About Fermat's truly marvellous proof of FLt

Nguyen Van Quang
Hue - Vietnam, 12-2020

Abstract

A truly marvellous proof of FLt may be real as Fermat mentioned

Around 1637, Fermat wrote his Last Theorem in the margin of his copy of the Arithmetica next to Diophantus'sum - of - squares problem .

It is impossible to separate a cube into two cubes, or a fourth power into tow fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvellous proof of this, which this margin is too narrow to contain. [1]

We have found a short proof of FLt, the way is summarized as follows:

$$
a^{n}+b^{n}=c^{n}
$$

By operation 1:
$\Rightarrow a=a_{1}, b=b_{1}, c=c_{1}$
By operation 2:
$\Rightarrow a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}$
By operation 3:
$\Rightarrow a_{2}=0$ or $b_{2}=0$
The operations above contain the elementary formulas only.

We can claim that there are no counterexamples of FLt.

References

[1] Fermat's Last Theorem - Wikipedia
[2] Quang N V, A proof of the four color theorem by induction Vixra: 1601.0247 (CO), Semanticscholar.org :124682326
[3] Quang N V, A new solvable quintic equation of the shape $x^{5}+a x^{2}+b=0$ Vixra: 2011.0165 (AL)

Email:
nguyenvquang67@gmail.com
quangnhu67@yahoo.com.vn

