation of a vector field as a function of progression goes together with a new field that is 

represented in the first order partial differential equation. This new field acts with a force onto artifacts that are embedded 

in that new field. For the living space, this effect is known as inertia. For the symmetry related field, the effect is known as 

symmetry related force. In physics, it is called electric force. The section on force raising subfields treats the situation in 

which the total change of the field stays zero. 

The blur means that every object that is informed about the properties of the observed object will 

perceive this observed object with a blur that is defined by the field contribution that represents the 

actual location density distribution. This is not the smooth density distribution ”. It is the convolution 

ƻŦ ǘƘŜ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ǿƛǘƘ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ ŦƛŜƭŘΦ 

Due to the blur, no observer will directly perceive the difference between an object that is 

constructed as a swarm of discrete elements and an object that has a more compact structure such 

as a sphere. This fact is increased if the observer itself has a similar structure. The location swarms 

contain a huge number of elements. Only in this way the signal to noise ratio of the transferred 

information is large enough to tolerate reliable reactions of the observer on the signal that it receives 

via the surrounding fields. 

Thus, every interaction is afflicted with a certain signal to noise ratio. 



 

71 
 

5.6 Modules and subspaces 
Only a small fraction of the rational quaternions will represent a dynamic location of an elementary 

module. Thus, a comparable number of Hilbert vectors will represent the state of an elementary 

module. Each of these Hilbert vectors spans a closed subspace. With other words, the orthomodular 

lattice that describes the relations between all modules will only sparsely cover the set of closed 

subspaces of the Hilbert space.  

At the next progression instant, a new category of Hilbert vectors will represent the elementary 

modules. In this way, the model steps with model wide progression steps. The current state of the 

model wipes through the model and divides the model into three parts: a historic part, a current 

part, and a future part. The separable Hilbert space exactly registers these states. Thus, the separable 

Hilbert space is not confronted with any uncertainty. However, everything that travels with the 

separating vane will be cut off from any information that is stored in the future part. What occurs at 

a distance will reach the observer in the future. That information is transferred via fields. For all 

participants, uncertainty exists about what the future will bring. The fact that the controlling 

mechanisms install coherence will reduce the size of the uncertainty. 

The elementary modules will follow hopping paths and controlling mechanisms take care that these 

hopping paths stay within a tube. A map of the hopping path onto the cross section of the tube 

results in a spatial location swarm. This swarm and the hopping path characterize the properties and 

therefore the type of the elementary module. 

¢ƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ follows the view that is obtained by objects that travel with the scanning vane. 

Observers are modules that travel with the vane. However, it is also possible to take a view in which 

the investigator knows all eigenvalues that are stored in the Hilbert space. In that case, the 

uncertainty of the vane traveler is changed into the uncertainty of the process that filled the 

eigenvalues at the instance that the whole Hilbert space was established. These uncertainties are the 

same. The creator generated its own (un)certainty! However, the creator did his creation in a single 

stroke. 
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6 Fields 

6.1 Fields in contrast to sets of discrete objects 
Coherent sets of discrete quaternions have much in common with the continuums that describe the 

location density of these swarms. The discrete set of rational quaternions is densely embedded in the 

continuum of the corresponding quaternionic number system. A continuous function can relate the 

coherent set that corresponds to the target of the rational quaternionic function and the 

corresponding smooth continuum. If you want to estimate the impact of point-like disruptions of the 

continuity, it makes more sense to investigate the set of rational target values of the relating 

function, than trying to investigate the disrupted continuum. Putting the point-like disruptions in 

capsules will partly solve integration and differentiation problems. In this way, smoothed versions of 

the fields can be derived that circumvent the problems that integration has with the existence of 

point-like disruptions. 

In regions where no disrupting artifacts are present, the embedding field will equal its parameter 

space, which is a flat field. 

6.2 Differentiable and integrable basic fields 
By applying the reverse bra-ket method, a category of operators can represent quaternionic 

functions. They do this in combination with reference operators. The reference operators support 

the available parameter spaces. The defined operators are applicable both in the separable Hilbert 

space and in the Gelfand triple.  

In this paper, fields are continuums that are target spaces of quaternionic functions that define 

eigenspaces of operators, which reside in the Gelfand triple. 

Quaternionic functions and their differentials can be split in real number valued scalar functions and 

imaginary vector functions. Here we will only consider the not too violent disruptions of the 

continuity of the fields. We also restrict the validity range of the equations. With these restrictions, 

the quaternionic nabla can be applied and the discontinuities restrict to point-like artifacts. The 

quaternionic nabla has the advantage that it works as a multiplying operator. Apart from its 

functionality as a differentiation operator, it obeys quaternionic multiplication rules. This enables the 

partition of change along the lines in which change takes place. 

Quaternionic functions can represent fields and continuums, but they can also represent density 

distributions of discrete dynamic locations. A point-like disruption then corresponds to a single 

exception in a large assembly of smoothly varying values. The vector field that goes together with the 

scalar field may then represents the displacements of the discrete objects. Quaternionic 

differentiation of such fields is treated in the next chapter. 

Double differentiation of a basic field leads to a non-homogeneous second order partial differential 

equation that relates the basic field to the corresponding density distributions of discrete dynamic 

locations of the artifacts that cause the local discontinuities of the basic field. For quaternionic 

functions, two different second order partial differential equations exist. They describe the different 

dynamic behavior of the same basic field and the two-second order partial differential equations can 

offer views on different behavior of the investigated field. 

The symmetry-related field  and the embedding continuum ᴡ are basic fields. This paper mainly 

investigates these two basic fields. A third basic field describes the activity of rotator quaternions. In 

this paper, all other fields are derived from these basic fields. 
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The symmetry-related field  is based on the existence of symmetry centers. These symmetry 

centers float over the background parameter space that covers the whole model. The background 

parameter space relates to the version of the quaternionic number system that is used to specify the 

inner products of the Hilbert vectors. 

The embedding continuum ᴡ is based on the existence of a dynamically deformable function ᴡ that 

describes the embedding of discrete artifacts, which reside on symmetry centers and interact with ᴡ. 

Mechanisms  that are dedicated to the symmetry center  select the locations of these 

artifacts. Corresponding stochastic operators ᴤ  describe the results of the activity of these 

mechanisms. All stochastic operators of type ᴤ have countable eigenspaces and can be considered to 

reside in the separable Hilbert space.  

6.3 Subspace maps 
The orthomodular base model consists of two related Hilbert spaces.  

¶ An infinite dimensional separable Hilbert space ᴎ that acts as a descriptor of the properties 

of all discrete objects.  

¶ A non-separable Hilbert space ꞊ that acts as a descriptor of the properties of all continuums. 

The non-separable Hilbert space can be interpreted as the envelope of its separable companion. 

The orthomodular base model does not apply Fock spaces because the tensor product of quaternionic Hilbert spaces is no 

longer a quaternionic Hilbert space. Instead, it is a real Hilbert space. It reduces the model to the representation of the 

ƳƻŘŜƭΩǎ ŎƭƻŎƪΦ 

In the ƻōǎŜǊǾŜǊΩǎ view, an ongoing process which is governed by dedicated mechanisms embeds a 

part of the separable Hilbert space ᴎ into its non-separable companion Hilbert space ꞊ . The treated 

part is the vane and a section that covers the regeneration cycle. This ongoing process corresponds 

to a partition in the form of a vane that moves through the reference parameter spaces ד  and ᴘ  

and splits them into three parts: history, present static status quo, and future. This corresponds to a 

similar split of the Hilbert space that divides the Hilbert space into three subspaces. We introduce a 

harmonica that splits the vicinity of the vane in a series of sheets. The middle sheet is the actual 

vane. Thus, near the vane, we treat progression as a discrete parameter. Further away, progression 

may be considered to flow. The sheets cover a sliding progression window that covers the current 

regeneration cycles of the swarms. The mechanism  that governs the embedding of an 

elementary module is active in the splitting boundary, but its control is influenced by historic and 

future sheets that belong to the harmonica, which covers the regeneration cycle that produces the 

coherent location swarm, which is characteristic for the elementary module. The behavior of the 

mechanism is stochastic and only determined by statistical and symmetry related characteristics. 

Nothing, not even the creator of the model, has deterministic insight in the decisions of the 

mechanism. 

This view corresponds to the interpretation of the model in which mechanisms generate new spatial data as a function of 

the progression value. An alternative interpretation suspects that the future data are already present in the Hilbert space 

and are encountered by the moving boundary. In that case, the mechanisms must have been active as generators at the 

instance of the formation of the whole Hilbert space. Also, in that case, the activity of the mechanisms is stochastic and is 

not governed and deterministically determined by the creator of the model. These different interpretations do not affect 

the model. 

The Cartesian-ordered reference operator ד  and the corresponding reference operator ᴘ  

couple the two Hilbert spaces. Both are defined by the quaternionic function ᴘήḰή. 
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On the rim between history and future will controlling mechanisms  fill the module related 

subspaces of separable Hilbert space ᴎ with data and the new contents of these subspaces are 

subsequently embedded into the non-separable Hilbert space ꞊ . The history stays untouched. The 

fill of subspaces with data is described by dedicated stochastic operators. The mechanisms  

use stochastic processes to generate these data. These operators glue the generated geometric 

data as eigenvalues to corresponding eigenvectors that each span a ray. The author suspects that 

the stochastic operators represent inhomogeneous spatial Poisson point processes. In more 

detail these, processes are probably modified Thomas processes. Each of these processes can be 

interpreted as a combination of a Poisson process and a subsequent binomial process that is 

implemented by a spatial spread function. The combination of a Poisson process and a binomial 

process acts again as a Poisson process which has a weakened efficiency. The combination can 

be interpreted as a stochastic spatial spread function. 

A closed subspace in ᴎ maps into a subspace of ꞊ . Only the countable subspaces of ꞊  have a 

sensible dimension. By applying the reverse bra-ket method, defining functions can map 

countable eigenspaces of operators that reside in the separable Hilbert space into continuum 

eigenspaces in the Gelfand triple. Mapping does not influence the flat reference fields that are in 

use as parameter spaces. However, the embedding process affects the deformable field ᴡ. ᴡ 

describes the deformation of this embedding field that is due to the presence of elementary 

modules. In this case, the embedding must be interpreted as interaction and not as a much 

simpler mapping. Indirectly, the ᴡ field describes the generated location swarms that result 

from the corresponding hopping paths. The embedding process also affects the symmetry 

related field , because the geometric center of the platform on which the location swarm 

resides is also the location where the symmetry related charge is located.  

In fact, both fields interact by affecting the location of the geometric center of the symmetry 
centers that correspond to elementary modules. 

6.4 Embedding process 
The embedding of a hop location only causes a clamp when the generated hop landing is a 

discrepant member of its new environment. This means that the symmetry flavor of the 

symmetry center of the elementary module differs from the symmetry flavor of the background 

parameter space. The adaptation generates the trigger that causes the clamp.  

The embedding process is the result of the triggers, which result from the hop landings. These 

ÔÒÉÇÇÅÒÓ ÇÅÎÅÒÁÔÅ ÃÌÁÍÐÓ ÁÎÄ ÔÈÅ ÃÌÁÍÐÓ ÉÎÔÅÇÒÁÔÅ ÉÎÔÏ 'ÒÅÅÎȭÓ ÆÕÎÃÔÉÏÎÓȢ Without the regular 

generation of hop landings, the ÅÆÆÅÃÔ ÏÆ ÔÈÅ 'ÒÅÅÎȭÓ ÆÕÎÃÔÉÏÎ ×ÏÕÌÄ ÆÁÄÅ Á×ÁÙ ÉÎ ÔÈÅ ÎÅØÔ 

regeneration cycle. The stochastic process that generates the hop landings of the elementary 

module has a huge efficiency. This corresponds to a very high signal to noise ratio or 

equivalently to a very low relative variance. This results in a rather smooth hop location density 

distribution and an even smoother ÃÏÎÖÏÌÕÔÉÏÎ ÏÆ ÔÈÅ 'ÒÅÅÎȭÓ ÆÕÎÃÔÉÏÎ ÁÎÄ ÔÈÉÓ ÌÏÃÁÔÉÏÎ ÄÅÎÓÉÔÙ 

distribution. With other words, the deformation of the embedding field that is due to the nearby 

presence of the elementary module is a very smooth function. Only in its outskirts , this function 

may show remarkable stochastic variation. 

A convolution with a rather smooth location density distribution does not flatten the spurious 
discrepant embedding of generated locations. On the other hand, the perception of these 

disruptions by observers is hampered by the blur that the spatial spread of these observers 

represents. The spurious discrepant embedding is not regenerated or replaced by nearby 

generations. Therefore, the effect of spurious discrepant embedding quickly fades away. 



 

75 
 

Together, the spurious discrepant embedding events create a non-zero vacuum embedding 

continuum. 

6.5 Embedding field 
The elements of the eigenspace of the stochastic operator ᴤ , which is used by a controlling 

mechanism  ×ÉÌÌ ÂÅ ÅÍÂÅÄÄÅÄ ÉÎ ÔÈÅ ÅÉÇÅÎÓÐÁÃÅ ÏÆ ÏÐÅÒÁÔÏÒ ᴡ. A more smoothed version  

of this operator exists that mimics the view that observers get from the field ᴡ. For example, ᴡ is 

smooÔÈÅÄ ÂÙ ÉÔÓ 'ÒÅÅÎȭÓ ÆÕÎÃÔÉÏÎ ÁÎÄ  is smoothed by a blur that approaches the blur of the 

test function. Observers are the receivers of information that is transported by messengers or by 

other vibrations or deformations of the embedding field. The information messengers are 

objects that use the embedding field as their transport medium. Smoothing blurs the perception 

of the observer. The smoothing implemented by  represents the minimal observation blur for 

elementary modules. 

With this interpretation,  the embedding process is the pursuit by the embedding field to follow the density 

distribution of a set of rational and thus discrete quaternionic target values as close as is tolerated by a selected 

blurring function. This process involves a convolution and this convolution involves an integration. The target values 

are the targets of the defining function for a selected set of parameter values. ᴡ uses a narrower blurring function than 

 does. ᴡ is interpreted as a field, while  is interpreted as a potential. The difference between ᴡ and  is that  blurs 

all spurious point-like artifacts such that as an individual, they become Ȱunobservableȱ. Only in huge numbers these 

spurious point-like artifacts will become noticeable as large range effects. 

Operator ᴡ can be described by a quaternionic function ᴡή  that has a parameter space ᴘ , 

which is generated by the eigenspace of reference operator ᴘ . When applicable, we use the 

same symbol for the parameter space, the defining function, and the operator. With the installed 

restrictions, the dynamics of the embedding process can be described by quaternionic 

differential calculus. However, what is perceived by observers is extra deformed by the influence 

of relativity . The Lorentz transform describes this extra Ȭdeformationȭ. The observers perceive a 

spacetime structure that features a Minkowski signature. The data that are stored in the Hilbert 

space are stored in quaternionic format. Quaternions feature a Euclidean structure. The 

quaternionic differential calculus applies this Euclidean structure. Including the effect of 

relativity requires the application of tensor calculus. 

If the discontinuities that are generated by local discontinuities are not too violent, then the non-

homogeneous second order partial differential equation will elucidate the embedding process. 

This will be treated in detail in the next chapter. 

In ꞊the operator ᴡḰ ή Ớᴡή ộή  is defined by function ᴡή  and represents an 

embedding continuum ᴡ. The embedding process affects this continuum and thus deforms it 

dynamically. 

We will show that two different non-homogeneous second order partial differential equations 

exist that offer different descriptions of the embedding process. The equation that is based upon 

the double quaternionic nabla ᶻ cannot show wave behavior. However, the equation that is 

ÂÁÓÅÄ ÏÎ Äȭ!ÌÅÍÂÅÒÔȭÓ ÏÐÅÒÁÔÏÒ  acts as a wave equation, which offers waves as part of its set 

of solutions. Other solutions than waves prove to be more important for the embedding process. 

These are the clamps. Warps play an essential role in the transfer of information. 

 

ᶻ  ộ♩ȟ♩Ớ 

 

(1) 
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Ḱ  ộ♩ȟ♩Ớ 

 

The embedding continuum ᴡ is always and (nearly) everywhere present. Closed regions exist 

where ᴡ is penetrable for transfer of information. ᴡ is vibrated and deformed by discrete 

artifacts that are embedded during a short event in this field. In the considered domain, ᴡ may 

contain point-like artifacts and connected regions where ᴡή is not defined or defined in a 

different way. These regions are information cavities. 

In ꞊, the representations of symmetry centers float over the natural parameter space ᴘ  of the 

embedding continuum. The symmetry-related charges of the symmetry centers generate local 

contributions • to the symmetry related field . The location of the center of the symmetry 

center  within parameter space ᴘ  is affected by the symmetry related field . The 

symmetry related field Ḱ ή Ớ ή ộή  uses the same natural parameter space ᴘ  as the 

embedding field ᴡ does. This indicates that the fields  and ᴡ influence each other in an indirect 

way via the symmetry centers. Forces effectuate this influence. For the  field, these forces 

relate to the electric charge. For the ᴡ field the force relates to the mass, which on its turn relates 

to the number of involved hop landings. 

The mechanism  that controls stochastic operator ᴤ  picks members of a symmetry center 

 and stores them in the eigenvalues of that operator. These eigenvalues are mapped to 

parameter space ד  and in that way, they become eigenvalues of a new operator ּׁש . This map 

involves relocation and re-ordering. This fact couples the location of the symmetry related 

charge of this symmetry center with the locations that get embedded in the eigenspace of 

operator ᴡ. However, the parameter location of the symmetry related charge does not coincide 

with the parameter location of the eigenvalue of operator ּׁש , that will be embedded in the 

eigenspace of operator ᴡ. This embedding involves an interaction that is described in a blurred 

way by function ᴡ(q). The eigenvalues of operator ּׁש  will form a mapped swarm whose center 

will coincide with the mapped parameter location of the symmetry related charge. That location 

also coincides with the location of the mapped geometric center of the symmetry center. The 

eigenvalues of ּׁש  interact with field  ᴡ. This interaction is not a simple map, but can be 

interpreted as a blurred image. The images of these eigenvalues on the smoothed version  of ᴡ 

correspond with even more blurred  locations in . Convolutions cause these blurs. 

ᴡ and  lay like thin and thick (3D) snow blankets over the set of discrete rational quaternions. 

 represents a thicker and thus smoother snow blanket than ᴡ. 

6.6 Symmetry-related fields 
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ 

in their symmetry flavor. If we restrict to the spatial part, then eight different versions result. The 

elements of coherent sets of quaternions belong to the same symmetry flavor. This is the symmetry 

flavor of the symmetry center  that supports the original location swarm. Differences between 

symmetry flavors of a symmetry center  and the symmetry flavor of the eigenspace of the 

surrounding reference operator ד  cause the presence of a symmetry related charge at the center 

location of that symmetry center. The countable reference parameter space ד  in the separable 

Hilbert space ᴎ maps onto the continuum parameter space ᴘ , which resides in the Gelfand triple 

.꞊ 

Symmetry-related charges are point-like objects. These charges generate a field  that in its 

behavior fundamentally differs from the embedding continuum. This difference is due to the nature 

(2) 
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of the point-like artifacts. The symmetry related field also plays a role in the binding of modules, but 

that role differs significantly from the role of the embedding continuum ᴡ. The defining function 

ή of field  and the defining function ᴡÑ of field ᴡ use the same parameter space ᴘ . 

Symmetry-related charges are located at the geometric centers of local symmetry centers. The size 

and the sign of the symmetry related charge depend on the difference of the symmetry flavor of the 

symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry 

centers that belong to different symmetry related charges appear to react to the symmetry 

differences. Equally signed charges repel and differently signed charges attract. The attached 

coherent location sets that are attached to the symmetry centers will be affected by these effects. 

The symmetry-related charges do not directly affect the embedding continuum ᴡ. Their effects are 

confined to the map of the symmetry center  to the parameter space ᴘ . However, with their 

action the symmetry related charges relocate the centers of the corresponding coherent swarms. 

The elements of the swarms deform the embedding continuum. The deformation also has a 

relocating effect. 

The symmetry-related charges are rather isolated point charges. Consequently, the range of the field 

ǘƘŀǘ ƛǎ ƎŜƴŜǊŀǘŜŘ ōȅ ŀ ǎƛƴƎƭŜ ŎƘŀǊƎŜ ƛǎ ǊŀǘƘŜǊ ƭƛƳƛǘŜŘΦ ¢ƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŘƛƳƛƴƛǎƘŜǎ 

as 1/r with distance r from the charge. 

Fields of point charges superpose. A wide spread uniform distribution of symmetry related point 

charges can generate a corresponding widespread symmetry related field . This works well if most 

charges have the same sign. Still, relevant values of the symmetry related field  depend on the 

nearby existence of symmetry related charges. 

Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are 

not recurrently generated, but instead, their geometric center can get relocated. Together with these 

symmetry centers, the corresponding symmetry related charges and the residing swarms get 

relocated. 

The relatively short range of relevant field values makes the symmetry related field a bad candidate 

for the medium on which long range messengers can travel. For that purpose, the embedding field ᴡ 

is a much better candidate. 

6.7 Force raising subfields 
The fact that the geometric centers of symmetry centers act as points of impacts, will destine these 

centers as sources of force raising fields. The same reasoning is possible when mass can be viewed to 

be located at a center point of impact. 

A partial differential equation represents the change of a field 

 

      ♠  ♩  ⱶ  

 

   ἂ♩ȟⱶἃ 

 

♠ ⱶ ♩ ♩ ⱶ  

(1) 

(2) 

(3) 
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Here we consider a situation in which the change of the total field is zero and more in detail: 

 

 

A temporal change of the scalar field   can be compensated by a divergence of the vector field ⱶ. 

Similarly, a temporal change of the vector field ⱶ can be compensated by a gradient of the scalar 

field  . The term ╔ ⱶ represents a force raising field. 

 DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ 
¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ Ὃ► of the field can be considered as the result of the integration of a clamp 

over a long enough period. Parameter ► is the displacement from the location of the trigger. 

 

Ὃ►
ρ

τ“ȿ►ȿ
  

 

However, Ὃ► can also be considered as the effect on the field of a relative steady artifact. In that 

ŎŀǎŜ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ Ŏŀƴ ōŜ ƛƴǘŜǊǇǊŜǘŜŘ ŀǎ ǘƘŜ ǎŎŀƭŀǊ ǇƻǘŜƴǘƛŀƭ •► of the artifact. A real 

number valued charge characterizes the strength of the influence ὗ.  

 

•► ὗ Ὃ►
ὗ

τ“ȿ►ȿ
  

 

As such, every clamp represents a unit charge. Also, symmetry related charges represent point-like 

artifacts that characterize the strength of the corresponding potential. 

If the point-like artifact moves rather than hops and this movement occurs with a uniform speed ○, 

then the scalar potential turns into a vector potential ═►.  

═► •►○
ὗ

τ“ȿ►ȿ
○  

♩
ὗ

τ“ȿ►ȿ

ὗ 

τ“ȿ►ȿ
► 

In the above formulas plays •► the role of   and ═► plays the role of . If the point-like artifact 

accelerates, then the change of the vector potential goes together with the existence of a new vector 

field ╔► that acts as a force raising field. This follows from the fact that the total change of the field 

stays zero. 

ⱶ ♩ ═► ♩
ὗ

τ“ȿ►ȿ

ὗ

τ“ȿ►ȿ
○ 

ὗ 

τ“ȿ►ȿ
►  

○►  
►

ȿ►ȿ
 

If the acceleration occurs in the radial direction, then this results in a force raising field ╔►: 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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╔► ═►
ὗ

τ“ȿ►ȿ
○

ὗ 

τ“ȿ►ȿ
► 

 

With respect to this force raising field another point-like charge with charge value ὗ  that is also 

embedded in the original field will sense a force ╕► that equals the product of the force raising 

field and the charge of the second embedded point-like object. 

 

╕► ► ὗ ╔► ►
ὗὗ ► ►

τ“ȿ► ►ȿ
 

 

A force raising field ╔ ♩  is a component of a base field  that can exert a force onto a charged 

object. The force raising field counteracts the change of the field when another component ⱶ of that 

field is changed ⱶ. 

For example, inertia is the result of a force raising field that counteracts the acceleration of massive 

objects. 

 Module potential 
The same reasoning can be applied to an object that features a potential, which it contributes to a 

field, while it moves with uniform speed with respect to that field and it suddenly starts accelerating. 

Thus, it applies to free elementary modules that suddenly accelerate. It also applies to modules or 

modular systems whose distribution of swarm elements own a continuous location density 

distribution that on its turn owns a Fourier transform. Therefore, in first approximation, the module 

or modular system can move as a single unit. If it starts accelerating, then that fact goes together 

with the existence of a force raising field. In this field, a charged object will sense a force that is 

proportional to the product of the local strength of the field and the value of the charge. 

With respect to the Palestra, the force raising field implements the phenomenon that physicists call 

inertia. 

6.8 Gluon related field 
Quaternions exist that can rotate another quaternion or even an entire swarm of quaternions over 
“Ⱦς radians. In that case, the size of the real part of these special quaternionic rotators equals the 
size of their imaginary part. These quaternions act in pairs. The special pairs of quaternions can 
switch an anisotropy to another dimension. In other words, the pairs may switch the symmetry 
related charge of an anisotropic elementary module to a different value (=color). Isotropic objects 
stay unaffected. 

In Quantum Chromatic Dynamics, the influence of gluons is attributed to a strong force raising field. 
This explanation does not fit well in the Hilbert Book Test Model. Instead, the author supposes that 
the presence of these special quaternion pairs during the generation of the swarm of an anisotropic 
elementary module can interfere with this building process. Thus, the presence of the color shifting 
quaternions affects the persistence of the anisotropic elementary module. Isotropic objects are not 
affected.  

(10) 

(11) 
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In addition, the author supposes that the mechanisms that ensure the coherence of the swarms of 

anisotropic elementary modules respond to the generation disturbance by colluding with other 

mechanisms that also manage anisotropic elementary modules by jointly generating isotropic 

composite objects. The composite will be characterized by a single location swarm, but that swarm 

will reflect the landing locations of multiple hopping paths. The constituting hopping paths are 

anisotropic, but the result of the merge will be that the swarm is effectively isotropic.  

This proposal attributes a lot of intelligence to the stochastic mechanisms and it supposes a mutual 

interaction between the mechanisms and the region where these locations are generated. 

In physics, the phenomenon of color neutralization is called "color confinement". This phenomenon 

has a binding effect. The process binds quarks into hadrons. The color shifting quaternions play the 

role of the gluonsΦ ¢Ƙŀǘ ƛǎ ǿƘȅ ǿŜ ǿƛƭƭ ǳǎŜ ǘƘŜ ƴŀƳŜ άƎƭǳƻƴέ ŦƻǊ ǘƘŜ ǇŀƛǊǎ ƻŦ ŎƻƭƻǊ ǎƘƛŦǘƛƴƎ 

quaternions. The gluons give rise to a third basic field. They are governed by a special mechanism 

that controls their presence and their activity. We will use symbol ᴝ for the gluon related field. 

This interpretation distinguishes the Hilbert Book Test Model from Quantum Chromo Dynamics that 

introduces a force field to explain the binding between quarks. 

6.9 Free space 

In the separable Hilbert space, the eigenvectors of the Cartesian-ordered reference operator ד  

that do not belong to a module subspace together span free space. The elementary modules reside 

on symmetry centers whose center locations float on the eigenspace of ד .  

At every progression instant, only one element of the swarm ὥ  ƛǎ ǳǎŜŘΦ ¢Ƙǳǎ άŦǊŜŜ ǎǇŀŎŜέ 

surrounds all elements of the swarm. It forms most of the continuum ᴡ, which is deformed by the 

embedding of the currently selected swarm elements. 

Generation of spurious locations causes a non-zero vacuum embedding continuum. Each generated 

location causes a clamp. The clamp represents a bit of mass. The non-zero embedding continuum can 

cause phenomena such as the Casimir effect.   
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7 Field dynamics 
With respect to quaternionic differential calculus, the basic fields behave in a similar way. This 

especially holds in the absence of continuity disrupting discrete artifacts. We will use a more general 

symbol for the investigated field to analyze the behavior of the fields under differentiation and 

integration. In the appendix, we will describe the difference between quaternionic differential 

calculus and Maxwell based differential calculus. To support that comparison, we will define the 

derived subfields  and . Both ᴡ and  have such subfields! 

In this chapter, the differential equations are all quaternionic differential equations. They are not 

Maxwell equations. Maxwell equations use coordinate time. The quaternionic Maxwell-like 

equations use progression rather than coordinate time. Progression intervals conform to proper time 

intervals. Since Maxwell equations use coordinate time they reflect better what observers perceive 

from the behavior of fields. However, observers are still confronted with the consequences of 

relativity. Since the quaternionic differential equations apply proper time rather than coordinate 

time, the quaternionic differential equations are Lorentz invariant. 

7.1 Differentiation 
In the model that we selected, the dynamics of the fields can be described by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry centers 

we encountered three basic fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field , another is the embedding field ᴡ and the third field 

ᴝ is caused by the activity of the gluons.  

 determines the dynamics of the symmetry centers. ᴡ gets deformed and vibrated by the recurrent 

embedding of point-like elementary particles that each reside on an individual symmetry center. 

Field ᴝ gets deformed by the presence and the activity of gluons. 

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, the fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus. The main difference between the fields is the nature of the artifacts that disturb 

the continuity of the fields. Field ᴡ exists always and everywhere except in some discrete spatial 

points and in some space cavities. 

Two quite similar, but still significantly different kinds of dynamic geometric differential calculus exist. One kind is the 

genuine quaternionic differential calculus. The other kind is known as Maxwell based differential calculus. These two kinds 

will appear to represent different views onto the basic fields. To perform the comparison, we must extend the set of 

Maxwell equations. In principle, this means that the Maxwell-based set of differential equations is incomplete. However, in 

practice and to achieve certain goals the set of Maxwell equations is extended with equivalents of some gauge equations. In 

this chapter, only the quaternionic differential calculus will be treated. The Maxwell-based differential equations and the 

comparison of the two kinds are treated in the appendix. 

7.2 Quaternionic differential calculus. 
First, we will investigate the validity range of our pack of pure quaternionic differential equations. 

We will only consider equations that do not surpass second order differentiation. This restricts the 

application to not too violent changes of the investigated fields. 

Under rather general conditions the change of a quaternionic function Ὢή can be described by: 

 

(1) 
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Ὠή ὧ ήὨή ὧ ήὨήὨή 

Here the coefficients ὧ ή and ὧ ή are full quaternionic functions. Ὠή are real numbers. Ὡ are 

quaternionic base vectors. 

This covers first and second order differential terms. We ignore the higher order differentials. Thus, 

these conditions cannot be considered general conditions! Under more moderate and sufficiently 

short range conditions the differential function is supposed to behave more linearly.  

 

ὨὪή
Ὢ

ή
ȣ

Ὠή ὧ ήὨή  

 

Under even stricter conditions the partial differential functions become real functions ὧ ή that are 

attached to quaternionic base vectors: 

 

ὨὪή ὧ Ὠή ὧ ░ Ὠή ὧ ▒ Ὠή ὧ ▓ Ὠή ὧ ή Ὡ Ὠή 

Ὢ

ή
Ὡ ὩὨή  ὩὨή
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Thus, in a rather flat continuum, we can use the quaternionic nabla .ɳ This is the situation that we 

want to explore with our set of pure quaternionic equations. The resulting conditions are very 

restrictive! These conditions are far from general conditions. However, these restrictions still tolerate 

point-like disturbances of the continuity of the original function Ὢ. Thus these equations can handle 

the triggers of hop landings and the emittance of warps. 
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This form of the partial differential equation highlights the fact that in first order and second order 

partial differential equations the nabla operator can be applied as a multiplier. This means that we 

can apply the quaternionic multiplication rule. 

 

     ♠  ɳ  ♩   ⱶ  

 ἂ♩ȟⱶἃ ⱶ ♩ ♩ ⱶ 

 

   ἂ♩ȟⱶἃ 

 

♠ ⱶ ♩ ♩ ⱶ 

 

The  sign indicates that the nabla operator is also afflicted by symmetry properties of the applied 

quaternionic number system. The above equations represent only low order partial differential 

equations. In this form, the equations can still describe point-like disruptions of the continuity of the 

field. We can take the conjugate: 

 

 ᶻ ᶻ ᶻᶻᶸς ♩ ⱶ 

 

ᶻᶻᶻᶻ ᶻ  ᶻ 

 

 Useful formulas 
The following formulas are just mathematical facts that generally hold for vector differential calculus: 
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ộ♩ ♩ȟ╪Ớ  

 

♩ ♩╪ ♩ ♩ ╪  ♩ộ♩ȟ╪Ớ ộ♩ȟ♩Ớ╪ 

 

♩♩╪ ♩ ♩ ộ♩ȟ♩Ớ╪ ♩ộ♩ȟ╪Ớ ςộ♩ȟ♩Ớ╪ 

 

♩♩ ♩ ♩ ộ♩ȟ♩Ớ ộ♩ȟ♩Ớ 

♩♩ὥ ♩ ♩ὥ ộ♩ȟ♩Ớὥ ♩ ♩╪ ộ♩ȟ♩Ớὥ 

 

♩ộ♩ȟ╪Ớ ςộ♩ȟ♩Ớ╪ ộ♩ȟ♩Ớὥ 

 

 Special formulas 
We list a series of interesting formulas that hold generally for the nabla operator ♩. 

 

♩ộ▓ȟ●Ớ ▓ 

 

▓ is constant. 

 

ộȟὀỚ  

 

ὀ  

 

ȿὀȿ
ὀ

ȿὀȿ
 

 

ρ

ȿὀ ὀȿ

ὀ ὀ

ȿὀ ὀȿ
 

 

ộȟ
ὀ ὀ

ȿὀ ὀȿ
Ớ ộȟỚ

ρ

ȿὀ ὀȿ
ộȟ

ρ

ȿὀ ὀȿ
Ớ τ“ ὀ ὀ  

 

Similar formulas apply to the quaternionic nabla and parameter values. 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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ὼ ρ σ Ƞ ᶻὼ ρ σȠ ὼᶻ ρ σ 

 

ὼᶻὼ ὼ 

 

ȿὼȿ  ὼzὼ
ὼ

ȿὼȿ
 

 


ρ

ȿὼ ὼȿ

ὼ ὼ

ȿὼ ὼȿ
 

 

 ᶻ
ὼ ὼ

ȿὼ ὼȿ
 ᶻ

ρ

ȿὼ ὼȿ



†



†
ộȟỚ

ρ

ȿὼ ὼȿ
τ“ ὼ ὼ  

 

Instead: 

 

ᶯᶯ ộ♩ȟ♩Ớ
ρ

ȿὼȿ

σ†

ȿὼȿ

ρ

ȿὼȿ

σ†

ȿὼȿ

φ† ȿὼȿ

ȿὼȿ

υ† ȿ●ȿ

ȿὼȿ
 

 

ᶯᶯ ộ♩ȟ♩Ớ
ρ

ȿὼȿ

ρ

ȿὼȿ
 

 

ộ♩ȟ♩Ớ
ρ

ȿ●ȿ
τ“ ● 

 

Thus, with spherical boundary conditions, 
 ȿ● ●ȿ

 ƛǎ ǎǳƛǘŀōƭŜ ŀǎ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŦƻǊ ǘƘŜ tƻƛǎǎƻƴ 

equation, but 
 ȿ ȿ

 ŘƻŜǎ ƴƻǘ ǊŜǇǊŜǎŜƴǘ ŀ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŦƻǊ ǘƘŜ ǉǳŀǘŜǊƴƛƻƴƛŎ ƻǇŜǊŀǘƻǊ 

ᶯᶯ ộȟỚ ! 

For a homogeneous second-order partial differential equation, ŀ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƛǎ ƴƻǘ ǊŜǉǳƛǊŜŘΦ 

¢ƘǳǎΣ ǘƘŜ ŘŜŦƛŎƛǘ ƻŦ ŀ ƎǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ŘƻŜǎ ƴƻǘ ŦƻǊōƛŘ ǘƘŜ ŜȄƛǎǘŜƴŎŜ ƻŦ ŀ ǉǳŀǘŜǊƴƛƻƴƛŎ ƘƻƳƻƎŜƴŜƻǳǎ 

second order partial differential equation. Still equation (6) forms the base of the Poisson equation. 

 The first kind of second-order quaternionic partial differential equation 
This kind of double partial differentiation will then result in the following quaternionic non-

homogeneous second order partial differentiation equation: 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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‚ ‚ Ⱪ ᶻ   ♩   ♩  ⱶ  

 

  ộ♩ȟ♩Ớ


†



ὼ



ώ



ᾀ
 

 

We can split the above equation in a real (scalar) part and an imaginary (vector) part.  

Investigation of the details shows that the ᶻ operator has a rather simple consequence that is 

shown in formula (1) 

 

‒ ‰ ộ♩ȟꜚỚ 

• ộ♩ȟⱴỚ ộ♩ȟ♩Ớ• ộ♩ȟⱴỚ ộ♩ȟ♩ ⱴỚ 

 ộ♩ȟ♩Ớ•  

 

ⱡ ♩‰ ꜚᶸ♩  ꜚ

♩• ♩ộ♩ȟⱴỚ ♩• ⱴ ♩ ⱴ 

♩ᴜ ♩• ᶸ♩ ⱴ ♩ ♩ ⱴ 

♩• ♩ ♩ ⱴ ộ♩ȟ♩Ớⱴ ♩• ⱴ ♩ ⱴ 

♩ᴜ ♩• ᶸ♩ ⱴ ♩ ♩ ⱴ 

 ộ♩ȟ♩Ớⱴ 

 

Here ‚ is a quaternionic function that for a part ” describes the density distribution of a set of point-

like artifacts that disrupt the continuity of function ή.  

 

” ” ⱬ ộ♩ȟ♩Ớ


ὼ



ώ



ᾀ
 

 

‚ ”  

 

In the case of a single static point-like artifact, the solution  ǿƛƭƭ ŘŜǎŎǊƛōŜ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ DǊŜŜƴΩǎ 

function. Its actual form depends on the boundary conditions. 

Function ή describes the mostly continuous field . 

The second order partial differential equation that is based on the double quaternionic nabla can be 

split into two continuity equations, which are quaternionic first order partial differential equations: 

(1) 

(2) 

(3) 

(4) 

(5) 
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” ᶻ  

 

If  and ɮ are normalizable functions and ᴁᴁ ρ, then with real ά and ᴁ‒ᴁ ρ follows: 

 

 ά ‒ 

 

The formula  

 

ṱ ᶻ  ᶻ   ộ♩ȟ♩Ớ  

 

holds independent of the functions on which these operators work.  

The operator ṱ characterizes the quaternionic field variance. 

 The other second order partial differential equation 
We encounter another quaternionic second order partial differential equation, but this one 

cannot be split into two first order quaternionic partial differential equations. It is based on 

Äȭ!ÌÅÍÂÅÒÔȭÓ ÏÐÅÒÁÔÏÒ =  ộ♩ȟ♩Ớ. This quaternionic operator applies proper time 

rather than coordinate time. 

 

‒ ‒ ⱡ • • ⱴ   ộ♩ȟ♩Ớ•  

 

Dirac has shown that it can be split into two biquaternionic partial differential equations. This fact is 

treated in the appendix. 

In contrast to the first kind of second order quaternionic partial differential equation, the second 

kind accepts waves as solutions of the homogeneous version of the equation. The waves are 

eigenfunctions of differential operator . All superpositions of such eigenfunctions are again 

solutions of the homogeneous equation and can be added to the solutions of the inhomogeneous 

equation. These superpositions form so called wave packages. When they move, wave packages 

tend to disperse. 

 

Ὢ ἂȟἃὪ Ὢ 

 

Ὢ†ȟὼ ὥÅØÐὭ●ὧ†ȿ ●ȿ Ƞὧ ρ 

(6) 

(7) 

(9) 

(10) 

(1) 

(2) 

(3) 
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This leads to a category of solutions that are known as solutions of the Helmholtz equation. These 

solutions characterize the behavior of constituents of atomic modular systems. The original 

Helmholtz equations use coordinate time ὸ instead of proper time †. 

7.3 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

 

     ♠  ɳ  ♩   ⱶ  

 ἂ♩ȟⱶἃ ⱶ ♩ ♩ ⱶ 

 

The Fourier equivalents of this equation reveal: 

 

    ♠ ὴ  ὴ  ▬  ⱶ  

 

The nabla  is replaced by operator ὴ.   is the Fourier transform of  . 

 

  ὴ ▬ȟⱶ  

 

♠ ὴⱶ ▬ ▬ ⱶ 

 

The equivalent of the quaternionic second order partial differential equation that is based on ṱ is: 

 

‚ ‚ Ⱪ ὴᶻὴ  ὴὴ  ộ▬ȟ▬Ớ 

 

” ” ⱬ ộ▬ȟ▬Ớ 

 

The continuity equations result in: 

  ὴ 

 

” ὴᶻ  

7.4 Poisson equations 
The screened Poisson equation is a special condition of the non-homogeneous second order partial 

differential equation in which some terms are zero or have a special value.  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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ᶯᶻ ɳ ᶯᶯ ἂȟἃ ‚ 

 

ᶯᶯ ‗  

 

ἂȟἃ ‗ ‚ 

 

¢ƘŜ ǎŎǊŜŜƴŜŘ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ Ὃὶ determines the 3D solution of this equation. 

Green functions represent solutions for point sources. In spherical symmetric boundary conditions 

ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ōŜŎƻƳŜǎΥ 

 

Ὃὶ
ÅØÐ‗ ὶ

ὶ
 

 

  Ὃ► ► ”► Ὠ►ᴂ 

 

G(r) has the shape of the Yukawa potential [13] 

In the case of ‗ π it resembles the Coulomb or gravitation potential of a point source. 

If ‗ π, then a solution of equation (3) is: 

 

 ὥ● ÅØÐ  Ὥ ‗ ;†   Ὥ  

 

These solutions concern a screened Poisson equation that is based on the first version of the second 

ƻǊŘŜǊ ǇŀǊǘƛŀƭ ŘƛŦŦŜǊŜƴǘƛŀƭ ŜǉǳŀǘƛƻƴΦ ¢ƘŜ Ŝǉǳŀǘƛƻƴ ǘƘŀǘ ƛǎ ōŀǎŜŘ ƻƴ ŘΩ!ƭŜƳōŜǊǘΩǎ ƻǇŜǊŀǘƻǊ ŘŜƭƛǾŜǊǎΥ  

 

• • ⱴ   ộ♩ȟ♩Ớ•  ‒ 

 

ᶯᶯ•
•

†
‗ • 

 

ἂȟἃ ‗ •
•

ὼ

•

ώ

•

ᾀ
‗•  ‒ 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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• ὥ● ÅØÐ ‗† 

 

¢ƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƛǎ ǘƘŜ ǎŀƳŜΣ ōǳǘ ǘƘŜ solution (9) differs significantly from solution (6). The 

difference only concerns the temporal behavior of the field. 

7.5 Special solutions of the homogeneous partial differential equations 
The fact that the wave equation Ƙŀǎ ǿŀǾŜǎ ŀǎ ƛǘǎ ǎƻƭǳǘƛƻƴ ƛǎ ǘƘŜ ŎŀǳǎŜ ǘƘŀǘ ŘΩ!ƭŜƳōŜǊǘΩǎ Ŝǉǳŀǘƛƻƴ Ƙŀǎ ƻōǘŀƛƴŜŘ ǘƘƛǎ 

additional name. The fact that both homogeneous second order partial differential equations possess special solutions for 

odd numbers of participating dimensions is much less known. 

Here we focus on these special solutions of the quaternionic homogeneous second order partial 

differential equations. These solutions are of special interest because for odd numbers of 

participating dimensions these equations have solutions in the form of shape-keeping fronts.  

The homogeneous equations run as: 

 



ὼ



ώ



ᾀ



†

ρ

ὶ



ὶ
ὶ


ὶ



†
π 

 

Here we treat the two kinds of homogeneous equations together. 

First, we focus on the solutions that vary in one dimension. Thus: 

 



ᾀ



†
π 

 

We try a solution in the form • Ὢᾀ†: 

 

Ὢ

ᾀ
ὪȠ
Ὢ

ᾀ

Ὢ

ᾀ
Ὢ  

Ὢ

†
ὪȠ
Ὢ

†

Ὢ

†
Ὢ  

Ὢ Ὢ π 

 

This is solved when  ᴜ. 

For the first kind of the second order partial differential equation this means:   ░, where ░ is a 

normalized imaginary quaternion. With Ὣᾀ Ὢ ᾀ follows: 

 

• Ὣᾀ ░ † 

(9) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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The function Ὣ represents a shape-keeping front. It is not a wave. 

The imaginary ░ represents the base vector in the ὼȟώ plane. Its orientation — may be a function of 

ᾀ. 

That orientation determines the polarization of the one-dimensional shape-keeping front. The 

messengers that are mentioned earlier are constituted of strings of these one-dimensional shape-

keeping fronts. The string members are equidistant. The messengers travel with a fixed speed. They 

feature a fixed shape and a fixed amplitude. The equidistance results in a characteristic frequency. 

 

For the second kind of the second order partial differential equation, this means  . With 

Ὣᾀ Ὢ ᾀ follows:  

• Ὣᾀ † 

 

Next, we focus on the three-dimensional spherical symmetric condition. In that case, writing 

ὶ •ὶȟ† separates the equations. 

 

•

ὶ

ς

ὶ

•

ὶ

•

†
π



ὶ



†
π 

 

With other words  fulfills the conditions of the one-dimensional case. Thus, solutions in the form 

• Ὢὶ†Ⱦὶ will fit. 

For the first kind of the second order partial differential equation this means:   ░, where ░ is a 

normalized imaginary quaternion. With Ὣὼ Ὢ ὼ follows: 

 

• Ὣὶ ░ †Ⱦὶ 

 

░ represents a base vector in radial direction. 

For the second kind of the second order partial differential equation, this means  . With 

Ὣὼ Ὢ ὼ follows: 

 

• Ὣὼ †Ⱦὶ 

 

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminishes as ρȾὶ 

with distance ὶ from the sources. When integrated over a long enough period of progression the 

ǊŜǎǳƭǘ ǘŀƪŜǎ ǘƘŜ ŦƻǊƳ ƻŦ ǘƘŜ ŦƛŜƭŘǎ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ  

(7) 

(8) 

(9) 

(10) 
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The shape-keeping fronts are not waves and do not form wave packages. They do not feature a 

frequency. In order to obtain a frequency, the fronts must be emitted at regular equidistant instants. 

In that case, the shape-keeping fronts occur in strings and do not disperse. If these strings obey the 

Planck-Einstein relation, then their temporal duration and their spatial length must be fixed at 

constants that are independent of the frequency. 

7.6 Differential field equations 
By introducing new symbols  and  we will keep the quaternionic differential equations closer to 

the Maxwell differential equations. Still essential differences exist between these two sets of 

differential equations. This will be elucidated in detail in the appendix.  

Like the quaternions, themselves the quaternionic nabla can be split into a scalar part and a vector 

part. The quaternionic nabla acts as a multiplying operator and this means that the first order partial 

differential equation splits into five terms. Part of these terms are scalars. The other terms are 

vectors. 

The following formulas are not Maxwell equations. At the utmost, the formulas are Maxwell-like. 

 

‰  ɳ• ᶯ  • ⱴ ᶯ• ộ♩ȟⱴỚ ᶯⱴ  • ⱴ 

ᶯ• ộ♩ȟⱴỚ  

 

Ḱ ᶯⱴ ♩•  

 

ᶯ ᶯᶯ ⱴ ᶯ♩•  

 

ộ♩ȟỚ ᶯộ♩ȟⱴỚ ộ♩ȟ♩Ớ•  

 

Ḱ♩ ⱴ 

 

These definitions imply: 

 

ộȟỚḲπ 

 

ᶯ ♩  

 

ộ♩ȟỚ π 

 

♩ ♩ộ♩ȟⱴỚ ộ♩ȟ♩Ớⱴ 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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The Maxwell equations ignore the real part of ‰. 

 

‰ ᶯ‰ ᶯᶯ • ᶯộ♩ȟⱴỚ 

 

♩‰ ᶯ ♩•  ♩ộ♩ȟⱴỚ ᶯ ♩• ♩ ♩  ⱴ  ộ♩ȟ♩Ớ ⱴ 

 

‒ ‒ ⱡ ᶯ ộȟỚ• 

 

‒ ᶯᶯ ộȟỚ• ᶯ ‰ ộȟỚ 

 

ⱡ ᶯᶯ ộȟỚⱴ ♩‰ ᶯ ♩  קּ

 

More in detail the equations mean: 

 

‒ ‰ ộ♩ȟꜚỚ 

• ộ♩ȟⱴỚ ộ♩ȟ♩Ớ• ộ♩ȟⱴỚ ộ♩ȟ♩ ⱴỚ 

 ộ♩ȟ♩Ớ•  

 

ⱡ ♩‰ ꜚᶸ♩  ꜚ

♩• ♩ ♩ ⱴ ộ♩ȟ♩Ớⱴ ♩• ⱴ ♩ ⱴ  

♩ᴜ ♩• ᶸ♩ ⱴ ♩ ♩ ⱴ  

 ộ♩ȟ♩Ớⱴ ♩ ♩ ⱴ ♩ ♩ ⱴ 

 

” ộȟỚ• ‒ ᶯᶯ•  

ⱬ ộȟỚⱴ ⱡ ᶯ ⱴ 

 

7.7 Poynting vector 
The definitions of  and ּק invite the definition of the Poynting vector ╢: 

 

╢  קּ

ό  ϵ ộȟỚ ộּקȟּקỚ 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(1) 

(2) 
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ό

†
 ộ♩ȟ╢Ớ ộ╙ȟỚ 

 

Where ” represents the presence of charges will ╙ represent the flow of charges. 

7.8 Quaternionic differential operators 
When applied to quaternionic functions, quaternionic differential operators result in another 

quaternionic function that uses the same parameter space. 

The operators ȟ♩ȟ  ♩ ȟᶻ  ♩ȟộ♩ȟ♩Ớȟᶻ  ᶻ   ộ♩ȟ♩Ớ ÁÎÄ  

 ộ♩ȟ♩Ớ are all quaternionic differential operators. 

 is the quaternionic nabla operator.  

ᶻ is its quaternionic conjugate. 

The Dirac nabla operators ꜠   ♩ ÁÎÄ ꜠ᶻ    convert quaternionic functions into 

biquaternionic functions. The equation 

 

꜠꜠ ᶻ Ὢ  Ὢ  ộ♩ȟ♩Ớ Ὢ Ὣ  

 

represents a wave equation and is a pure quaternionic equation! The Dirac operator and the Dirac 

equation are treated in detail in the appendix.  

(3) 

(19) 
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8 Double differentiation 

8.1 Right and left sided nabla 
The quaternionic nabla can be split into a right sided version and a left sided version. Without further 

indication, we consider the right version as the current version. The imaginary part determines the 

version, which is linked with the handedness of the product rule. 

ᶯὪ Ὡ
Ὢ

ὼ
ὩὩ

Ὢ

ὼ
ὩὩᶯὪ Ὢɳ 

ᶯὪ
Ὢ

ὼ
Ὡ ὩὩ

Ὢ

ὼ
ὩὩᶯὪ ὩὩ ᶻᶯὪ ᶯὪᶻ Ὢɳᶻ Ὢɳ ς █ 

ᶯ ᶯὪ ὩὩὩᶯᶯὪ 

8.2 Double partial differentiation 
The partial differential equations hide that they are part of a differential equation. 

 

Ὢ ‚ Ὡ


ή
Ὡ
Ὢ

ή
ὩὩ



ήή
Ὢ 

 

8.3 Single difference 
Single difference is defined by 

ὨὪή
Ὢ

ή
ὩὩ  Ὠή ‰ὩὨή 

 

Ὢ

ή
ὩὩ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
Ὢ

ή

Ὢ

ή
░

Ὢ

ή
▒

Ὢ

ή
▓

Ὢ

ή
░

Ὢ

ή

Ὢ

ή
▓

Ὢ

ή
▒

Ὢ

ή
▒

Ὢ

ή
▓

Ὢ

ή

Ὢ

ή
░

Ὢ

ή
▓

Ὢ

ή
▒

Ὢ

ή
░

Ὢ

ή Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

 

(1) 

(2) 

(3) 
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ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
Ὢ

ή
꜡░ ꜡▒ ꜡▓

꜡░
Ὢ

ή
ꜞ ▓ ꜞ ▒

꜡▒ ꜞ ▓
Ὢ

ή
ꜞ ░

꜡▓ ꜞ ▒ ꜞ ░
Ὢ

ή Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

Here  

ꜞ ꜞ ꜞ Ƞ ꜞ ꜞ ꜞ Ƞ ꜞ ꜞ ꜞ  

 

Ὢ
ὨὪ

Ὠ‗
‰Ὡ

Ὠή

Ὠ‗
‰Ὡή  

 

The scalar ‗ ƛǎ Ŏŀƴ ōŜ ŀ ƭƛƴŜŀǊ ŦǳƴŎǘƛƻƴ ƻŦ ˍ ƻǊ ŀ ǎŎŀƭŀǊ ŦǳƴŎǘƛƻƴ ƻŦ q. 

ήḰ
Ὠή

Ὠ‗
Ὡ
Ὠή

Ὠ‗
Ὡή  

 

Double difference is defined by: 

ὨὪή Ὡ
Ὢ

ήή
ὩὨή ὩὨή  

 

ὪḰ
ὨὪή

Ὠ‗
ὩὪ Ὡ

Ὢ

ήή
Ὡ
Ὠή

Ὠ‗
Ὡ
Ὠή

Ὠ‗
 

Ὡ
Ὢ

ήή
Ὡή Ὡή ήή



ήή
ὩὩ Ὢ ‒  Ὢ 

 

‒ ὩὩ ή  ή


ήή
ὩὩɭ  

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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ɭ  ή  ή


ήή
 

 

If we apply ‰ Ὢas the first differential operation and ‚ ᶻ‰ as the second differential 

operation, then Ὡ ρȟ░ȟ▒ȟ▓ and Ὡ ρ ░ȟ▒ȟ▓ and 

 

ɭ

ɭ ɭ ░ ɭ ▒ ɭ ▓
ɭ ░ ṫɭ ɭ ▓ ɭ ▒
ɭ ▒ ɭ ▓ ṫɭ ɭ ░
ɭ ▓ ɭ ▒ ɭ ░ ṫɭ

 

 

Here the switch ṫ distinguishes between quaternionic differential calculus and Maxwell based 

differential calculus. See the appendix. 

8.4 Deformed space 
If the investigated field represents deformed space ᴡ, then the field ᴘ, which represents the 

parameter space of function ᴡή represents the virgin state of that deformed space. 

Further, the equation 
ᴡ

π represents a local condition in which ᴡ is not affected by external 

influences. Here ‗ can ōŜ ŀƴȅ ƭƛƴŜŀǊ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ǇǊƻƎǊŜǎǎƛƻƴ ˍ ƻǊ ƛǘ Ŏŀƴ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ŜǉǳƛǾŀƭŜƴǘ 

of local quaternionic distance: 

 

‗ ὥ ή ὦ 

or 

‗ ȿήȿ  

  

(11) 
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9 Information transfer 
In the model, the fields with which discrete objects interact implement the information transfer 

between these discrete objects. Interaction means that the location of the object or the state of the 

object is affected by the field and/or that the presence of the object deforms the field. The state of 

the object is its assembly of discernable properties. These properties may depend on the mechanism 

that governs the behavior and the existence of the object.  

Solutions of the second order partial differential equation of the field play an important role in these 

interactions. Especially the information messengers play a major role in the transfer of information. 

9.1 Messengers 
Solutions of the quaternionic second order partial differential equation configure the messengers. 

For odd numbers of participating dimensions, some of the solutions of the homogeneous second 

order partial differential equation are combinations of shape-keeping fronts.  

In three dimensions the spherical shape-keeping fronts diminish their amplitude as ρȾὶ with distance 

ὶ of the trigger point. In this paper the spherical fronts are called clamps. Each clamp carries a bit of 

mass. 

One-dimensional shape keeping fronts also keep their amplitude. Consequently, these shape-

keeping fronts can travel huge distances through the field that supports them. In this paper, the one-

dimensional shape and amplitude keeping fronts are called warps. Each warp carries a bit of energy 

and represents a bit of information. 

Warps can travel huge distances without losing their integrity. In order to travel such huge distance, 

the carrying field must exist during the trip and along the full path. The Palestra ᴡ exists always and 

everywhere. The Electra  depends on the nearby existence of symmetry related charges. The 

amplitude of the potential of the charge diminishes as 1/r with distance from this charge. 

The embedding field ᴡ is a better candidate for long distance transfer of energy and information. 

Warps vibrate the ᴡ field but do not deform this field. They just follow existing deformations. It 

means that they follow geodesics. 

Creating a string of warps requires a recurrent warp generation process. Such processes do not 

underlay the generation of symmetry related charges that support the  field. However, such 

processes exist during the recurrent embedding of artifacts that occurs in the ᴡ field. 

Recurrent regeneration of clamps is capable of deforming the corresponding field in a rather static way. It has similar 

effects as the stationary deformation that is due to a set of point-like static artifacts has. Each of the static artifacts deforms 

the embeddƛƴƎ ŦƛŜƭŘ ŀǎ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǿƻǳƭŘ ŘƻΦ 

9.1 The Planck-Einstein relation 
The information messengers are strings of equidistant warps. These one-dimensional shape and 

amplitude keeping fronts are solutions of a homogeneous second order partial differential equation. 

Each of the fronts carries a standard bit of information and that information corresponds to a 

standard bit of energy. In line with the Planck-Einstein relation, the energy equivalent of the 

information that is contained in the messenger is proportional to the frequency of the information 

messenger. The energy of the messenger is proportional to the number of fronts in the messenger. 

All warps travel with the same speed. The homogeneous second order partial differential equation 

sets this speed. So, this speed, the duration of the emission of the messenger and the spatial length 
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of the messenger are independent of the frequency of the messenger. In the same way, these values 

must be independent of the energy of the messenger. 

The number of warps that the annihilation of an elementary module emits in a messenger equals the 

number of clamps in the annihilated elementary module. The mass of the elementary module is 

proportional to that number. 

The mass of the elementary module depends on its type. The regeneration cycle of all elementary 

module types must take the same duration. This means that the generation of elementary modules 

can be synchronized. The locations of more massive elementary modules must be generated at a 

faster rate. 

All processes that emit information messengers must feature the same emission duration and the 

same spatial length of the emitted messenger. Thus, the emission of messengers by atoms must 

feature this same duration. 

9.2 Photons 
The fixed speed of warps translates into the same fixed speed for the messengers. A string of warps 

can carry a quantized amount of energy. Photons appear to be the physical realizations of the 

information messengers. The relation Ὁ Ὤ ’ and the fixed speed of photons indicate that at least 

at relative short range the string of warps takes a fixed amount of progression steps for its creation, 

for its passage and for its absorption.  

However, observations of long-range effects over cosmological distances reveal that these relations 

do not hold over huge distances. Red-ǎƘƛŦǘ ƻŦ ǇŀǘǘŜǊƴǎ ƻŦ άƻƭŘέ ǇƘƻǘƻƴǎ ǘƘŀǘ ŀǊŜ ŜƳƛǘǘŜŘ ōȅ ŀǘƻƳǎ 

and arrive from distant galaxies indicate that the spatial part of field ᴡ is extending as a function of 

progression. 

Taken over huge ranges of the carrying field or over a long period, the spatial length may vary in a 

smooth way. This phenomenon is the subject of the equivalent of IǳōōƭŜΩǎ ƭŀǿ. With the 

interpretation of photons as strings of warps, this means that the duration of emission and the 

duration of absorption are also functions of progression. Locally and at the same instant, these 

ŘǳǊŀǘƛƻƴǎ ŀǊŜ ǘƘŜ ǎŀƳŜΦ /ƻƴǎŜǉǳŜƴǘƭȅΣ ǎƻƳŜ ƻŦ ǘƘŜ ŜƳƛǘǘŜŘ ǿŀǊǇǎ ŀǊŜ άƳƛǎǎŜŘέ ŀǘ ŀ ƳǳŎƘ ƭŀǘŜǊ 

absorption. In that case, the detected photon corresponds to a lower energy and is accounted for a 

lower frequency than the emitted photon has. In line with relation Ὁ Ὤ ’ that holds locally, the 

detected photon appears to be red-ǎƘƛŦǘŜŘΦ ¢ƘŜ ŜƴŜǊƎȅ ƻŦ ǘƘŜ άƳƛǎǎŜŘέ warps is converted into other 

kinds of energy or strings of missed warps keep proceeding as lower energy photons. Spurious warps 

may stay undetected. 

In a similar way, photon detectors may catch only part of the energy of a photon and then the other 

part of the energy is converted into other kinds of energy or strings of missed warps keep proceeding 

as lower energy photons. 

9.3 Frenet Serret path 
The fixed speed of the messengers represents an interesting case. The change of a field has five 

components that cover four dimensions. However, the path ♬† of an object in the spatial part of 

that field can be characterized by three mutually independent figures. 

The first figure is called the unit tangent vector ▄ †. The vector is directed along the tangent that 

departs at a selected location † on that path. 

▄ † ♬ †Ⱦᴁ♬ †ᴁ (1) 



 

100 
 

The second figure is called the normal vector ▄ †.  

█† ♬ † ộ♬ †ȟ▄ †Ớ ▄ † 

▄ †
█†

ᴁ█†ᴁ
 

The size ᴁ█†ᴁ of vector █† is not equal to unity and the direction of █† is perpendicular to the 

unit tangent vector. The inverse of the size is an indication of the local curvature of the field that acts 

as the transport medium for the messenger. It is called the local curvature ‖ of the path ♬†. 

‖
ρ

ộ█†ȟ▄ †Ớ
 

The third figure is called the binormal vector ▄ †. 

▌† ♬ † ộ♬ †ȟ▄ †Ớ ▄ † ộ♬ †ȟ▄ †Ớ ▄ † 

▄ †
▌†

ᴁ▌†ᴁ
▄ † ▄ † 

The size ᴁ▌†ᴁ of vector ▌† is not equal to unity and the direction of ▌† is perpendicular to 

both the unit tangent vector and the normal vector. The size is an indication of the local curl of the 

field that acts as the transport medium for the messenger. It is called the torque ּכ of the path ♬†. 

Since the speed ᴁ♬ †ᴁ is constant the right-side term in equation (2) is zero. We take the speed 

equal to unity. This reduces the path to a natural path, which is described by three orthonormal 

frame vectors. ╣ȟ╝ ÁÎÄ ║. 

╣† ♬ † 

╣ † ‖ ╝† 

╝ † ‖ ╣†  †║ כּ

║ †  †╝ כּ

║ ╣ ╝ 

Due to the curvature and the curl of the carrying field, the path becomes the base of a geodesic. In a 

geodesic, the path length is a local minimum. In the parameter space of the describing function, the 

object travels with constant speed. It means that along the parameter space version of the geodesic 

the progression steps are equal to the spatial steps. The carrying field deforms to support the 

sidesteps due to the non-zero curvature ‖ and the non-zero torque ּכ of the path of the messenger. 

9.4 Consequences for our model 
Thus, the quaternionic second order partial differential equation may be valid near the images of the 

geometric centers of the symmetry centers inside ᴡ, but does not properly describe the long-range 

behavior of ᴡ. Due to its restricted range and the non-recurrent generation of its charges, the  field 

does not show the equivalents of photons and red-shift phenomena. 

The long-range phenomena of photons indicate that the parameter space ᴘ  of ᴡ may own an 

origin. For higher progression values and for most of the spatial reach of field ᴡ, that origin is located 

at huge distances. Information coming from low progression values arrives with photons that have 

traveled huge distances. They report about a situation in which symmetry centers were located on 

average at much smaller inter-distances. 

(2) 

(3) 



 

101 
 

Instead of photons, the  field may support waves, such as radio waves and microwaves. These 

waves are solutions of the wave equation, which is part of Maxwell based differential calculus. 

On the other hand, the wave equation also has shape-keeping fronts as its solutions. 

9.5 Energy-mass equivalence 
The enormous number of elements in the swarms that represent elementary modules causes at least 

for a part the self-coherence of the swarm. For another part, the effects of inertia cause the self-

coherence of the swarm. Inside the swarm, it leads on the one hand to the assumption that the mass 

of elementary modules is directly proportional to the number of elements inside the swarm. The 

creation and annihilation events of elementary modules then lead to the conclusion that during 

these events the solutions of the homogeneous second order differential equations convert from 

clamps to warps or vice versa. This process occurs stepwise. The conservation of symmetry 

conditions restricts what happens during each step. During the life of the elementary module what 

happens can and will be integrated over the regeneration cycle of the swarm that represents the 

elementary module. The integration conveǊǘǎ ǘƘŜ ǎǇƘŜǊƛŎŀƭ ǎƻƭǳǘƛƻƴǎ ƛƴǘƻ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ƻŦ ǘƘŜ 

field. It converts the homogeneous second order partial differential equation into an inhomogeneous 

ŜǉǳŀǘƛƻƴΦ ¢ƘŜ ƴŜǿ ǘŜǊƳ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΦ 

The one-dimensional solutions will be combined in a one-dimensional string of equidistant elements. 

For each element of the swarm and thus for each solution in the form of a clamp, an element of the 

string of equidistant warps is generated. At particle annihilation, the photons leave in a direction that 

is perpendicular to the direction in which the swarm is/was moving. This indicates that some other 

object that is active in a third direction is also involved in the process. 
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10 Zigzag tube 
The symmetry center  that conforms to encapsulated region ( , keeps its private symmetry 

flavor. The eigenspace of operator ᴤ  is represented by a tube that contains a series of sheets that 

each represent a static status quo. 

The dynamic dual Hilbert space model offers two interesting views. One view is the observer's 
view. The observers are modules that travel with the vane. The observers have no access to the 

future part of the model. They get their information via information messengers  and more 
indirectly via deformations of the field in which th ey live. Also, the information messengers travel 
in the field in which the modules live.  

The other view is the creator's view. The creator's view has access to all dynamic geometric data 

that are stored in the Hilbert spaces. In the creator's view, the elementary modules live in a tube 

that may zigzag over the Hilbert space. The tube may reflect at some instants against the vane. 
This may happen at the history side and it may happen at the future side. Thus, the tube may pass 
the vane several times. The reason the tube reflects at certain instances is not clear. It may happen 

when locally the warps and the clamps can no longer proceed forward (or backward) with respect 
to progression. In the storage view, an anti-particle is equivalent to a particle that mov es back in 
time.  

An elementary module for which the trajectory of the tube keeps the same time direction in the 

ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǊŜǇǊŜǎŜƴǘǎ ŦƻǊ ǘƘŜ ƻōǎŜǊǾŜǊǎ ŀ period that the elementary particle exists in the same 

ƳƻŘŜΦ LŦ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǘƘŜ ŜƭŜƳŜƴǘŀǊȅ ƳƻŘǳƭŜ ǊŜŦƭŜŎǘǎ ŀƎŀƛƴǎǘ ǘƘŜ ǾŀƴŜ ŀǘ ǘƘŜ ƘƛǎǘƻǊȅ ǎƛŘŜΣ 

ǘƘŜƴ ƛƴ ǘƘŜ ƻōǎŜǊǾŜǊΩǎ ǾƛŜǿ ǘƘŜ ŜƭŜƳŜƴǘŀǊȅ ƳƻŘǳƭŜ ŀƴƴƛƘƛƭŀǘŜǎ ŀƴŘ ŜƴŎƻǳƴǘŜǊǎ ƛǘǎ ŀƴǘƛ-module that 

equals thŜ ƳƻŘǳƭŜ ŀǎ ƛŦ ƛǘ ǘǊŀǾŜƭǎ ōŀŎƪ ƛƴ ǘƛƳŜΦ Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ view, the module does not annihilate. 

It reflects against the vane. The creator does not distinguish between elementary modules and their 

anti-module versions. These versions only differ in their direction of time travel. 

The zigzag time travel does not need to cope with the incredible aiming precision in which particles 

and photons must meet in the creation and annihilation story.  

If the tube reflects against the future side of the vane, then for the observers two elementary 

ƳƻŘǳƭŜǎ ǘƘŀǘ ŀǊŜ ŜŀŎƘ ƻǘƘŜǊΩǎ ŀƴǘƛ-ƳƻŘǳƭŜ ŀǊŜ ŎǊŜŀǘŜŘΦ Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ view, the modules are not 

created. The module just switches its direction of time travel. With the switch of time travel switches 

the symmetry flavor of the module. 

The reflection of the symmetry centers against the vane goes for observers together with 

annihilation and creation phenomena for the objects that reside on these platforms. Thus, this 

passage is related to the annihilation or the creation of elementary modules. These exceptional 

occurrences are known as pair production and pair annihilation. At most instances, the tube just 

passes the vane and the behavior mode of the concerned elementary module persists. As long as the 

tube passes the vane without reflection, the observers will perceive the elementary module as 

persisting. 

¢ƘŜ ǊŜǎǳƭǘ ƻŦ ǘƘŜǎŜ ǊŜŦƭŜŎǘƛƻƴǎ ƛǎ ǘƘŀǘ ƛƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǘƘŜ ǘǳōŜ ƻŦ ǘƘŜ ǎŀƳŜ ŜƭŜƳŜƴǘŀǊȅ ƳƻŘǳƭŜ 

can pass the vane multiple times. Observers cannot observe the zigzag of elementary modules. They 

might notice entanglement ƻŦ ŜƭŜƳŜƴǘŀǊȅ ƳƻŘǳƭŜǎ ǘƘŀǘ ƻŎŎǳǇȅ ǘƘŜ ǎŀƳŜ ǘǳōŜΦ Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ view, 

the entangled elementary modules concern the same object. 

Lƴ ǘƘŜ ŎǊŜŀǘƻǊΩǎ ǾƛŜǿ ǘƘŜ ƳƻŘŜƭ ŘƻŜǎ ƴƻǘ όȅŜǘύ ǇǊƻǾƛŘŜ ŀ ŎǊŜŀǘƛƻƴ ƛƴǎǘŀƴǘ ŀƴŘ ƛǘ does not (yet) provide 

an annihilation instant. All elementary modules that exist keep zigzagging. 
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In the quaternionic space-progression model, the existence of symmetry centers is independent of 

progression. With other words, the number of symmetry centers is a model constant. The passage 

through the rim and the reflection against the rim do not influence this number. The passage only 

affects the characteristics of the combination of the symmetry center and the background parameter 

space. 

Lƴ ǘƘŜ ƻōǎŜǊǾŜǊΩs view, the annihilation of elementary modules goes together with the emission of 

information messengers. Similarly, the creation of elementary modules goes together with the 

absorption of information messengers. At the reflection instants, the number of involved warps 

equals the number of involved clamps. The conversion process takes a certain duration. That 

duration equals the recycle period of the involved swarm. 

At the reflection instants, the mechanism that generates the locations for its client elementary 

module reverses its progression dependence and therefore the location generation algorithm 

generates the locations in the reverse sequence. This means that in free space the elementary 

module behaves as if it is an antiparticle. The antiparticle has reversed properties. Its electric charge 

has changed sign.  

10.1 What characterizes reflection instants? 
Reflection instants occur at locations where deformation is so strong that the clamps cannot pass the 

barrier. This happens for example at the inner side of the event horizon of a black hole. 

10.2 What happens during reflection? 
This suggestion by the author describes in the storage view what happens at tube reflections.  

At reflection instants, the mechanism that provides hop locations proceeds as if nothing special 

happens. However, the platform bounces and therefore it switches its symmetry flavor to the 

symmetry flavor of the anti-particle. During this conversion, the embedding action of the platform 

stops. Instead, the action of the platform reduces to its center location. At that location and for each 

received hop location, the platform does not embed the hops, but instead it emits two warps. These 

warps are emitted in opposite directions that are perpendicular to the spatial reflection direction. 

After finishing the rotation, the platform ǊŜǘŀƪŜǎ ƛǘǎ ŜƳōŜŘŘƛƴƎ ǇǊƻŎŜŘǳǊŜ ŀƴŘ ΨmovesΩ along the 

reflected tube in the reverse progression direction. 

11 Actions of the fields 
All fields obey the same first order partial differential equations. For all fields, the homogeneous 

second order partial differential equations are the same. Thus, at moderate conditions, the 

differences between fields locate in the inhomogeneous part of the second order partial differential 

equations. The influences of disturbances of the continuity of the field are gathered in this 

inhomogeneous part. Without these disturbances, most of the fields would be flat and their defining 

function would be equal to its parameter space. 

In this view, many of the fields are blurred representations of discrete distributions, where the elements of the distribution 

are target values of a function that has rational quaternions as its parameter space. In some cases, the discrete distribution 

represents a dynamic location density distribution. In fact, two views are possible, either the field influences the discrete 

objects that correspond to location swarms or the swarms define the fields via their location density distribution. Smoothed 

fields are afflicted with extra blur. 

Apart from the symmetry-related fields  that are raised by the charges of the symmetry centers 

and the field ᴝ that describes the gluons, at least one other basic field exists. That field is the 

embedding field ᴡ. It represents the living space of the modules and modular systems. The origins of 
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these fields differ fundamentally. The embedding field smoothly follows a distribution of discrete 

quaternionic values, which are eigenvalues of a series of operators. Some of these values do not fit or 

better said, did not fit, properly in the set of values that surrounds them. The disparities are due to 

difference in the symmetries of the underlying domains. The trigger only lasts a single progression 

instant. It persists during a short period as a clamp that fades away. In the special condition that 

these disparities appear in coherent swarms, we have indicated the swarm as the representative of 

an elementary particle. A stochastic mechanism continuously regenerates the swarm. The 

symmetries determine how the values cooperate in convolutions. If the disparities were not present, 

then the embedding field would be equal to the parameter space ד and that continuum would 

follow parameter space ᴘ. As long as the activity of the stochastic process that is applied by the 

mechanism is characterized by a rather stable characteristic function, the swarm will in fist 

approximation move as one unit. A displacement generator describes that motion. The live of the 

elementary modules is controlled by quaternionic differential equations. At a much larger scale that 

also holds for the swarms. 

The symmetry-related charges of the symmetry centers do not directly affect the embedding field. 

The embedding field is indirectly affected because the symmetry related fields affect the location of 

the symmetry centers that house the objects that can deform the embedding field. In principle, each 

disruption of the continuity of the field, thus each element of the swarm that represents an 

elementary module, affects the embedding field ᴡ. The smoothed version  of the embedding field 

is far less vigilant. Also, the symmetry related field , which is coupled to the geometric center of the 

symmetry center reacts much less vigilant. According to the conviction of the author, the gluon field 

is related to locations where pairs of color shifting quaternions disturb the generation process of the 

anisotropic coherent swarms and causes the generation of hadrons, which are conglomerates of 

quarks. 

The embedding field ᴡ is affected by the embedding of artifacts that are picked by a dedicated 

controlling mechanism that uses a symmetry center . as a resource. After selection of the location 

of the artifact, the controlling mechanism embeds this artifact into the embedding continuum ᴡ. This 

continuum is represented by the continuum eigenspace of operator ᴡ.  

Another interpretation is that this field describes the location swarms that are generated by the controlling mechanisms. 

Each of these mechanisms operates in a stochastic and still mostly cyclic fashion. The embedding 

events occur in the direct neighborhood of the geometric center of the corresponding symmetry 

center. The result is a recurrently regenerated coherent location swarm that also represent a 

stochastic hopping path. The swarm is centered around the geometric center of the symmetry 

center. Hopping means that the controlling mechanism generates at the utmost one embedding 

location per progression step. This means that the hopping object can be considered as a point-like 

artifact. At the embedding instant, the artifact actually resides at the location that is represented by 

an element of the location swarm. Thus, the swarm represents the spatial map of a set of potential 

detection locations. The swarm is generated within the symmetry center  and is encapsulated by 

( . The actions of the mechanisms deform the field ᴡ inside the floating regions ( . The 

deformation of ᴡ reaches beyond the region ( .  

In this way, the mechanism creates an elementary module, which can deform the embedding 

field ᴡ and inherits the symmetry related charge from the symmetry center. The deformation 

represents the local contribution to the embedding field by the elementary module that owns 

the swarm.  
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On the other hand, the geometric center of the symmetry center houses the electric charge that 

influences field . This view can be reversed. It is possible to consider the path that the 

geometric center of the symmetry center takes under the influence of both fields. This view 

requires an estimate of the results of the actions of these fields. This will be achieved via the path 
integral. First, we will investigate the influence of the embedding field ᴡ. In a later phase, we will 

add the results of the much less vigilant actions of the symmetry related field . 

As indicated beforehand a third basic field is the result of the activity of gluons. That activity 

disturbs the generation of anisotropic elementary modules. The controlling mechanisms react 

by assembling several partially generated anisotropic elementary modules into an isotropic 

composite. In this composite, multiple symmetry centers are involved. Also, these symmetry 

centers join. Outside of the joined encapsulation, the composite appears isotropic. The 

composite still may carry an electric charge. But it no longer carries color charge. Inside the 

capsule, multiple hopping paths walk and form a common location swarm. 

11.1 Multi-mix path algorithm 
In this primary investigation, we ignore the actions of the symmetry related potential. They are far 

ƭŜǎǎ ǾƛƎƛƭŀƴǘ ǘƘŀƴ ǘƘŜ ŘƛǊŜŎǘ ǊŜǎǳƭǘǎ ƻŦ ǘƘŜ ŜƳōŜŘŘƛƴƎ ƻŦ ƛƴŘƛǾƛŘǳŀƭ ƭƻŎŀǘƛƻƴǎΦ ¢ƘŜ ƴŀƳŜ άmulti-mix 

algorithmέ ǎǘŀƴŘǎ ŦƻǊ ŀ ǎƛƳƛƭŀǊ ŀƭƎƻǊƛǘƘƳ ǘƘŀǘ ƛǎ ƪƴƻǿƴ ŀǎ άpath integralέΦ άǇŀǘƘ ƛƴǘŜƎǊŀƭέ is, in fact, a 

misnomer. The algorithm concerns a sequence of multiplications. Since during the regeneration of 

the considered object the displacement of the object is rather stable, will part of the multiplication 

factors reduce to unity. The other factors are close to unity. The result is that the sequence reduces 

to a sequence of additions of many small contributions. These contributions are the actions of the 

individual hops of an elementary module. 

Elementary modules reside on an individual symmetry center. A dedicated mechanism controls its 

recurrent generation and embeds the object into the embedding field. The path of the symmetry 

center is the averaged path of the embedded object. The embedded object is hopping along the 

elements of the generated location swarm. The controlling mechanism generate the landing 

locations of the hops in a stochastic fashion, but such that at first approximation the swarm can be 

considered to move as one unit. This is possible when the swarm is characterized by a continuous 

location density distribution, which owns a displacement generator. That is the case when the 

location density distribution owns a Fourier transform. The existence of the Fourier transform is 

ensured by the characteristic function of the stochastic process, which generates the hop landing 

locations. The Fourier transform ŜƴŀōƭŜǎ ǘƘŜ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ǘƘŜ ǇŀǘƘ ƻŦ ǘƘŜ ǎǿŀǊƳ ōȅ ŀ άƳǳƭǘƛ-mix 

ŀƭƎƻǊƛǘƘƳέΦ ¢ƘŜ ƘƻǇǇƛƴƎ ƻŦ ǘƘŜ ŜƳōŜŘŘŜŘ ƻōƧŜŎǘ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ōȅ ŀ ǎŜǉǳŜƴŎŜ ƻŦ ŦŀŎǘƻǊǎ ǘƘŀǘ 

after multiplication represent the whole path. Each factor represents three subfactors. 

The procedure that underlies the multi-mix algorithm depends on the fact that the multiplication of factors that are all very 

close to unity can be replaced by a summation.  

1. The first subfactor represents the jump from configuration space to momentum space. This 

subfactor is given by the inner product of the Hilbert vector that represents the current 

location and the Hilbert vector that represents the momentum of the swarm. This second 

Hilbert vector is assumed to be constant during the current regeneration of the location 

swarm. 

2. The second subfactor represents the effect of the hop in momentum space.  

3. The third subfactor represents the jump back from momentum space to configuration space. 
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The procedure runs over the complete hopping path. In the sequence of factors, the third subfactor 

of the current term compensates the effect of the first subfactor of next term. Their product equals 

unity. 

What results is a sequence of factors that are very close to unity and that represent the effects of the 

hops in momentum space. Because the momentum is considered constant, the logarithms of the 

terms can be taken and added to an overall sum. In this way, the multiplication is equal to the sum of 

the logarithms of the factors.  

This summation approaches what is known as the άǇŀǘƘ ƛƴǘŜƎǊŀƭέΦ Lƴ ƻǳǊ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴΣ ƛǘ ƛǎ ƴƻǘ ŀƴ 

integral, but instead, it is a finite summation, which approaches a sequence of multiplications of 

factors that approach unity. In more detail, the procedure can be described as follows. 

We suppose that momentum ▬  is constant during the particle generation cycle in which the 
controlling mechanism produces the swarm ὥ . Every hop gives a contribution to the path. 

These contributions can be divided into three steps per contributing hop: 

1. Change to Fourier space. This involves as subfactor the inner product ộὥȿὴỚȢ 

2. Evolve during an infinitesimal progression step into the future.  

a. Multiply with the corresponding displacement generator ▬ .  

b. The generated step in configuration space is ╪ ╪ . 

c. The action contribution factor in Fourier space is ộ▬ȟ╪ ╪Ớ. 

3. Change back to configuration space. This involves as subfactor the inner product 
ộὴȿὥ Ớ 

The combined term contributes a factor ộὥȿὴỚÅØÐộ▬ȟ╪ ╪Ớộὴȿὥ Ớ. 

Two subsequent steps give: 

 

ộὥȿὴỚÅØÐộ▬ȟ╪ ╪Ớộὴȿὥ Ớộὥ ȿὴỚÅØÐộ▬ȟ╪ ╪ Ớộὴȿὥ Ớ 

 

ộὥȿὴỚÅØÐộ▬ȟ╪ ╪Ớộὴȿὥ Ớ 

 

The red terms in the middle turn into unity. The other terms also join. 

Over a full particle generation cycle with N steps this results in: 

ộὥȿὴỚÅØÐộ▬ȟ╪ ╪Ớộὴȿὥ Ớ 

ộὥȿὴỚÅØÐộ▬ȟ╪ ╪ỚộὴȿὥỚ ộὥȿὴỚÅØÐ ộ▬ȟ╪ ╪ỚộὴȿὥỚ 

ộὥȿὴỚÅØÐὒ Ὠ†ộὴȿὥỚ 

 

ὒ Ὠ† ộ▬ȟ╪ ╪Ớ ộ▬ȟὨ▲Ớ 

(1) 

(2) 

(3) 
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ὒ ộ▬ȟ▲Ớ 

 

Here, ὒ is known as the Lagrangian. 

Equation (4) holds for the special condition in which ▬  is constant. If ▬  is not constant, then 

the Hamiltonian Ὄ varies with location. In the next equations, we ignore subscript  . 

 

Ὄ

ή
ὴ 

 

Ὄ

ὴ
ή 

 

ὒ

ή
ὴ 

 

ὒ

ή
ὴ 

 

Ὄ

†

Ὄ

†
 

 

Ὠ

Ὠ†

ὒ

ή

ὒ

ή
 

 

Ὄ ὒ ήὴ 

In these equations, we used proper time † rather than coordinate time ὸ. 

The effect of the hopping path is that the geometric center of the symmetry center is moved over a 

small resulting distance ╪ ╪Φ ¢ƻƎŜǘƘŜǊ ǿƛǘƘ άŎƘŀǊƎŜέ ὔϽὗ  this move determines the next 

version of momentum ▬ . 

The result is that both the symmetry related fields  and the embedding field ᴡ influence the 

location of the geometric center of the symmetry center . 

In this investigation, we ignored the influence of the symmetry related field . This field influences 

momentum ▬  and the corresponding eigenvector ȿὴỚ. This means that the product of the red 

colored middle terms is no longer equal to unity. Instead the product differs slightly from unity and 

the effect can be included in the path integral. In this way, a small slowly varying extra contribution is 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



 

108 
 

added to each subsequent term in the summation. This extra contribution is a smooth function of 

progression and thus, it is a smooth function of the index of the term. 

¢ƘŜ ǊŜǎǳƭǘ ƻŦ ǘƘŜ άƳǳƭǘƛ-ƳƛȄ ŀƭƎƻǊƛǘƘƳέ ƛǎ ŜȄǇŜŎǘŀōƭŜΦ ¢ƘŜ άǎǘŜǇέ ƻŦ ǘƘŜ ǎǿŀǊƳ Ŝǉǳŀƭǎ ǘƘe sum of the steps of the hops. The 

άƳǳƭǘƛ-ƳƛȄ ŀƭƎƻǊƛǘƘƳέ ƛǎ ƛƴǘǊƻŘǳŎŜŘ ǘƻ ǎƘƻǿ ǘƘŜ ǎƛƳƛƭŀǊƛǘȅ ǿƛǘƘ ǘƘŜ άǇŀǘƘ ƛƴǘŜƎǊŀƭέΦ ¢ƘŜ άǇŀǘƘ ƛƴǘŜƎǊŀƭέ ƛǎ ǘŀƪŜƴ ƻǾŜǊ ŀƭƭ 

possible paths. The multi-mix algorithm only takes the actual hopping path. Usually, ǘƘŜ άǇŀǘƘ ƛƴǘŜƎǊŀƭέ ŀƭƎƻǊƛǘƘƳ ƛǎ 

introduced by starting from the Lagrangian. Here we started ǘƘŜ άƳǳƭǘƛ-ƳƛȄ ŀƭƎƻǊƛǘƘƳέ from the hopping path and the 

άmulti-mix algorithmέ results in the Lagrangian. 

11.2 Gluon action 
The presence of gluons causes the disruption of the generation of anisotropic swarms of artifacts and 

the governing mechanisms will join their activity by generating isotropic swarms of artifacts that will 

represent conglomerates of the intended elementary modules. Therefore, separate anisotropic 

elementary modules will hardly ever reach the condition that a private swarm represents them. 

Instead, the isotropic swarms will appear as persistent results. Thus, gluons combine multiple 

hopping paths into a single coherent swarm. This means that the άƳǳƭǘƛ-mix algoritƘƳέ must be 

applied to each of the hopping paths and the result must be attached to a common location center. 

The number of hops in a hopping path can be used as a location weighting factor.  

11.3 Grouped isotropic artifacts 
Next, we consider grouped artifacts that cause discontinuities in the realm of a symmetry center. The 

concerned field is the embedding field. Since we do no longer focus on symmetry related charges, we 

will omit the superscript  . 

We consider the case that the locations of the artifacts form a coherent swarm ╬  that can be 

characterized by a continuous location density distribution ”▲.  

 

 …▲ ”▲ ὗ ▲ ╬
ρ

τ“
”▲ὗ ộ♩ȟ♩

ρ

ȿ▲ ╬ȿ
Ớ 

 

If we use the spherical symmetric Gaussian location distribution of artifacts ”ὶ that was 

introduced earlier as test function,  

 

”ὶ ộ♩ȟ♩Ớ ὶ
ὗ

„Ѝς“
 ÅØÐ 

ὶ

ς„
 

 

then a potential in the form of 

 

ὶ
ὗ

τ“
 
ὉὙὊὶ

„Ѝς
ὶ

 

 

results.  

(1) 

(2) 

(3) 
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At somewhat larger distances the potential behaves like a single charge potential.  

 

…ὶ  
ὗ

τ“ὶ
 

 

This gives an idea of what happens when a mechanism that acts within the realm of a symmetry 

center produces a coherent swarm of artifacts that will be embedded into a field that gets deformed 

by these artifacts.  

Even though it is constituted from a myriad of singular contributions, the potential in equation (3) is a 

continuous function and its gradient at the center point equals zero! Thus, the corresponding 

ŘŜŦƻǊƳŀǘƛƻƴ Ƙŀǎ ŀ άǿƛŘŜ-ǎǇǊŜŀŘέ ōƛƴŘƛƴƎ ŜŦŦŜŎǘΦ 

11.4 Acceleration of the symmetry center 
Due to their actions, the fields  and ᴡ may accelerate the location of the symmetry center on which 

an elementary module resides. This occurs via the interaction of these fields with the contributions 

that the symmetry center and the recurrently embedded elementary module add to the influences of 

these fields. 

The symmetry center and with it the residing elementary module float over the background 

parameter space ᴘ. This means that these items also float over the fields  and ᴡ.  

 The symmetry-related field 
The symmetry-related charge ὗ  of the symmetry center  contributes the local scalar potential 

•  to the symmetry related field .  

• ▲
ὗ

ȿ▲ ╬ȿ
 

 

On the other hand  

 

╔ ▲ •
ὗ ▲ ╬

ȿ▲ ╬ȿ
 

 

Another symmetry center  contributes potential •  to the symmetry related field . The force 

╕  between the two symmetry centers equals: 

 

╕ ╔ὗ
ὗὗ ╬ ╬

ȿ╬ ╬ȿ
╕ ╔ ὗ  

 

This need not correspond to an actual acceleration. On the other hand, if relative to the parameter 

space ᴘ, the movement of the symmetry center  is uniform with speed ○ , then the scalar 

(4) 

(1) 

(2) 

(3) 



 

110 
 

potential •  corresponds to a vector potential ⱴ  •  ○ . If relative to the parameter space ᴘ, 

the symmetry center actually accelerates, then this goes together with an extra field ╔  ⱴ

 •  ○  that represents the corresponding change of field . Thus. If the two forces ╕  and ╕  

do not hold each other in equilibrium, then the field  will change dynamically with this extra 

contribution. 

 The embedding field 
The location swarms that are generated by dedicated controlling mechanisms produce a local 

potential that also can accelerate the symmetry center on which the location swarm resides relative 

to the parameter space ᴘ. We analyze the situation in which a Gaussian location distribution 

represents the swarm. Thus, we use the corresponding artifact as a test particle. The corresponding 

local potential that contributes to field ᴡ equals  

 

… ὶ
ὗ

τ“
 
ὉὙὊὶ

„Ѝς
ὶ

 

 

Here ὗ  represents the strength of the local potential. At somewhat larger distances the potential 

ōŜƘŀǾŜǎ ŀǎ ŀ ǎƛƴƎƭŜ άŎƘŀǊƎŜέ ǇƻǘŜƴǘƛŀƭΦ  

 

… ▲
ὗ

τ“ȿ▲ ╬ȿ
 

 

¢Ƙƛǎ ǾƛǊǘǳŀƭ άŎƘŀǊƎŜέ ƛǎ ƭƻŎŀǘŜŘ ŀǘ ǘƘŜ ŎŜƴǘŜǊ ƻŦ ǘƘŜ ǎȅƳƳŜǘǊȅ ŎŜƴǘŜǊ . The scalar potential … ▲ 

adds to the embedding field ᴡ. The result is that ᴡ gets deformed. 

The local scalar potential … ▲ corresponds to a derived field ּת ▲. 

 

תּ ▲ …
ὗ ▲ ╬

ȿ▲ ╬ȿ
 

 

Another symmetry center  contributes potential … ▲ to the embedding field ᴡ. The force ╕  

between the two symmetry centers equals: 

 

╕ ὗתּ
ὗὗ ╬ ╬

ȿ╬ ╬ȿ
╕ תּ ὗ  

 

This need not correspond to an actual acceleration. The force raising field ּת  is treated in detail in a 

special section of this paper. 

(1) 

(2) 

(3) 

(4) 
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If the platform  on which the swarm resides moves with uniform speed ○, then the local potential 

corresponds to a local vector potential. 

 

Ⱶ …○ 

 

If this platform accelerates, then this goes together with an extra contribution to field ּת  that 

counteracts the acceleration. 

 

תּ  Ⱶ …○ 

 

This effect is known as inertia. 

11.5 The smoothed embedding field 
The embedding field ᴡ is described by a mostly continuous function ᴡή. The convolution of 

ᴡή with a blurring function transforms this function in an everywhere continuous function 

ή. Space cavities exist where both ᴡή and ή are not defined. The blurring function 

integrates over the regeneration cycle of elementary modules in the progression part of the 

domain. If in the spatial domain, the test function ή is used as the blurring function for 

isolated discontinuities and a Gaussian distribution is used for coherent swarms of 
discontinuities, then the function ή defines the smoothed embedding field . This field takes 

the role of a model-wide potential. In physics, this is the role of the gravitation potential. In this 

model, we consider  to represent the equivalent of universe, however it represents a blurred 

universe. 

The local contribution to the embedding field ᴡ by the elementary module has a smoothed 

version, which is the equivalent of its individual potential. It contributes to field . 

11.6 Spurious artifacts 
Due to their minor effect, spurious artifacts will be hidden for observers due to the blanket that is 

spread over the corresponding field by the smoothed version of this field that the observers will see. 

Only recurrent regeneration of the artifact can generate a reasonable detection probability. Still, in 

large numbers, spurious artifacts can produce long range effects, such as space bending. At short 

ranges they can produce the Casimir effect. 

  

(5) 

(6) 
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12 Free elementary modules 
Free elementary modules obey special differential equations. 

The landing locations of the hops that form the hopping path and the location swarm trigger the 

Palestra and that trigger starts a spherical shape-keeping front that we named a clamp. The 

ƛƴǘŜƎǊŀǘƛƻƴ ƻŦ ǘƘŜ ŎƭŀƳǇ ƻǾŜǊ ǘƘŜ ǊŜƎŜƴŜǊŀǘƛƻƴ ŎȅŎƭŜ ǇŜǊƛƻŘ ƻŦ ǘƘŜ ǎǿŀǊƳ ǊŜǎǳƭǘǎ ƛƴ ǘƘŜ DǊŜŜƴΩǎ 

function of the field, which represents an averaged response of the Palestra on the trigger. The 

ŎƻƴǾƻƭǳǘƛƻƴ ƻŦ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǿƛǘƘ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ ǎǿŀǊƳ ǊŜǎǳƭǘǎ ƛƴ ǘƘŜ 

contribution of the elementary module to the Palestra ᴡ. For free elementary modules, this 

contribution equals the Palestra. 

The clamp is a solution of the homogeneous second order partial differential equation under 

isotropic conditions.  

ᶻ  
ρ

ὶ



ὶ
ὶ


ὶ



†
π 

 
Æ░ ὶ ὧ ὸ

ὶ
 
Ὣ░ ὶ ὧ ὸ

ὶ
 

We only use the left term and average over the cycle period. 

¢Ƙƛǎ ǊŜǎǳƭǘǎ ƛƴ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴΥ 

Ὃὶ ρȾὶ 

The integration converts the field  into the Palestra ᴡ. 

bŜȄǘΣ ǿŜ ŎƻƴǾƻƭǳǘŜ ǘƘŜ DǊŜŜƴΩǎ ŦǳƴŎǘƛƻƴ ǿƛǘƘ ǘƘŜ ƭƻŎŀǘƛƻƴ ŘŜƴǎƛǘȅ ŘƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǘƘŜ ǎǿŀǊƳΦ 

Locally, the result equals the Palestra. The integration converts the homogeneous equation into an 

inhomogeneous equation in which the added term equals the Palestra. 

ρ

ὶ



ὶ
ὶ
ᴡ

ὶ

ᴡ

†
Ὃὶ ”ʐὶ ά ᴡὶ 

 

ά  is a real factor that is proportional with the number of hops. It corresponds to the strength of the 

deformation of #. 

This equation can be split into two first order partial differential equations. 

ᶻᴡ ά  ᴡ 

ʒ  zᴡ 

ʒ ά  ᴡ 

  

(1) 

(2 

(3) 

(4) 

(5) 

(6) 

(7) 
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13 At the start of progression 
At progression value † π, the mechanisms that generate the artifacts, which cause discontinuities 

in the embedding manifold ᴡ have not yet done any work. It means that this manifold was flat and at 

instance † π the defining function ᴡ equaled its parameter space.  

At † π nothing arrives from the past. 

The model offers the possibility that the domain ɱ expands as a function of †. In that case, it is 

possible that domain ɱ covers a growing amount of symmetry centers. 
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14 Low dose rate imaging 

14.1 Preface 
The author started his career in the high-tech industry in the development of image intensifier 

devices. His job was to help to optimize the imaging quality of these image intensifier devices. This 

concerned both image intensifiers for night vision applications and x-ray image intensifiers that were 

aimed at medical applications. Both types of devices target low dose rate application conditions. 

These devices achieve image intensification in quite different ways. Both types can be considered to 

operate in a linear way. The qualification of the image intensifier is based on the fact that human 

image perception is optimized for low dose rate conditions.  

At low dose rates the author never perceived waves in the intensified images. At the utmost, he saw 

hail storms of impinging discrete particles and the corresponding detection patterns can simulate 

interference patterns. The conclusion is, that the waves that might be present in the observed image 

are probability waves. Individual photons are perceived as detected quanta. They are never 

perceived as waves. 

14.2 Human perception 
With respect to the visual perception, the human visual trajectory closely resembles the visual 

trajectory of all vertebrates. Hubel and Weisel discovered this. They got a Noble price for their work. 

The sensitivity of the human eye covers a huge range. The visual trajectory implements several 

special measures that help to extend that range. At high dose rates the pupil of the eye acts as a 

diaphragm that partly closes the lens and in this way, it increases the sharpness of the picture on the 

retina. At such dose rates the cones perform the detection job. The cones are sensitive to colors and 

offer a quick response. In unaided conditions, the rods take over at low dose rates and they do not 

differentiate between colors. In contrast to the cones, the rods apply a significant integration time. 

This integration diminishes the effects of quantum noise that becomes noticeable at low dose rates. 

The sequence of optimizations does not stop at the retina. In the trajectory from the retina to the 

fourth cortex of the brain several dedicated decision centers decode the received image by applying 

masks that trigger on special aspects of the image. For example, a dedicated mask can decide 

whether the local part of the image is an edge, in which direction this edge is oriented and in which 

direction the edge moves. Other masks can discern circular spots. Via such masks the image is 

encoded before the information reaches the fourth cortex. Somewhere in the trajectory, the 

information of the right eye crosses the information that is contained in the left eye. The difference is 

used to construct three-dimensional vision. Quantum noise can easily disturb the delicate encoding 

process. That is why the decision centers do not pass their information when its signal to noise ratio 

is below a given level. The physical and mental condition of the observer influences that level. At low 

dose rates, this signal to noise ratio barrier prevents a psychotic view. The higher levels of the brain 

thus do not receive a copy of the image that was detected at the retina. Instead, that part of the 

brain receives a set of quite trustworthy encoded image data that will be deciphered in an 

associative way. It is expected that other parts of the brain for a part act in a similar noise blocking 

way. 

The evolution of the vertebrates must have installed this delicate visual data processing subsystem in 

a period in which these vertebrates lived in rather dim circumstances, where the visual perception of 

low dose rate images was of vital importance. 
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This indicates that the signal to noise ratio in the image that arrives at the eyes pupil has a significant 

influence on the perceptibility of the low dose image. At high dose rates the signal to noise ratio 

hardly plays a role. In those conditions, the role of the spatial blur is far more important.  

It is easy to measure the signal to noise ratio in the visual channel by applying a DC meter and an 

RMS meter. However, at very low dose rates, the damping of both meters might pose problems. 

What quickly becomes apparent is the relation of the signal to noise ratio and the number of the 

quanta that participate in the signal. The measured relation is typical for stochastic quantum 

generation processes that are classified as Poisson processes. 

It is also easy to comprehend that when the signal is spread over a spatial region, the number of 

quantal that participate per surface unit is diminishing. Thus, spatial blur has two influences. It lowers 

the local signal and on the other hand, it increases the integration surface. Lowering the signal 

decreases the number of quanta. Enlarging the integration surface will increase the number of 

involved quanta. Thus, these two effects partly compensate each other. An optimum perceptibility 

condition exists that maximizes the signal to noise ratio in the visual trajectory. 

The Point Spread Function causes the blur. This function represents a spatially varying binomial 

process that attenuates the efficiency of the original Poisson process. This creates a new Poisson 

process that features a spatially varying efficiency. Several components in the imaging chain may 

contribute to the Point Spread Function such that the effective Point Spread Function equals the 

convolution of the Point Spread Functions of the components. Mathematically it can be shown that 

for linear image processors the Optical Transfer Functions form an easier applicable characteristic 

than the Point Spread Functions because the Fourier transform that converts the Point Spread 

Function into the Optical Transfer Function converts the convolutions into simple multiplications. 

Several factors influence the Optical Transfer Function. Examples are the color distribution, the 

angular distribution, and the phase homogeneity of the impinging radiation. Also, veiling glare may 

hamper the imaging quality. 

The fact that the signal to noise ratio appears to be a deciding factor in the perception process has 

led to a second way of characterizing the relevant influences. The Detective Quantum Efficiency 

(DQE) characterizes the efficiency of the usage of the available quanta. It compares the actual 

situation with the hypothetical situation in which all generated quanta would be used in the 

information channel. Again, the measured signal noise ratio is compared to the ideal situation in 

which the stochastic generator is a Poisson process and no binomial processes will attenuate that 

primary Poisson process. This means that blurring and temporal integration must play no role in the 

determination of the DQE and the measured device will be compared to quantum detectors that will 

capture all available quanta. It also means that intensification processes will not add extra relative 

variance to the signal. The application of micro channel plates will certainly add extra relative 

variation. This effect will be accounted as a deterioration of the detection efficiency and not as a 

change of the stochastic process from a Poisson process to an exponential process. Mathematically 

this is an odd procedure, but it is a valid approach when the measurements are used to objectively 

evaluate perceptibility. 

14.3 Mechanisms 
The fact that the Optical Transfer Function in combination with the Detective Quantum Efficiency can 

provide the objective qualification of perceptibility indicates that the generation of the quanta is 

governed by a Poisson process that is coupled to a binomial process, where a spatial Point Spread 

Function implements the binomial process. 
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The mechanisms that ensure dynamical coherence appear to apply stochastic processes whose signal 

to noise ratio is proportional to the square root of the number of generated quanta.  

Quite probably the quantum generation process belongs to the category of Poisson point processes 

and in particular they belong to the subcategory that is known as log-Gaussian Cox point 

processes. 

15 Discussion 
This paper shifts the mystery that in current physical theories exist about the wave function to the 

mysteries that exist about the characteristic function of the stochastic processes that give the 

hopping path and the corresponding location swarm their location density distribution. The existence 

of that characteristic function means that this location density distribution must possess a Fourier 

transform and that therefore the swarm can be considered to behave as one unit. Some guesses are 

made about the nature of the stochastic processes. Nothing is said about how the corresponding 

mechanisms cooperate. This paper suggests that the mechanisms implement self-coherence and that 

this self-coherence relates to inertia. In the future an important part of fundamental physics will 

concern spatial statistics. 

This paper mainly considers the divergence based version of the generalized Stokes theorem. The 

consequences for the curl based version are not investigated in detail. From fluid dynamics, it is 

known that artifacts that are embedded in a fluid may suffer from the vorticity of the embedding 

field [x]. 

This paper does not investigate the consequences of polar ordering. It probably relates to the spin 

properties of elementary modules. In that case, the polar ordering of symmetry centers regulates the 

distinction between fermions and bosons. The half-integer spin particles may use ordering of the 

azimuth, where the integer spin particles use the ordering of the polar angle. However, this does not 

explain the difference in behavior between these categories. The paper also does not investigate the 

origin of the Pauli principle, which is closely related to the notion of spin. 

Skillful mathematicians carefully designed the concept of exterior derivative, such that it becomes 

independent of the selection of parameter spaces. However, in a situation like the situation that is 

investigated by the Hilbert Book Test Model in which several parameter spaces float on top of a 

background parameter space, the selection of the ordering of the parameter spaces does matter. The 

symmetry flavors of the coupled parameter spaces determine the values of the integrals that account 

for the contributions of the artifacts. The symmetry-related charges of these artifacts represent it. 

These symmetry related charges are supposed to be located at the geometric centers of the 

symmetry centers. 

As happens so often, physical reality reveals facts (such as the symmetry related charges) that cannot 

easily be discovered by skilled mathematicians. The standard model contains a short list of electric 

charges that correspond to the symmetry-related charges. The standard model does not explain the 

existence of this short list. In the Hilbert Book Test Model, it becomes clear that the electric charge 

and the color charge are properties of connected parameter spaces and not a property of the objects 

that use these parameter spaces. Instead, these objects inherit the charge properties from the 

platform on which they reside. 

Both the symmetry related fields and the embedding continuum affect the geometric location of the 

symmetry center. They do that in different ways. 
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If electric charges are properties of the connection between spaces, then the fields to which these 

charges contribute implement the forces between these connections. No extra objects are needed 

to implement these forces! 

Lǘ ƛǎ ǎŜƴǎƛōƭŜ ǘƻ ŜȄǇŜŎǘ ǘƘŀǘ ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ǘȅǇŜ ƻŦ ǘƘŜƛǊ άŎƘŀǊƎŜǎέ ŀƭƭ ōŀǎƛŎ ŦƛŜƭŘǎ Ŏŀƴ ŀǘǘǊŀŎǘ ƻǊ 

ǊŜǇŜƭ ǘƘŜ ǎǇŀŎŜǎ ƻƴ ǿƘƛŎƘ ǘƘŜǎŜ άŎƘŀǊƎŜǎέ ǊŜǎƛŘŜΦ ¢Ƙƛǎ ōŜƘŀǾƛƻǊ ƛǎ ŘŜǎŎǊƛōŜŘ ōȅ ǘƘŜ ŘƛŦŦŜǊŜƴǘƛŀƭ ŀƴŘ 

integral equations that are obeyed by the considered field. 

The model does not dive deep into the binding process. In that respect, regular physical theories go 

much further. 

The Hilbert Book Test Model is no more and no less than a mathematical test case. The paper does 

not pretend that physical reality behaves like this model. But the methods used and the results 

obtained in this paper might learn more about how models of physical reality can be structured and 

how these can behave. 

16 Lessons 
Some interesting lessons can be derived from the model. At the first place the model introduces a 

commandment: 

ά¢Ƙƻǳ ǎƘŀƭǘ ŎƻƴǎǘǊǳŎǘ ƛƴ ŀ ƳƻŘǳƭŀǊ ǿŀȅέΦ 

This commandment enforces the constructors to construct in a very economical way that applies as 

littles resource as is possible. A problem occurs when the resources are limited. 

In the beginning, pure stochastic processes control the evolution. In that evolution process, 

increasingly complicated modular systems will be generated. This process depends on the availability 

of nearby resources. As soon as in a local environment the evolution reaches a level that intelligent 

species (read types) are formed, these species can take an active part in the evolution process. In 

that environment, the stochastic modular design method turns into an intelligent design method. 

After investigation of the lifeforms that he discovered at the islands in the oceans and at the beaches 

of southern continents, Darwin concluded that only the fittest species can reach a longer existence in 

the evolution process. A similar rule exists for the modules and modular systems. However, this rule 

must be extended, because the survival struggle does not so much concern the individuals. Instead, it 

concerns the survival of module types and that survival is supported when the type promotes the 

survival of the community of the type to which the individual belongs. This often must include the 

care of the survival of the types that are used by the considered type as a resource. If a community 

grows so large that its resources become endangered, then the complete community is endangered. 

Thus, a second commandment follows the primal commandment: 

άEach individual must take care of the resources of the 

community of which that individual is a memberέΦ  

17 References 
[1] https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics 

[2] The lattices of quantum logic and classical logic are treated in detail in 

http://vixra.org/abs/1411.0175 . 

https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
http://vixra.org/abs/1411.0175


 

118 
 

[3] Quantum logic was introduced by Garrett Birkhoff and John von Neumann in their 1936 paper. G. 

Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, Vol. 37, 

pp. 823ï843 

 

[4] The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and 

others. http://en.wikipedia.org/wiki/Hilbert_space. 

[5] In the second half of the twentieth century Constantin Piron and Maria Pia Solèr proved that the 

number systems that a separable Hilbert space can use must be division rings. See: ñDivision algebras 

and quantum theoryò by John Baez. http://arxiv.org/abs/1101.5690 and 

http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/ and 

http://arxiv.org/abs/quant-ph/0510095  

[6] In 1843 quaternions were discovered by Rowan Hamilton. 

http://en.wikipedia.org/wiki/History_of_quaternions  

[7] Warren D. Smith, Quaternions, octonions, and now, 16-ons and 2n-ons; 

http://scorevoting.net/WarrenSmithPages/homepage/nce2.pdf  

[8] Quaternionic function theory and quaternionic Hilbert spaces are treated in 

http://vixra.org/abs/1411.0178 . 

[9] Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. Dirac 

also introduced its delta function, which is a generalized function. Spaces of generalized functions 

offered continuums before the Gelfand triple arrived. 

Dirac, P.A.M. (1982) [1958]. Principles of Quantum Mechanics. International Series of Monographs 

on Physics (4th ed.). Oxford University Press. p. 255. ISBN 978-0-19-852011-5. 

[10] In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an 

extension of the separable Hilbert space into a so-called Gelfand triple. The Gelfand triple often gets 

the name rigged Hilbert space. It is a non-separable Hilbert space. 

http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space . 

[11] https://en.wikipedia.org/wiki/Stokes%27_theorem#General_formulation. 

[12] https://en.wikipedia.org/wiki/Divergence_theorem. 

[13] Justin Shaw, Invariant Vector Calculus. 

http://www.math.uwaterloo.ca/~j9shaw/Invariant%20Vector%20Calculus.pdf. 

[13] Fermion Symmetry Flavors. http://vixra.org/abs/1512.0225  

[14] https://en.wikipedia.org/wiki/Poisson%27s_equation#Potential_of_a_Gaussian_charge_density 

[14] Foundation of a Mathematical Model of Physical Reality. http://vixra.org/abs/1511.0074  

http://en.wikipedia.org/wiki/Hilbert_space
http://arxiv.org/abs/1101.5690
http://www.ams.org/journals/bull/1995-32-02/S0273-0979-1995-00593-8/
http://arxiv.org/abs/quant-ph/0510095
http://en.wikipedia.org/wiki/History_of_quaternions
http://scorevoting.net/WarrenSmithPages/homepage/nce2.pdf
http://vixra.org/abs/1411.0178
http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space
https://en.wikipedia.org/wiki/Stokes%27_theorem#General_formulation
https://en.wikipedia.org/wiki/Divergence_theorem
http://www.math.uwaterloo.ca/~j9shaw/Invariant%20Vector%20Calculus.pdf
http://vixra.org/abs/1512.0225
http://vixra.org/abs/1511.0074


 

119 
 

  



 

120 
 

Appendix 
  



 

121 
 

1 Lattices 
A lattice is a set of elements ὥȟὦȟὧȟ Χ ǘƘŀǘ ƛǎ ŎƭƻǎŜŘ ŦƻǊ ǘƘŜ ŎƻƴƴŜŎǘƛƻƴǎ  ᷊and ᷾ . These connections 

obey: 

¶ The set is partially ordered.  
o This means that with each pair of elements ὥȟὦ belongs an element ὧ, such that 
ὥ Ṓ ὧ and ὦ Ṓ ὧ.  

¶ The set is a ᷊ half lattice.  
o This means that with each pair of elements ὥȟὦ an element ὧ exists, such that 

ὧ  ὥ ᷊  ὦ.  
¶ The set is a ᷾ half lattice. 

o This means that with each pair of elements ὥȟὦ an element ὧ exists, such that 

ὧ  ὥ ᷾  ὦ.  
¶ The set is a lattice. 

o This means that the set is both a ᷊ half lattice and a ᷾ half lattice. 
 

The following relations hold in a lattice:  

 

ὥ ᷊ ὦ  ὦ ᷊ ὥ 

ὥ ᷊ ὦ ᷊ ὧ  ὥ ᷊ ὦ ᷊ ὧ 

ὥ ᷊ ὥ ᷾ ὦ  ὥ 

 

ὥ ᷾ ὦ  ὦ ᷾ ὥ 

ὥ ᷾ ὦ ᷾ ὧ  ὥ ᷾ ὦ ᷾ ὧ 

ὥ ᷾ ὥ ᷊ ὦ  ὥ 

 

The lattice has a partial order inclusion Ṓ: 

 

ὥ Ṓ ὦ  ὥ ᷊ ὦ  ὥ 

 

A complementary lattice contains two elements ὲ and Ὡ with each element ὥ a complementary 

element ὥ such that: 

 

ὥ ᷊ ὥ  ὲ 

ὥ ᷊ ὲ  ὲ 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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ὥ ᷊ Ὡ  ὥ 

 

ὥ ᷾ ὥ  Ὡ 

ὥ ᷾ Ὡ  Ὡ 

ὥ ᷾ ὲ  ὥ 

 

An orthocomplemented lattice contains two elements ὲ and Ὡ and with each element ὥ an element 

ὥ  such that: 

 

ὥ ᷾ ὥᴂᴂ   Ὡ 

ὥ ᷊ ὥᴂᴂ  ὲ 

ὥ ὥ 

ὥ Ṓ ὦ ᵾ ὦᴂᴂ Ṓ ὥᴂᴂ 

 

Ὡ is the unity element; ὲ is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

a ᷊  (b ᷾  c) = (a ᷊ b) ᷾  ( a ᷊  c) 

a ᷾  (b ᷊  c) = (a ᷾ b) ᷊  (a ᷾  c) 

 

A modular lattice supports: 

 

ὥ ᷊ ὦ ᷾ ὥ ᷊ ὧ  ὥ ᷊ ὦ ᷾ ὥ ᷊ ὧ  

 

A weak modular lattice supports instead: 

  

There exists an element Ὠ such that 

 

ὥ Ṓ ὧ ᵾ ὥ ᷾ ὦ ᷊ ὧ  ὥ ᷾ ὦ ᷊ ὧ ᷾ Ὠ ᷊ ὧ 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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where Ὠ obeys: 

 

ὥ ᷾ ὦ ᷊ Ὠ  Ὠ 

ὥ ᷊ Ὠ  ὲ 

ὦ ᷊ Ὠ  ὲ 

ὥ Ṓ Ὣ ὥὲὨ ὦ Ṓ Ὣ ᵾ  Ὠ Ṓ Ὣ 

 

In an atomic lattice holds  

 

ᶬ ɴ  ᶅ  ɴ  ὼ Ṓ ὴ ᵼ ὼ  ὲ 

 

ᶪ ɴ  ᶅ  ɴ  ὥ  ὼ  ὥ ᷊ ὴ ᵼ ὼ  ὥ έὶ ὼ  ὥ ᷊ ὴ  

 

ὴ is an atom 

1.1 Well known lattices 
Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice. 

Quantum logic has the structure of an orthocomplemented weakly modular and atomic lattice.  

It is also called an orthomodular lattice. 

Both lattices are atomic lattices. 

  

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Quaternion geometry and arithmetic 

Quaternions and quaternionic functions offer the advantage of a very compact notation of items that 

belong together [8]. 

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real 

coefficients. The vector forms the imaginary part of the quaternion. Quaternionic number systems 

are division rings. It means that all non-zero members have a unique inverse. Other division rings are 

real numbers and complex numbers. The separable Hilbert space only uses the rational subsets of 

these number systems. 

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex 

coefficients. Octonions and bi-quaternions do not form division rings. This paper does not use them. 

However, one exception is tolerated: in considering the Dirac equation, bi-quaternionic functions and 

bi-quaternionic differential operators are used. The Dirac equation is treated in the appendix. 

2 Quaternions 

2.1 Notation 
We indicate the real part of quaternion ὥ by the suffix ὥ. 

We indicate the imaginary part of quaternion ὥ by bold face ╪. 

 

ὥ ὥ ╪ 

 

We indicate the quaternionic conjugate by a superscript in the form of a star. 

ὥᶻ ὥ ╪ 

 

We introduce the complex base number  via 

Ͻ  ρ 

 

In bi-quaternionic equations,  commutes with all quaternions. 

 

Ͻὥ ὥϽ 

 

However, the product is no longer a quaternion. Instead, it is a biquaternion. A beret indicates bi-

quaternions. 

 

ὧ ὥ Ͻὦ 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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Here ὥ and ὦ are both regular quaternions. Complex conjugation is acting as: 

 

Ɇ    

Complex conjugation is indicated with a superscript in the form of a filled circle. 

 

ὧ
Ɇ
ὥ Ͻὦ 

 

Here we see bi-quaternions as hyper-complex numbers with quaternionic coefficients. These 

numbers do not form a division ring. These numbers are not equivalent to octonions. This paper does 

not apply Clifford algebra, Jordan algebra or other than the pure division ring ŀƭƎŜōǊŀΩǎ because the 

author considers them to conceal more than they elucidate. 

2.2 Quaternionic sum 
 

ὧ ὧ ╬ ὥ ὦ 

 

ὧ ὥ ὦ 

 

╬ ╪ ╫ 

 

2.3 Quaternionic product 
 

Ὢ Ὢ █ ὨϽὩ 

 

Ὢ ὨϽὩ ἂ▀ȟ▄ἃ 

 

█ ὨϽ▄ ὩϽ▀ ▀ ▄ 

 

Thus, the product contains five parts. The  sign indicates the influence of right or left handedness of 

the version of the quaternionic number system.  

 

ἂ▀ȟ▄ἃ is the inner product of ▀ and ▄. 

▀ ▄ is the outer product of ▀ and ▄. 

We usually omit the multiplication sign ϽȢ 

(6) 

(7) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 
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 Handedness 

We introduce by superscript  Ḽ a switch in handedness of the quaternion. This does not touch the real 

part. 

 

ὪḼ ὨḼϽὩḼ ὨϽὩ ἂ▀Ḽȟ▄Ḽἃ ὨϽ▄Ḽ ὩϽ▀Ḽᶸ▀Ḽ ▄Ḽ 

 

▀Ḽ ▄Ḽ  ▀ ▄ 

 

ὨϽὩḼ ÁÎÄ  ὨḼϽὩ ╪►▄ ◊▪▀▄█░▪▄▀Ȧ 

Thus, a right-handed quaternion cannot be multiplied with a left-handed quaternion. Quaternionic 

conjugation switches the handedness. In addition: 

 

ὥϽὦᶻ ὦᶻϽὥᶻ 

 

A continuous quaternionic function does not switch its handedness. Embedding a conflicting quaternion in the target space 

of a function produces a local artifact that produces a local discontinuity. This also holds for other aspects of the quaternion 

symmetries. 

2.4 Norm 
 

ȿὥȿ ὥὥ ộ╪ȟ╪Ớ ЍὥϽὥz 

 

2.5 Norm of quaternionic functions 
Square-integrable functions are normalizable. The norm is defined by: 

 

ᴁᴁ ȿȿ Ὠὠ 

ȿȿ  ȿⱶȿ Ὠὠ 

 

ᴁᴁ ᴁⱶᴁ 

 

  

(1) 

(2) 

(3) 

(1) 

(1) 
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2.6 Quaternionic rotation 
In multiplication , quaternions do not commute. Thus, in general, ὥ ὦȾὥ ὦ. In this 

multiplication, the imaginary part of ὦ that is perpendicular to the imaginary part of ὥ is rotated 

over an angle • that is twice the complex phase of ὥ. 

 

 

This means that if • “Ⱦτ, then the rotation ὧ ὥ ὦȾὥ shifts ╫  to another dimension. This fact 

puts quaternions that feature the same size of the real part as the size of the imaginary part is in 

a special category. They can switch states of tri-state systems. In addition, they can switch the 

color charge of quarks. 

  

a 

b
||
 

2ʒ 

abṶa
-1
 

b 

bṶ 

a a 

a
Ű
 ʒ 

aba
-1
 

The transform aba
-1
 rotates the 

imaginary part b of b around an axis 

along the imaginary part a of a over 

an angle 2ʒ that is twice the 

argument ʒ of a in the complex field 

spanned by a and 1 

1 

a = |a|exp(iʒ) 

ȹb 

Ṷ means perpendicular 
ᴁ means parallel  

i 



 

128 
 

3 The quaternionic separable Hilbert space 
We will specify the characteristics of a generalized quaternionic infinite dimensional separable 

Hilbert space ᴎΦ ¢ƘŜ ŀŘƧŜŎǘƛǾŜ άǉǳŀǘŜǊƴƛƻƴƛŎέ ƛƴŘƛŎŀǘŜǎ ǘƘŀǘ ǘƘŜ ƛƴƴŜǊ ǇǊƻŘǳŎǘǎ ƻŦ ǾŜŎǘƻǊǎ ŀƴŘ ǘƘŜ 

eigenvalues of operators are taken from the number system of the quaternions. Separable Hilbert 

spaces can be using real numbers, complex numbers, or quaternions. These three number systems 

are division rings. In fact, the quaternionic number system comprises all division rings. 

3.1 Notations and naming conventions 
Ὢ  means ordered set of Ὢ . It is a way to define discrete functions. 

The use of bras and kets differs slightly from the way Dirac uses them. 

 

ȿὪỚ is a ket vector. 

ộὪȿ is a bra vector. 

 

ὃ is an operator. 

ὃ  is the adjoint operator of operator ὃ. 

| on its own is a nil operator. 

 

We will use capitals for operators and lower-case Greek characters for quaternions and eigenvalues. 

We use Latin characters for ket vectors, bra vectors, and eigenvectors. Imaginary and anti-Hermitian 

objects will be indicated in bold text. Real numbers get subscript  .  

Due to the non-commutative product of quaternions, special care must be paid to the ordering of 

factors inside products. In this paper, a special ordering is selected. It is one out of a larger set of 

possibilities. 

3.2 Quaternionic Hilbert space 
The Hilbert space ᴎ is a linear space. That means for the elements ȿὪỚ, ȿὫỚ and ȿὬỚ of ᴎ and 

quaternionic numbers  and  a linear space is defined. ȿὪỚ, ȿὫỚ and ȿὬỚ are ket vectors. 

 Ket vectors 
For ket vectors hold 

 

ȿὪỚ  ȿὫỚ  ȿὫỚ  ȿὪỚ  ȿὫ ὪỚ 

 

ȿὪỚ  ȿὫỚ  ȿὬỚ  ȿὪỚ  ȿὫỚ  ȿὬỚ 

 

ȿὪỚ ȿὪỚ  Ƞ  ȿὪỚ ȿὪỚ   

 

(1) 

(2) 

(3) 
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ȿ    ὪỚ  ȿὪỚ   ȿὪỚ  

 

ȿὪỚ  ȿὫỚ   ȿὪỚ   ȿὫỚ  

 

ȿὪỚ π  ȿπỚ 

 

ȿὪỚ ρ  ȿὪỚ 

 

 Bra vectors 

The bra vectors form the dual Hilbert space ᴎ  of ᴎ . 

 

ộὪȿ  ộὫȿ  ộὫȿ  ộὪȿ  ộὪ Ὣȿ  

 

ộὪȿ  ộὫȿ  ộὬȿ  ộὪȿ  ộὫȿ  ộὬȿ 

 

ộὪȿ ộzὪȿ Ƞ  ộὪȿ ᶻ  ộὪȿ 

 

ộὪ   ȿ  ộzὪȿ ᶻ ộὪȿ  

 

Notice the quaternionic conjugation that affects the coefficients of bra vectors. 

 

ộὪȿ  ộὫȿ  ộὪȿ   ộὫȿ   

 

π ộὪȿ  ộπȿ 

 

ρ ộὪȿ  ộὪȿ 

 

 Scalar product 

The scalar product couples Hilbert space ᴎ  to its dual ᴎ. 

 

ộὪȿὫỚ ộὫȿὪỚz 

 

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 
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ộὪ ὫȿὬỚ ộὪȿὬỚ ộὫȿὬỚ 

 

ộὪȿὫỚ ộzὪȿὫỚ ộzὫȿὪỚz ộὫȿὪỚz 

 

ộὪȿὫỚ ộὪȿὫỚ  ộὫȿὪỚz  ộὫȿὪỚz  

 

ộὪȿ is a bra vector. ȿὫỚ is a ket vector.   is a quaternion. ộὪȿὫỚ is quaternion valued. 

If the Hilbert space represents both dual spaces, then the scalar product is also called an inner 

product. 

 Separable 
In mathematics a topological space is called separable if it contains a countable dense subset; that is, 

there exists a sequence ȿὼỚ  of elements of the space such that every nonempty open subset of 

the space contains at least one element of the sequence. 

Every continuous function on the separable space ᴎ is determined by its values on this countable 

dense subset. 

 Base vectors 
The Hilbert space ᴎ is separable. That means that a countable row of elements ȿὪỚ exists that 

spans the whole space. 

  

If ộὪȿὪỚ  άȟὲ  ρ ×ÈÅÎ ὲ  άȠ π ÏÔÈÅÒ×ÉÓÅ then ȿὪỚ forms an orthonormal base of 

the Hilbert space. 

A ket base ȿὯỚ of ᴎ is a minimal set of ket vectors ȿὯỚ that together span the Hilbert space ᴎ. 

Any ket vector ȿὪỚ in ᴎ can be written as a linear combination of elements of ȿὯỚ. 

 

ȿὪỚ  ȿὯỚ ộὯȿὪỚ 

 

A bra base ộὦȿ of ᴎ  is a minimal set of bra vectors ộὦȿ that together span the Hilbert space ᴎ . 

Any bra vector ộὪȿ in ᴎ  can be written as a linear combination of elements of ộὦȿ. 

 

ộὪȿ ộὯȿὪỚ ộὦȿ  

 

Usually, base vectors are taken such that their norm equals 1. Such a base is called an orthonormal 

base. 

(2) 

(5) 

(6) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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 Operators 
Operators act on a subset of the elements of the Hilbert space.  

3.2.6.1 Linear operators 

An operator ὗ is linear when for all vectors ȿὪỚ and ȿὫỚ for which ὗ is defined and for all quaternionic 

numbers  and : 

 

ȿὗ  ὪỚ ȿὗ  ὫỚ ȿὗ ὪỚ ȿὗ ὫỚ    

ὗȿ ὪỚ ȿ ὫỚ ὗȿὪỚ ȿὫỚ 

 

Operator ὄ is colinear when for all vectors ȿὪỚ for which ὄ is defined and for all quaternionic 

numbers  there exists a quaternionic number  such that: 

 

ȿ ὄ ὪỚ  ȿὄ ὪỚ   Ḱȿὄ   ὪỚ  

 

If ȿὪỚ is an eigenvector of operator ὃ with quaternionic eigenvalue ὥ,  

 

ὃȿὪỚ  ȿὪỚὥ   

 

then ȿὦ ὪỚ is an eigenvector of ὃ with quaternionic eigenvalue ὦ ὥ ὦ. 

 

ὃȿὦ ὪỚ ȿὃ ὦ ὪỚ  ȿὃ ὪỚ ὦ ȿὪỚὥ ὦ  ȿὦ ὪỚ ὦ ὥ ὦ  

 

ὃ  is the adjoint of the normal operator ὃ.  

  

ộὪ ȿὃ ὫỚ  ộὪ ὃȿὫỚ ộὫ ȿὃ ὪỚz 

 

ὃ   ὃ 

 

ὃ ὄ    ὄ ὃ  

 

ὃ ὄ    ὄὃ  

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 
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If ὃ ὃ , then ὃ is a self adjoint operator. 

| is a nil operator.  

3.2.6.2 Operator construction 

The construct ȿὪỚộὫȿ acts as a linear operator. ȿὫỚộὪȿ is its adjoint operator. 

The reverse bra-ket method uses an orthonormal base ȿήỚ that belongs to quaternionic 

eigenvalues ή  and a quaternionic function Ὂή and in this way a linear operator Ὂ can be defined 

such that for all vectors ȿὫỚ and ȿὬỚ holds: 

ộὫȿὊ ὬỚ ộὫȿήỚὊήộήȿὬỚ 

 

ὊḰ ȿήỚὪήộήȿ 

 

If no confusion arises, then the same symbol is used for the function F(q), the operator F and the set 

of eigenvalues F. For the orthonormal base ȿήỚ holds: 

 

ộήȿήỚ   

 

We will use  

 

ὊḰȿήỚὊήộήȿ 

 

as a shorthand for equations (7) and (8). 

 

Ὂ ḰȿήỚὊή ộzήȿ 

 

ȿήỚὊήộήȿ ȿή ὊήỚộήȿ ȿήỚộὊή ᶻ ήȿ 

 

The eigenspace of reference operator ד defined by 

 

Ḱד ȿήỚήộήȿ 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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represents the countable parameter space of discrete function Ὂή . 

Ὂ and ד are constructed operators. 

If collection ή  covers all rational members of a quaternionic number system then this definition 

specifies a reference operator for which the eigenspace represents the parameter space of all 

discrete functions that can be defined with this number system. 

Quaternionic number systems exist in several versions that only differ in the way that the elements 

are ordered. We will identify these different versions with special superscripts. When relevant, this 

will also be done with the number systems, with the operators, with the eigenvectors and with the 

eigenvalues. 

 

ד Ḱ ȿή Ớή ộή ȿ 

 

ד  is a member of a set of reference operators ד . The superscript   specifies the symmetry 

flavor of the number system ή . 

The superscript   can be  ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟ ȟÏÒ Ȣ  

Often, we will use the same character for identifying eigenvectors, eigenvalues, and the 

corresponding operator. 

Definition 8 specifies a normal operator. The set of eigenvectors of a normal operator form an 

orthonormal base of the Hilbert space. 

A self-adjoint operator has real numbers as eigenvalues. If Ὕ is a normal operator, then Ὕ

Ὕ  Ὕ Ⱦς is a self adjoint operator and ╣ Ὕ  Ὕ Ⱦς is an imaginary normal operator. Self 

adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-Hermitian 

operators. 

 

 

3.2.6.3 Normal operators 

The most common definition of continuous operators is: 

 

A continuous operator is an operator that creates images such that the inverse images of open sets 

are open.  

 

Similarly, a continuous operator creates images such that the inverse images of closed sets are 

closed. 

If ȿὥỚ is an eigenvector of normal operator ὃ with eigenvalue ὥ then  

(14) 
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ộὥȿὃȿὥỚ  ộὥȿὥȿὥỚ  ộὥȿὥỚ ὥ 

indicates that the eigenvalues are taken from the same number system as the inner products. 

 

A normal operator is a continuous linear operator. 

A normal operator in ᴎ creates an image of ᴎ onto ᴎ. It transfers closed subspaces of ᴎ into closed 

subspaces of ᴎ.  

 

The normal operators ὔ have the following property. 

  

ὔȡ ᴎ ᵼ ᴎ 

Thus, the normal operator ὔ maps separable Hilbert space ᴎ onto itself. 

ὔ commutes with its (Hermitian) adjoint ὔ : 

  

ὔὔ   ὔὔ 

 

Normal operators are important because the spectral theorem holds for them.  

Examples of normal operators are 

  

¶ unitary operators: Ὗ Ὗ , unitary operators are bounded; 

¶ Hermitian operators (i.e., self-adjoint operators): ὔ ὔ ;  

¶ Anti-Hermitian or anti-self-adjoint operators: ὔ ὔ;  

¶ Anti-unitary operators: Ὗ Ὗ  , anti-unitary operators are bounded;  

¶ positive operators: ὔ ὓὓ   

¶ orthogonal projection operators: ὖ ὖ ὖ . 
 
For normal operators hold: 
 

ὃὄ ὃὄ ộ═ȟ║Ớ ὃ║ ═ὄ ═ ║ 
 

ὔ ϵ ὔ ὔ  

 

╝ ϵ ὔ ὔ  

 

ὔὔ ὔὔ  ộ╝ȟ╝Ớ ὔ ╝  
 

3.2.6.4 Spectral theorem 

For every compact self-adjoint operator Ὕ on a real, complex or quaternionic Hilbert space ᴎ, there 

exists an orthonormal basis of ᴎ consisting of eigenvectors of Ὕ. More specifically, the orthogonal 

complement of the kernel (null space) of Ὕ admits, either a finite orthonormal basis of eigenvectors 

(1) 

(2) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Orthonormal_basis
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of Ὕ, or a countable infinite orthonormal basis of eigenvectors of Ὕ, with corresponding eigenvalues 

‗  Ṓ ᴙ, such that ‗ O  π. Because ᴎ is separable the set of eigenvectors of Ὕ can be extended 

with a base of the kernel to form a complete orthonormal base of ᴎ. 

 

If Ὕ is compact on an infinite dimensional Hilbert space ᴎ, then Ὕ is not invertible, hence „Ὕ, the 

spectrum of Ὕ, always contains π. The spectral theorem shows that „Ὕ consists of the eigenvalues 

‗  of Ὕ, and of π (if π is not already an eigenvalue). The set „Ὕ is a compact subset of the real 

line, and the eigenvalues are dense in „Ὕ. 

 

A normal operator has a set of eigenvectors that spans the whole Hilbert space ᴎ.  

In quaternionic Hilbert space, a normal operator has quaternions as eigenvalues. 

 

The set of eigenvalues of a normal operator is NOT compact. This is because ᴎ is separable. 

Therefore, the set of eigenvectors is countable. Consequently, the set of eigenvalues is countable. 

Further, in general, the eigenspace of normal operators has no finite diameter.  

 

A continuous bounded linear operator on ᴎ has a compact eigenspace. The set of eigenvalues has a 

closure and it has a finite diameter.  

3.2.6.5 Eigenspace 

The set of eigenvalues ή of the operator ὗ form the eigenspace of ὗ. 

3.2.6.6 Eigenvectors and eigenvalues 

For the eigenvector ȿήỚ of normal operator ὗ holds  

 

ȿὗ ήỚ ȿή ήỚ ȿήỚή 

 

ộή ὗȿ ộή ήȿ ήộzήȿ 

 

ȿᶅỚ ɴ ᴎ ộὪȿὗ ήỚ ộὪȿήỚή  ộή ὗȿὪỚz ήộzήȿὪỚz  

 

The eigenvalues of 2n-on normal operator are 2n-ons. For Hilbert spaces, the eigenvalues are 

restricted to elements of a division ring. 

  

ὗ  )ὗ 

 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Countable_set
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The ὗ are self-adjoint operators. 
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3.2.6.7 Unitary operators 

For unitary operators holds: 

  

Ὗ Ὗ  

Thus 

  

ὟὟ  ὟὟ Ὅ 

 

Suppose Ὗ Ὅ ὅ where Ὗ is unitary and ὅ is compact. The equations (2) and ὅ Ὗ  Ὅ show 

that ὅ is normal. The spectrum of ὅ contains π, and possibly, a finite set or a sequence tending to π. 

Since Ὗ Ὅ ὅ, the spectrum of Ὗ is obtained by shifting the spectrum of ὅ by ρ. 

The unitary transform can be expressed as: 

 

Ὗ Ὡὼὴ̀  Ⱦᴐ 

 

ᴐ  ὬȾς “ 

 

  is Hermitian. The constant Ὤ refers to the granularity of the eigenspace. 

Unitary operators have eigenvalues that are located in the unity sphere of the 2n-ons field.  

The eigenvalues have the form: 

  

ό  Ὡὼὴ░ •Ⱦᴐ 

 

• is real. ░ is a unit length imaginary number in 2n-on space. It represents a direction.  

ό spans a sphere in 2n-on space. For constant ░, ό spans a circle in a complex subspace.  

3.2.6.7.1 Polar decomposition 
Normal operators ὔ can be split into a real operator ὃ and a unitary operator Ὗ. Ὗ and ὃ have the 

same set of eigenvectors as ὔ. 

  

ὔ ᴁὔᴁ Ὗ ὃ Ὗ Ὗ ὃ ὃ Ὡὼὴ̀
 

ᴐ
Ὡὼὴ  `

 

ᴐ
 

 

  is a positive normal operator. 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 
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3.2.6.8 Ladder operator 

3.2.6.8.1 General formulation 

Suppose that two operators ὢ and ὔ have the commutation relation: 

ὔȟὢ ὧ ὢ 

for some scalar ὧ. If ȿὲỚ is an eigenstate of ὔ with eigenvalue equation, 

 

ȿὔ ὲỚ  ȿὲỚ ὲ 

 

then the operator ὢ acts on ȿὲỚ in such a way as to shift the eigenvalue by ὧ: 

 

ȿὔ ὢ ὲỚ  ȿὢ ὔ  ὔȟὢ ὲỚ ȿὢ ὔ  ὧ ὢὲỚ 

ȿὢ ὔ ὲỚ ȿὢ ὲỚ ὧ ȿὢ ὲỚ ὲ ȿὢ ὲỚ ὧ ȿὢ ὲỚὲ ὧ 

 

In other words, if ȿὲỚ is an eigenstate of ὔ with eigenvalue ὲ then ȿὢ ὲỚ is an eigenstate of ὔ with 

eigenvalue ὲ ὧ.  

The operator ὢ is a raising operator for ὔ if ὧ is real and positive, and a lowering operator for ὔ if ὧ is 

real and negative. 

If ὔ is a Hermitian operator, then ὧ must be real and the Hermitian adjoint of ὢ obeys the 

commutation relation: 

ὔȟ ὢ  Ã  ὢ  

If ὢ is a lowering operator for ὔ then  ὢɖ is a raising operator for ὔ and vice-versa. 

 Unit sphere of ᴎ 

The ket vectors in ᴎ that have their norm equal to one form together the unit sphere Q of ᴎ. 

The orthonormal base vectors are all member of the unit sphere.  

 Bra-ket in four-dimensional space 
The Bra-ket formulation can also be used in transformations of the four-dimensional curved spaces. 

The bra ộὪȿ is then a covariant vector and the ket ȿὫỚ is a contra-variant vector. The inner product 

acts as a metric.  

ί ộὪȿὫỚ 

The effect of a linear transformation ὒ is then given by 

ί ộὪȿὒὫỚ 

The effect of the transpose transformation ὒ is then given by 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 
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ộὪὒ ȿὫỚ ộὪȿὒὫỚ 

For a unitary transformation Ὗ holds: 

 

ộὔὪȿὔὫỚ ộὪȿὔὔὫỚ ộὪȿὔὔὫỚ ộὔὔὪȿὫỚ ộὔὔὪȿὫỚ 

 

ộὟὪȿὟὫỚ ộὪȿὫỚ 

 

ộɳὪȿɳὫỚ ộὪȿɳ ÇɳỚ ộὪȿɳᶯÇỚ ộɳᶯὪȿÇỚ ộɳ ὪɳȿÇỚ 

 

Notice that 

ᶯɳ ᶯᶯ ᶯᶯ ộȟỚ ᶯ  

 Closure 
The closure of ᴎ means that converging rows of vectors converge to a vector of ᴎ. 

  

In general, converging rows of eigenvalues of ὗ do not converge to an eigenvalue of ὗ. 

Thus, the set of eigenvalues of ὗ is open.  

At best the density of the coverage of the set of eigenvalues is comparable with the set of 2n-ons that 

have rational numbers as coordinate values. 

With other words, compared to the set of real numbers the eigenvalue spectrum of ὗ has holes. 

The set of eigenvalues of operator ὗ includes π. This means that ὗ does not have an inverse. 

 

The rigged Hilbert space ꞊  can offer a solution, but then the direct relation with quantum logic is 

lost. 

 

 Canonical conjugate operator P 
The existence of a canonical conjugate represents a stronger requirement on the continuity of the 

eigenvalues of canonical eigenvalues.  

ὗ has eigenvectors ȿήỚ  and eigenvalues ή. 

ὖ has eigenvectors ȿὴỚ  and eigenvalues ὴ. 

For each eigenvector ȿήỚ of ὗ we define an eigenvector ȿὴỚ and eigenvalues ὴ of ὖ such that: 

  

ộήȿὴỚ ộὴȿήỚz Ὡὼὴ ░ ὴ ήȾᴐ 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 
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ᴐ  ὬȾς“ is a scaling factor. ộήȿὴỚ is a quaternion. ░ is a unit length imaginary quaternion. ή and 

ὴ are quaternionic (eigen)values corresponding to ȿήỚ ὥὲὨ ȿὴỚ. 

 Displacement generators 
The variance of the scalar product gives: 

 

░ ᴐ ộήȿὴỚ  ὴộήȿὴỚή 

 

░ ᴐ ộὴȿήỚ  ήộὴȿήỚὴ 

 

In the rigged Hilbert space ꞊ , differentiation can replace the variance.  

Partial differentiation of the function ộήȿὴỚ gives: 

 

░ ᴐ 


ή
ộήȿὴỚ  ὴộήȿὴỚ 

 

░ ᴐ


ὴ
ộὴȿήỚ ήộὴȿήỚ 

  

(1) 

(2) 

(3) 

(4) 
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4 Gelfand triple 

The separable Hilbert space only supports countable orthonormal bases and countable eigenspaces. 

The rigged Hilbert space ꞊ that belongs to an infinite dimensional separable Hilbert space ᴎ is a 

Gelfand triple. It supports non-countable orthonormal bases and continuum eigenspaces. 

A rigged Hilbert space is a pair ᴎȟ   with ᴎ a Hilbert space,   a dense subspace, such that   is given a 

topological vector space structure for which the inclusion map i is continuous.  

Identifying ᴎ with its dual space ᴎɖ, the adjoint to i is the map 

Ὥᶻȡᴎ ᴎɖᴼ ɖ 

The duality pairing between   and  ɖ has to be compatible with the inner product on ᴎ, in the sense 

that: 

 

ộόȟὺỚ   όȟὺᴎ 

 

whenever όᶰ Ṓᴎ and ὺɴ ᴎ  ᴎ Ṓ  . 

 

The specific triple  ṒᴎṒ   is often named after the mathematician Israel Gelfand). 

Note that even though   is isomorphic to    if   is a Hilbert space in its own right, this 

isomorphism is different from the composition of the inclusion Ὥ with its adjoint Ὥ 

ὭὭȡ Ṓᴎ ᴎ ᴼ   

4.1 Understanding the Gelfand triple 
The Gelfand triple of a real separable Hilbert space can be understood via the enumeration model of 

the real separable Hilbert space. This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues. Let the smallest enumeration value of 

the rational enumerators approach zero. Even when zero is reached, then still the set of enumerators 

is countable. Now add all limits of converging rows of rational enumerators to the enumeration set. 

After this operation, the enumeration set has become a continuum and has the same cardinality as 

the set of the real numbers. This operation converts the Hilbert space ᴎ into its Gelfand triple ꞊  and 

it converts the normal operator in a new operator that has the real numbers as its eigenspace. It 

means that the orthonormal base of the Gelfand triple that is formed by the eigenvectors of the new 

normal operator has the cardinality of the real numbers. It also means that linear operators in this 

Gelfand triple have eigenspaces that are continuums and have the cardinality of the real numbers1. 

The same reasoning holds for complex number based Hilbert spaces and quaternionic Hilbert spaces 

and their respective Gelfand triples. 

                                                           
1 This story also applies to the complex and the quaternionic Hilbert spaces and their Gelfand 

triples. 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand
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A similar insight can be obtained via the reverse bra-ket method. The continuous function F(q) can 

relate a continuum parameter space {q} to a closed set ȿήỚ of Hilbert vectors that form an 

orthonormal base of the rigged Hilbert space ꞊. In this way, a normal operator F is defined via: 

 

ộὼȿ& ώỚ ộὼȿήỚ&ήộήȿώỚ Ὠή 

The relation between the infinite dimensional separable Hilbert space and its non-separable 

companion follows from: 

 

ộὼȿ& ώỚ ộὼȿήỚ&ήộήȿώỚ ộὼȿήỚ&ήộήȿώỚ Ὠή 

 

This can be interpreted by the view that the separable Hilbert space is embedded within its non-

separable companion. 

Formula (2) also reveals how summation of sets {ή} is related to integration of corresponding 

continuums {q}. 

If function & is mostly continuous, then the formula must sum over disjoint discrepant parameter 

spaces. 

 

ộὼȿ& ώỚ ộὼȿήỚ& ή ộήȿώỚ ộὼȿήỚ&ήộήȿώỚ Ὠή 

  

(1) 

(2) 

(3) 
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5 Quaternionic and Maxwell field equations 
In this section, we will compare two sets of differential equations. Both sets use pure space as part of 

the parameter space. 

¶ Quaternionic differential equations 

o These equations use progression as one of its parameters. 

¶ Maxwell based differential equations 

o These equations use quaternionic distance as one of its parameters. 

In this chapter, we will use a switch ṫ  ρ that selects between two different sets of differential 

calculus. One set concerns low order quaternionic differential calculus. The other set concerns 

Maxwell based differential calculus. The switch will be used to highlight the great similarity and the 

significant differences between these sets. 

 

By introducing new symbols  and  we will turn the quaternionic differential equations into 

Maxwell-like quaternionic differential equations. We introduced a simple switch ṫ ρ that apart 

from the difference between the parameter spaces, will turn one set of equations into the other set.  

Maxwell based differential calculus splits quaternionic functions into a scalar function and a vector 

function. Instead of the quaternionic nabla ɳ ᶯ  the Maxwell based equations use the scalar 

operator ɳ  and the vector nabla  as separate operators. Maxwell equations use a switch  

that controls the structure of a gauge equation. 

 

  


ὸ
 • ộ♩ȟⱴỚ 

 

For Maxwell based differential calculus is  ρ and ɳ . The switch value is ṫ ρ. 

For quaternionic differential calculus is  ρ and ɳ . The switch value is ṫ ρ. 

In the book EMFT, the scalar field   is taken as a gauge with 

 ρ; Lorentz gauge 

 π; Coulomb gauge 

  ρ; Kirchhoff gauge.  

We will use the definition of a scalar field  : 

 

 Ḱ • ộȟⱴỚ ‰  • ộȟⱴỚ 

 

In Maxwell based differential calculus the scalar field   is ignored or it is taken equal to zero. As will 

be shown, zeroing   is not necessary for the derivation of the Maxwell based wave equation [14]. 

(1) 

(2) 
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Maxwell equations split the considered functions into scalar functions and vector functions. The 

Maxwell differential operators are also split and consequently, they cannot be treated as multiplying 

operators. We keep them together with curly brackets.  

 

‰ ‰ȟꜚ ᶯȟ •ȟⱴ  

 

‰ ᶯ • ṫộ♩ȟⱴỚ 

 

ꜚ ᶯⱴ ♩• ♩ ⱴ 

 

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra Maxwell 

equations. Choice ṫ ρ conforms to the Lorenz gauge. We define extra symbols   and  for 

parts of the first order partial differential equation. 

 

Ḱ ᶯⱴ ♩•  

 

ᶯ ᶯᶯ ⱴ ᶯ♩•  

 

ộ♩ȟỚ ᶯộ♩ȟⱴỚ ộ♩ȟ♩Ớ•  

 

Ḱ♩ ⱴ 

 

These definitions imply: 

 

ộȟỚḲπ , this equation not correct in quaternionic differential 

calculus, but it is a postulate in Maxwell equations. 

 

ᶯ ♩  

 

ộ♩ȟỚ π 

 

♩ ♩ộ♩ȟⱴỚ ộ♩ȟ♩Ớⱴ 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Also, the following two equations are not genuine Maxwell equations, but they relate to the gauge 

equation. 

 

ᶯ‰ ᶯᶯ • ṫᶯộ♩ȟⱴỚ 

 

♩‰ ᶯ ♩•  ṫ♩ộ♩ȟⱴỚ ᶯ ♩• ṫ♩ ♩  ⱴ  ṫộ♩ȟ♩Ớ ⱴ 

 

‒ ᶯ ṫộȟỚ• ‒ ⱡ ‒ȟⱡ ᶯȟ ‰ȟ‰  

 

‒ ᶯᶯ ṫộȟỚ• ᶯ ‰ ṫộȟỚ 

 

ⱡ ᶯᶯ ṫộȟỚⱴ ♩‰ ᶯ ṫ♩  קּ

 

More in detail, the equations mean: 

 

‒ ‰ ṫộ♩ȟꜚỚ 

• ṫộ♩ȟⱴỚ ṫộ♩ȟ♩Ớ• ṫộ♩ȟⱴỚ ṫộ♩ȟ♩ ⱴỚ 

 ṫộ♩ȟ♩Ớ•  

 

‒ ᶯ ‰ ṫộȟỚ 

ᶯᶯ • ṫᶯộ♩ȟⱴỚ ṫᶯộ♩ȟⱴỚ ṫộ♩ȟ♩Ớ•  

 ṫộ♩ȟ♩Ớ•  

 

ⱡ ♩‰ ꜚᶸ♩  ꜚ

♩• ṫ♩ ♩ ⱴ ṫộ♩ȟ♩Ớⱴ ♩• ⱴ ♩ ⱴ  

♩ᴜ ♩• ᶸ♩ ⱴ ♩ ♩ ⱴ  

 ṫộ♩ȟ♩Ớⱴ ṫ♩ ♩ ⱴ ♩ ♩ ⱴ 

 

ⱡ ♩‰ ᶯ ṫ♩  קּ

♩• ṫ♩ ♩ ⱴ ṫộ♩ȟ♩Ớⱴ ᶯᶯ ⱴ ᶯ♩• ṫ♩ ♩ ⱴ 

 ṫộ♩ȟ♩Ớⱴ 

 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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Equation (21) reveals why Maxwell based differential equations use the gauge   rather than accept 

equation (4) as a genuine Maxwell equation. 

 

” ṫộȟỚ• ‒ ᶯᶯ•  

ⱬ ṫộȟỚⱴ ⱡ ᶯ ⱴ 

 

Thus, a simple change of a parameter and the control switch ṫ turn quaternionic differential 

equations into equivalent Maxwell differential equations and vice versa. This makes clear that both 

sets represent two different views on the same subject, which is a field that can be stored in the 

eigenspace of an operator that resides in the Gelfand triple. 

Still, the comparison shows an anomaly in equation (21) that represents a significant difference 

between the two sets of differential equations that goes beyond the difference between the 

parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue comes 

down to the conclusion that the Maxwell-based equations do not lead via the coupling of two first 

order quaternionic partial differential equations to a regular second order partial quaternionic 

differential equation, but instead, the wave equation represents a coupling between two solutions of 

different first order biquaternionic differential equations that use different parameter spaces. In the 

Dirac equation, these solutions represent either particle behavior or antiparticle behavior. 

  

(23) 

(24) 
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6 Genuine Maxwell wave equations 
The scalar part of the genuine Maxwell based differential equals zero. The Lorenz gauge oppresses 

this. 

The genuine Maxwell differential equations deliver different inhomogeneous wave equations: 

 

Ḱ • ♩•  

 

Ḱ♩ ⱴ 

 

The following definitions follow from the definitions of  and . 

 

 Ḱ  ⱴ ♩•  

 

ộ♩ȟỚḰ ộ♩ȟⱴỚ ộ♩ȟ♩Ớ•  

 

 Ḱ ♩  

 

ộ♩ȟỚḰ  

 

♩ Ḱ♩ộ♩ȟⱴỚ ộ♩ȟ♩Ớⱴ 

 

The Lorenz gauge means: 

 

ⱴ ộ♩ȟⱴỚ π 

 

The genuine Maxwell based wave equations are: 

 

 ộ♩ȟ♩Ớ• ” ộ♩ȟỚ 

 

 ộ♩ȟ♩Ớⱴ ὐ ♩ ᶯ  

 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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7 Dirac equation 

7.1 The Dirac equation in original format 
In its original form, the Dirac equation is a complex equation that uses spinors, matrices, and partial 

derivatives.  

Instead of the usual  ȟ░ ȟ▒ ȟ▓  we want to use operators  ᶯȟ  

The subscript 0 indicates the scalar part. Bold face indicates the vector part. 

The operator  relates to the applied parameter space. This means that the parameter space is also 

configured of combinations ὼ ὼȟ●  of a scalar ὼ and a vector ●. Also the functions Ὢ Ὢȟ█  

can be split in scalar functions Ὢ and vector functions █.  

The local parameter ὸ ὼ represents the scalar part of the applied parameter space. 

 

Dirac was searching for a split of the Klein-Gordon equation into two first order differential 

equations.  

 

Ὢ

ὸ

Ὢ

ὼ

Ὢ

ώ

Ὢ

ᾀ
ά Ὢ 

 

ᶯᶯ ộȟỚὪ Ὢ ά Ὢ 

 

Here ᶯᶯ ộȟỚ ƛǎ ǘƘŜ ŘΩ!ƭŜƳōŜǊǘ ƻǇŜǊŀǘƻǊΦ 

 

Dirac used a combination of matrices and spinors to reach this result. He applied the Pauli matrices 

to simulate the behavior of vector functions under differentiation. 

The unity matrix Ὅ and the Pauli matrices  „ȟ„ȟ„ are given by [15]: 

 

Ὅ
ρ  π
π ρ

ȟ „
π  ρ
ρ π

ȟ „  
π  
 π

ȟ „
ρ π
π ρ

 

 

For one of the potential orderings of the quaternionic number system, the Pauli matrices together 

with the unity matrix Ὅ relate to the quaternionic base vectors ρ, ░, ▒ and ▓ 

 

ρ Ὅȟ ░   „ȟ ▒   „ȟ ▓   „ 

 

„„ „„ ς  „Ƞ „„ „„ ς  „Ƞ „„ „„ ς  „ 

(1) 

(2) 

(3) 

(4) 

(5) 
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„„ „„ „„ Ὅ 

 

The different ordering possibilities of the quaternionic number system correspond to different 

symmetry flavors. Half of these possibilities offer a right handed external vector product. The other 

half offer a left-handed external vector product. 

 

We will regularly use: 

 

ộ Ɑȟ♩Ớ ♩ Ƞ Ѝ ρ 

 

With 

 

ὴ    

 

follow 

 

ὴ„  Ὡ 

 

ộⱭȟ▬ỚP  ♩ 

 

7.2 5ƛǊŀŎΩǎ ŀǇǇǊƻŀŎƘ 
The original Dirac equation uses 4x4 matrices  ŀƴŘ ʲΦ ώтϐ: 

♪ and  are matrices that implement the quaternion arithmetic behavior including the possible 

symmetry flavors of quaternionic number systems and continuums.  

 


π „

„ π
 

 


ρ π
π ρ

 

 

 Ὅ 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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The interpretation of the Pauli matrices as a representation of a special kind of angular momentum 

has led to the half-integer eigenvalue of the corresponding spin operator. 

5ƛǊŀŎΩǎ ǎŜƭŜŎǘƛƻƴ ƭŜŀŘǎ ǘƻ 

 

ὴ ộ♪ȟ▬Ớ άὧ• π 

 

• is a four-component spinor. 

Which splits into 

 

ὴ ộⱭȟ▬Ớ άὧ• π 

 

and 

 

ὴ ộⱭȟ▬Ớ άὧ• π 

 

•  and •  are spinor components. Thus, the original Dirac equation splits into: 

 

 ♩  άὧ• π 

 

 ♩  άὧ• π 

 

This split does not lead easily to a second order partial differential equation that looks like the Klein-

Gordon equation. 

7.3 Relativistic formulation 
LƴǎǘŜŀŘ ƻŦ 5ƛǊŀŎΩǎ ƻǊƛƎƛƴŀƭ ŦƻǊƳǳƭŀǘƛƻƴΣ ǳǎǳŀƭƭȅ ǘƘŜ ǊŜƭŀǘƛǾƛǎǘƛŎ ŦƻǊƳǳƭŀǘƛƻƴ ƛǎ ǳǎŜŘ [16]. 

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different 

choice influences the form of the equations that result for the two spinor components. 

 

  
π „
„ πȠ‘ ρȟςȟσ 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 
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ρ π
π ρ

 

 

 Ὥ
π ρ
ρ π

 

The matrix  anti-commutes with all other gamma matrices. 

{ŜǾŜǊŀƭ ŘƛŦŦŜǊŜƴǘ ǎŜǘǎ ƻŦ ƎŀƳƳŀ ƳŀǘǊƛŎŜǎ ŀǊŜ ǇƻǎǎƛōƭŜΦ ¢ƘŜ ŎƘƻƛŎŜ ŀōƻǾŜ ƭŜŀŘǎ ǘƻ ŀ ά5ƛǊŀŎ Ŝǉǳŀǘƛƻƴέ 

of the form  

 

  άὧ• π 

 

More extended: 




ὸ
ộ♬ȟ♩Ớ

 ά

 ᴐ
 π 

 

ρ π
π ρ



ὸ

π ộⱭȟ♩Ớ
ộⱭȟ♩Ớ π

 ά

 ᴐ
ρ π
π ρ

•
• π 

 

 
ρ π
π ρ



ὸ
π ♩
♩ π

 ά

ᴐ
ρ π
π ρ

•
• π 

 

 


ὸ
• •

 ά

 ᴐ
• π 

 

 


ὸ
• •

 ά

 ᴐ
• π 

 

Also, this split does not easily lead to a second order partial differential equation that looks like the 

Klein-Gordon equation. 

7.4 A better choice 
Another interpretation of the Dirac approach replaces  with  [17]: 

 




ὸ



ὼ



ώ



ᾀ

 ά

 ᴐ
 π 

 

(3) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(1) 

(2) 
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ὸ
ộ♬ȟ♩Ớ

 ά

 ᴐ
 π 

 

π ρ
ρ π



ὸ

π ộⱭȟ♩Ớ
ộⱭȟ♩Ớ π

 ά

 ᴐ
ρ π
π ρ




π 

 

This invites splitting of the four-component spinor equation into two equations for the two 

components   and   of the spinor: 

 

 ɳ   ộⱭȟ♩Ớ
 ά

ᴐ
   

 

 ɳ •  ộⱭȟ♩Ớ
 ά

ᴐ
   

 

  ♩
 ά

ᴐ
   

 

  ♩
 ά

ᴐ
   

 

This looks far more promising. We can insert the right part of the first equation into the left part of 

the second equation. 

 

  ♩   ♩  ♩♩ ộ♩ȟ♩Ớ   

 

 ά

ᴐ
  ♩ 

 ά

ᴐ
   

 

ộ♩ȟ♩Ớ 
 ά

ᴐ
   

 

  ♩   ♩  ♩♩ ộ♩ȟ♩Ớ   

 ά

ᴐ
  ♩ 

 ά

ᴐ
   

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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ộ♩ȟ♩Ớ 
 ά

ᴐ
   

 

This is what Dirac wanted to achieve. The two first order differential equations couple into a second 

order differential equation that is equivalent to a Klein-Gordon equation. The homogeneous version 

of this second order partial differential equation is a wave equation and offers solutions that are 

waves. 

The nabla operator acts differently onto the two component spinors    and   . 

7.5 The quaternionic nabla and the Dirac nabla 
The modified Pauli matrices together with a 2×2 identity matrix implement the equivalent of a 

quaternionic number system with a selected symmetry flavor.  

 

Ὅ
ρ  π
π ρ

Ƞ  „
π   
 π

Ƞ  „  
π ρ
ρ π

Ƞ  „
 π
π  

 

 

The modified Pauli matrices together with the Ὅ matrix implements another structure, which is not a 

version of a quaternionic number system. 

 

Ὅ
π

π
Ƞ   „

π   
π
Ƞ   „  

π ρ
ρ π

Ƞ   „
 π
π  

 

 

Both the quaternionic nabla and the Dirac nabla implement a way to let these differential operators 

act as multipliers. 

The quaternionic nabla is defined as 

 

  ♩ Ὡ   ộⱭȟ♩Ớ 

 

ᶻ  ♩  

 

For scalar functions and for vector functions hold: 

 

ᶻ ᶻ  ộ♩ȟ♩Ớ 

 

The Dirac nabla is defined as 

 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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꜠   ♩    ộⱭȟ♩Ớ 

 

꜠ᶻ   ♩ 

 

꜠ᶻ  ꜠  ꜠꜠ᶻ   ộ♩ȟ♩Ớ 

 

 Prove 
We use  

 

♩Ὢ ♩Ὢ 

 

♩█ ♩█ ộ♩ȟ█Ớ ♩ █ 

 

♩♩Ὢ ộ♩ȟ♩ỚὪ ♩ ♩Ὢ ộ♩ȟ♩ỚὪ 

 

♩♩█ ♩ộ♩ȟ█Ớ ♩ ♩ █ ộ♩ȟ♩Ớ█ ♩♩█ 

 

♩ ♩ █ ♩ộ♩ȟ█Ớ ộ♩ȟ♩Ớ█ 

 

ộ♩ȟ♩ █Ớ π 

 

♩ ♩ Ὢ  

 

This results in 

 

 ♩Ὢ Ὢ ♩Ὢ 

 

 ♩  ♩Ὢ 

 

 ♩Ὢ ♩Ὢ ộ♩ȟ♩ỚὪ ♩ ♩Ὢ 

 

 ộ♩ȟ♩ỚὪ 

(6) 

7) 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 
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 ♩█ █ ộ♩ȟ█Ớ ♩ █ 

 

 █ ộ♩ȟ█Ớ ♩ █  ♩█ 

 

 ♩  ♩Ὢ 

 

█ ộ♩ȟ█Ớ ♩ █ ộȟ█Ớ 

 

 █ ộ♩ȟ█Ớ ộȟ♩ █Ớ ♩ █ 

 

█ ộ♩ȟ♩Ớ█ 

 

 Discussion 
For  ρ the equations  

 

ᶻ Ὢ ᶻ Ὢ  ộ♩ȟ♩Ớ Ὢ 

 

ᶻ █  z█  ộ♩ȟ♩Ớ █ 

 

work for both parts of a quaternionic function Ὢ Ὢ █. 

 

For    the equations  

 

꜠ᶻ  ꜠Ὢ ꜠꜠ ᶻ Ὢ  ộ♩ȟ♩Ớ Ὢ 

 

꜠ᶻ  ꜠█ ꜠꜠ ᶻ█  ộ♩ȟ♩Ớ █ 

 

work separately for scalar function Ὢ.and vector function █. The right sides of the equations work for 

quaternionic functions. Thus 

 

Ὣ Ὢ  ộ♩ȟ♩Ớ Ὢ 

(10) 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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is a valid equation for quaternionic functions Ὢ and Ὣ. 

¢ƘǳǎΣ ǘƘŜ ŘΩ!ƭŜƳōŜǊǘ ƻperator  ộ♩ȟ♩Ớ is a valid quaternionic operator. 

The nabla operators reflect the structure of the parameter space of the functions on which they 

work. Thus, the quaternionic nabla operator reflects a quaternionic number system. The Dirac nabla 

operator reflects the structure of the parameters of the two component spinors that figure in the 

modified Dirac equation. 

Between the two spinor components   and  , the scalar part of the parameter space appears to 

change sign with respect to the vector part. 

Applied to a quaternionic function, the quaternionic nabla results again in a quaternionic function. 

 

‰ ‰ ꜚ  ♩ Ὢ █ Ὢ ộ♩ȟ█Ớ ♩Ὢ  █ ♩ █ 

 

Applied to a quaternionic function, the Dirac nabla results in a biquaternionic function. 

 

  ♩ Ὢ █    Ὢ ộ♩ȟ█Ớ ♩Ὢ  █ ♩ █ 

 

Neither the Dirac nabla ꜠ nor its conjugate ꜠ᶻ delivers quaternionic functions from quaternionic 

functions. They are not proper quaternionic operators. 

Thus, ǘƘŜ ŘΩ!ƭŜƳōŜǊǘ ƻǇŜǊŀǘƻǊ Ŏŀƴƴƻǘ ōŜ ǎǇƭƛǘ ƛƴǘƻ ǘǿƻ ƻǇŜǊŀǘƻǊǎ ǘƘŀǘ ƳŀǇ ǉǳŀǘŜǊƴƛƻƴƛŎ ŦǳƴŎǘƛƻƴǎ 

onto quaternionic functions. 

In contrast the operators ᶻ,  and ᶻ are all three proper quaternionic operators. 

7.6 Quaternionic format of Dirac equation 
The initial goal of Dirac was to split the Klein-Gordon equation into two first order differential 

equations. He tried to achieve this via the combination of matrices and spinors. This leads to a result 

that does not lead to an actual second order differential equation, but instead, it leads to two 

different first order differential equations for two different spinors that can be coupled into a second 

order partial differential equation that looks like a Klein-Gordon equation. The homogeneous version 

of the Klein-Gordon equation is a wave equation. However, that equation misses an essential right 

part of the Klein-Gordon equation. 

 

Quaternionic differential calculus supports first order differential equations that in a natural way lead 

to a second order partial differential equation that differs significantly from a wave equation. 

The closest quaternionic equivalents of the first order Dirac equations for the electron and the 

positron are: 

 

(6) 

(7) 
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ɳ  ♩  ⱶ ά• 

 

ᶯᶻ•  ♩ • ⱴ ά 

 

ᶻ  ♩  ♩  ⱶ ά  

 

ᶻ ᶻ  ộ♩ȟ♩Ớ  ά  

 

ᶻ• ᶻ•  ộ♩ȟ♩Ớ • ά • 

 

A similar equation exists for spherical coordinates. 

 

These second order equations are not wave equations. Their set of solutions does not include waves. 

7.7 Interpretation of the Dirac equation 
The original Dirac equation can be split into two equations. One of them describes the behavior of 

the electron. The other equation describes the behavior of the positron.  

The positron is the anti-particle of the electron. These particles feature the same rest mass, but other 

characteristics such as their electric charge differ in sign. The positron can be interpreted as an 

electron that moves back in time. Sometimes the electron is interpreted as a hole in a sea of 

positrons. These interpretations indicate that the functions that describe these particles feature 

different parameter spaces that differ in the sign of the scalar part. 

 Particle fields 
The fields that characterize different types of particles can be related to parameter spaces that 

belong to different versions of the quaternionic number system. These fields are coupled to an 

embedding field on which the particles and their private parameter spaces float. 

The reverse bra-ket method shows how fields can, on the one hand, be coupled to eigenspaces and 

eigenvectors of operators which reside in quaternionic non-separable Hilbert spaces and on the 

other hand, can be coupled to pairs of parameter spaces and quaternionic functions. Quaternionic 

functions can be split into scalar functions and vector functions. In a quaternionic Hilbert space, 

several different natural parameter spaces can coexist. Natural parameter spaces are formed by 

versions of the quaternionic number system. These versions differ in the way that these number 

systems are ordered. 

The original Dirac equations might represent this coupling between the particle field and the 

embedding field. 

(1) 

(2) 

(3) 

(4) 

(5) 
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7.8 Alternatives 

 Minkowski parameter space 
In quaternionic differential calculus, the local quaternionic distance can represent a scalar that is 

independent of the direction of progression. It corresponds to the notion of coordinate time ὸ. This 

means that a small coordinate time step Ўὸ equals the sum of a small proper time step Ў† and a 

small pure space step Ў●. In quaternionic format, the step Ў† is a real number. The space step Ў● is 

an imaginary quaternionic number. The original Dirac equation does not pay attention to the 

difference between coordinate time and proper time, but the quaternionic presentation of these 

equations show that a progression independent scalar can be useful as the scalar part of the 

parameter space. This holds especially for solutions of the homogeneous wave equation. 

In this way, coordinate time is a function of proper time † and distance in pure space ȿЎ●ȿ. 

 

ȿЎὸȿ ȿЎ†ȿ ȿЎ●ȿ 

 

Together ὸ and ● deliver a spacetime model that has a Minkowski signature. 

 

ȿЎ†ȿ ȿЎὸȿ ȿЎ●ȿ 

 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each 

ƻǘƘŜǊΩǎ ǉǳŀǘŜǊƴƛƻƴƛŎ ŎƻƴƧǳƎŀǘŜΦ ¢ƘŜ  matrix implements isotropic conjugation. An adapted 

conjugation matrix can apply anisotropic conjugation. This concerns conjugations in which only one 

or two dimensions get a reverse ordering. In that case the equations handle the dynamic behavior of 

anisotropic particles such as quarks. Quarks correspond to solutions that have anisotropic parameter 

spaces. Also for these quarks exist advanced particle solutions and retarded antiparticle solutions. 
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8 Lorentz transformation 

Differences between positions in subsequent members of the sequence of static status quos of the 

Hilbert Book Model can be interpreted as displacements. The displacement is a coordinate 

transformation. For the properties of this transformation, it does not matter where the displacement 

starts or in which direction it is taken. 

To simplify the description, we will use the name Hilbert Book page or sheet for a static status quo of 

the Hilbert Book model.  

8.1 Lorentz transformation from group postulates 
The same holds for displacements that concern sequence members that are located further apart. 

The corresponding displacements form a group. The displacement is a function of both the position 

and the sequence number. The displacement ᾀȟὸO ᾀȟὸ can be interpreted as a coordinate 

transformation and can be described by a matrix. Here ὸ is coordinate time. 

 

ὸ
ᾀ

 
 

ὸ
ᾀ

 

 

The matrix elements are interrelated. When the displacement concerns a uniform movement, the 

interrelations of the matrix elements become a function of the speed ὺ. Here ὺ is the speed 

measured as displacement per progression interval. The group properties together with the 

isomorphism of space fix the interrelations. 

 

ὸ
ᾀ

ρȾρ Ὧὺ
ρ Ὧὺ
ὺ ρ

ὸ
ᾀ

 

 

If Ὧ is positive, then there may be transformations with Ὧὺ ḻρ which transform progression into a 

spatial coordinate and vice versa. This is considered unphysical. The Hilbert book model also supports 

that vision. 

 

The condition Ὧ  π corresponds to a Galilean transformation 

 

ὸ
ᾀ

ρ π
ὺ ρ

ὸ
ᾀ

 

 

The condition Ὧ  π corresponds to a Lorentz transformation. We can set Ὧὧ ρ, where ὧ is an 

invariant speed that corresponds to the maximum of ὺ. 

 

ὸ
ᾀ

ρȾρ ὺȾὧ ρ ὺȾὧ
ὺ ρ

ὸ
ᾀ

 

(1) 

(2) 

(3) 

(4) 
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The Lorentz transformation corresponds to the situation in which a maximum speed occurs.  

 

Since in each progression step photons step with a non-zero space step and both step sizes are fixed, 

the speed of the photon at quantum scale is fixed. No other particle goes faster, so in the model, a 

maximum speed occurs. With other words when sequence members at different sequence number 

are compared, then Lorentz transformations can describe the corresponding displacements.  

 

Lorentz transformations introduce the phenomena that go together with relativity, such as length 

contraction, time dilatation and relativity of simultaneity that occur when two inertial reference 

frames are considered. 

 

Ўὸ Ўὸ  Ўᾀ ὺȾὧ Ⱦρ ὺȾὧ 

 

Ўὸ ρ ὺȾὧ Ўὸ  Ўᾀ ὺȾὧ  

 

The term Ўᾀ ὺȾὧ introduces time dilatation. If Ўὸ π then depending on ὺ and Ўᾀ the time 

difference Ўὸ is non-zero. 

 

Progression, interpreted as proper time, is a Lorentz invariant scalar. Therefore, the quaternionic first 

order partial differential equations are Lorentz covariant. The same holds for the quaternionic 

second order partial differential equations. 

8.2 The hyperbolic transformation 
In a field, vibrations move with maximum speed. It means that  

ὼ ὧ ὸ ὼ ὧ ὸ 

This holds in all inertial frames. With other words, for frames ὼȟὸ and ὼȟὸ  hold: 

ὼ ὧ ὸ ὼ ὧ ὸ  

The equality also holds for transformations in which discrete objects move with a uniform velocity ὺ, 

which is lower than c. This defines a transformation that can be implemented by a hyperbolic 

transformation: 

ὧὸ ὧὸÃÏÓÈ ὼÓÉÎÈ  

ὼ ὼÃÏÓÈ ὧὸÓÉÎÈ 

ὧέίὬ 
ÅØÐ  ÅØÐ 

ς

ὧ

Ѝὧ ὺ
 

(5) 
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ίὭὲὬ 
ÅØÐ  ÅØÐ 

ς

ὺ

Ѝὧ ὺ
 

ÃÏÓÈ ÓÉÎÈ ρ 

Parameter is the rapidity, also called the relativistic velocity. It only has the characteristics of a  

velocity when .is very small  

Ὠί Ὠ† Ὠὸ Ὠὼ Ὠώ Ὠᾀ 

Since †ȟὼȟώȟᾀ is the Euclidean structure of the quaternions, in which ὸ plays the role of 

quaternionic distance, the world of the observers is a spacetime world with a Minkowski 

structure. 

9 Tensor differential calculus 
We restrict to 3+1 D parameter spaces. 

Parameter spaces can differ in the way they are ordered and in the way the scalar part relates to the 

spatial part. 

Fields are functions that have values, which are independent of the selected parameter space. Fields 

exist in scalar fields, vector fields and combined scalar and vector fields.  

Combined fields exist as continuum eigenspaces of normal operators that reside in quaternionic non-

separable Hilbert spaces. These combined fields can be represented by quaternionic functions of 

quaternionic parameter spaces. However, the same field can also be interpreted as the eigenspaces 

of the Hermitian and anti-Hermitian parts of the normal operator. The quaternionic parameter space 

can be represented by a normal quaternionic reference operator that features a flat continuum 

eigenspace. This reference operator can be split in a Hermitian and an anti-Hermitian part. 

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number 

system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16 

versions that differ in their Cartesian ordering. If spherical ordering is pursued, then for each 

Cartesian start orderings two extra orderings are possible. All these choices correspond to different 

parameter spaces. 

Further, it is possible to select a scalar part of the parameter space that is a scalar function of the 

quaternionic scalar part and the quaternionic vector part. For example, it is possible to use 

quaternionic distance as the scalar part of the new parameter space. 

Tensor differential calculus relates components of differentials with corresponding parameter 

spaces. 

Components of differentials are terms of the corresponding differential equation. These terms can be 

split in scalar functions and in vector functions. Tensor differential calculus treats scalar functions 

different from vector functions. 

Quaternionic fields are special because the differential operators of their defining functions can be 

treated as multipliers. 

9.1 The metric tensor 
¢ƘŜ ƳŜǘǊƛŎ ǘŜƴǎƻǊ ŘŜǘŜǊƳƛƴŜǎ ǘƘŜ ƭƻŎŀƭ άŘƛǎǘŀƴŎŜέΦ 

(1) 
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Ὣ

Ὣ Ὣ Ὣ Ὣ
Ὣ Ὣ Ὣ Ὣ
Ὣ Ὣ Ὣ Ὣ
Ὣ Ὣ Ὣ Ὣ

 

The consequences of coordinate transformations ὨὼᵼὨὢ define the elements Ὣ  as  

Ὣ
Ὠὢ

Ὠὼ
 

9.2 Geodesic equation 
The geodesic equation describes the situation of a non-accelerated object. In terms of proper time 

this means: 

ὼ

†
ː
Ὠὼ

Ὠ†

Ὠὼ

Ὠ†
 

In terms of coordinate time this means: 

ὼ

ὸ
ː
Ὠὼ

Ὠὸ

Ὠὼ

Ὠὸ
ː
Ὠὼ

Ὠὸ

Ὠὼ

Ὠὸ

Ὠὼ

Ὠὸ
 

 Derivation: 
We start with the double differential. Let us investigate a function ὢ that has a parameter space 

existing of scalar † and a three-dimensional vector ● ὼȟὼȟὼ . The function ὢ represents three-

dimensional curved space. The geodesic conditions are: 

ὢ

†
π Ƞ ‗ ρȟςȟσ 

First, we derive the first order differential. 

Ὠὢ
ὢ

ὼ
Ὠὼ  

We can use the summation convention for subscripts and superscripts. This avoids the requirement 

for summation symbols. 

Ὠὢ

Ὠ†

ὢ

ὼ

Ὠὼ

Ὠ†
 

Ὠὢ
ὢ

ὼ
Ὠὼ Ὠὼ

ὢ

ὼὼ
Ὠὼ  

Now we obtained the double differential equation. 

Ὠὢ

Ὠ†

ὢ

ὼ

Ὠὼ

Ὠ†

ὢ

ὼὼ

Ὠὼ

Ὠ†

Ὠὼ

Ὠ†
π 

The geodesic requirement results in: 

ὢ

ὼ

Ὠὼ

Ὠ†

ὢ

ὼὼ

Ὠὼ

Ὠ†

Ὠὼ

Ὠ†
 

If we use summation signs: 

(2) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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ὢ

ὼ
Ὠὼ Ὠὼ

ὢ

ὼὼ
Ὠὼ  

Next, we multiply both sides with  and sum again: 

ὼ

ὢ

ὢ

ὼ
Ὠὼ

ὼ

ὢ
Ὠὼ

ὢ

ὼὼ
Ὠὼ  

We apply the fact: 

ὼ

ὢ

ὢ

ὼ
  

This results into: 

Ὠὼ
ὼ

ὢ
Ὠὼ

ὢ

ὼὼ
Ὠὼ ː ὨὼὨὼ  

Without summation signs: 

ː ὨὼὨὼ Ḱ
ὼ

ὢ

ὢ

ὼὼ
ὨὼὨὼ  

 

Ὠὼ

Ὠ†
ː
Ὠὼ

Ὠ†

Ὠὼ

Ὠ†
 

Ὠὼ

Ὠ†

ὼ

ὢ

ὢ

ὼὼ

Ὠὼ

Ὠ†

Ὠὼ

Ὠ†
 

Ὠὼ

Ὠὸ

ὼ

ὢ

ὢ

ὼὼ

Ὠὼ

Ὠὸ

Ὠὼ

Ὠὸ

ὼ

ὢ

ὢ

ὼὼ

Ὠὼ

Ὠὸ

Ὠὼ

Ὠὸ

Ὠὼ

Ὠὸ
 

9.3 Toolbox 
Coordinate transformations: 

Ὓ
ὼ

ὼ

ὼ

ὼ

ὼ

ὼ
Ὓ  

The Christoffel symbol plays an important role: 

ς Ὣ  ː
Ὣ

ὼ

Ὣ

ὼ

Ὣ

ὼ
 

ː Ḱ
ὼ

ὢ

ὢ

ὼὼ
 

ː ː  
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(11) 
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Covariant derivative  and partial derivative ɻ of scalars 

 ɻ
ὼ

ὼ
ɻ 

Covariant derivative ὠ  and partial derivative ὠof vectors 

ὠ ὠ ː ὠ  

• • ː •  

Ὣ π 

Ὣ π 

Ὣ Ὣ   

Ὣ ÄÅÔὫ  

Ὣ ÄÅÔ
ὼ

ὼ
Ὣ 

ÄÅÔ  is Jacobian 

ὨὼḰὨὼὨὼὨὼὨὼ 

Ὠὼ ÄÅÔ
ὼ

ὼ
Ὠὼ 

 

Tensor 

Ὕ ὼ frame 

Ὕ ώ frame 

Ὕ  

ὡ
ώ

ὼ

ὼ

ώ
ὡ  

ὡ
ὼ

ώ

ὼ

ώ
ὡ  

ὠὡ ὡ ὠ Ὕ  

If a tensor is zero in one frame, then it is zero in all frames. 

ὡ Ὕ ὡ Ὕ  

ὼ

ώ

ώ

ὼ
  

Ὀὠ ὠ ɜ ὠ  
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