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, 98.80.Cq,95.35.+d, 95.36.+x In this paper we fo
us on energy �ows in Universe as a simple quantum system and are 
on-
entrating on the nonlinear Hamilton-Ja
obi equation, whi
h appears in the standard quantumformalism based on S
hr�odingier equation. The 
ases of the domination of radiation, barotropi
�uid, and the quantum matter-energy are 
onsidered too. As a result, there is formulated thegeneralized Heisenberg un
ertainty prin
iple (GHUP) for a metri
 tensor. We also use theKuzmi
hevs Geometrodynami
s as a way to quantify an inter relationship between the GHUPfor a metri
 tensor and 
onditions postulated as to a barotropi
 �uid, i.e. dust for the earlyUniverse 
onditions.K e y w o r d s: Generalized Heisenberg un
ertainty prin
iple, general relativity, universe, 
os-mology, quantum geometrodynami
s1. Introdu
tionThe answer to the question brought up in the ti-tle of this paper 
an be provided after 
omparativedes
riptions of the Universe by 
lassi
al and quan-tum theories. As is well known, the Universe is sub-je
t to 
lassi
al theories on large spa
e-time s
aleswhereas on small spa
e-time s
ales, 
omparable withPlan
k s
ales and length, it should be des
ribed froma Quantum-theoreti
al perspe
tive.The �rst goal of our resear
h will be to introdu
ea framework about the speed of gravitons in �heavygravity�, and this is important eventually, as illus-trated by C. Will [1, 2℄, as it 
ould possibly be ob-served. Se
ondly, it also will involve an upper boundto the rest mass of a graviton. The third aspe
t of theinquiry of our manus
ript will be to 
ome up with a
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variant of the HUP, involving a metri
 tensor, as wellas the Stress energy tensor, whi
h will in time allowus to establish a lower bound to the mass of a gravi-ton, preferably at the start of 
osmologi
al evolution.The arti
le 
on
ludes as answering a statement byMukhanov, in Mar
el Grossman 14 as to his inter-pretation as to the importan
e of Causal barriers, inpla
e in terms of prior to present universe transitionsin 
osmology. In the Mukhanov view, Causal barri-ers 
reate an averaging e�e
t of 
ontributions fromprior universe 
onditions to the present universe ini-tial 
onditions. In fa
t, this means, that e�e
tively,in the 
ase of a multiverse, that the existen
e of prioruniverse 
ontributions from a multiverse, would bee�e
tively a single universe repeating itself. I.e. ourview is instead very similar to an Ergodi
 mixing pro-to
ol. Even in the 
ase of multiverse 
ontributions toa present universe. This is the basis of mu
h of our



2analysis. Where Mukhanov implied stating that in-stead of an Ergodi
 mixing of prior 
ontributions froma multiverse, that 
ausal stru
ture would ALWAYSrestri
t our analysis of information from a prior en-semble to be the same as a repeating single universemodel for 
y
li
 universes. We regard the Mukhanovinterpretation as indefensible. And state why in thelast 
hapter of this arti
le.We referen
e what was done by Will in his livingreviews of relativity arti
le as to the `Confrontationbetween GR and experiment�. Spe
i�
ally we makeuse of his experimentally based formula of [1, 2℄, with
vgravitonthe speed of a graviton, andmgravitonthe restmass of a graviton, and Egravitonin the inertial restframe given as:
(vgraviton

c

)2

= 1−
m2

gravitonc
4

E2
graviton

(1)Our take away from Formulae 1 is that if a gravitonis massive, that the speed of travel of graviton dropsbelow the value of c, the speed of light, with masslessgravitons traveling at the speed of light. This in ad-dition puts restri
tions upon the energy of a gravitonand argues against simple approximations like. Hen
ewe follow [2℄ in terms of the following ideas as givenin Formula 2, next:
vgraviton

c = 1− 5× 10−17 ·
(

200Mpc
D

)

·
(

∆t
1 sec

)

.
= 1− 5× 10−17 ·

(

200Mpc
D

)

·
(

∆t=∆ta−(1+z)·∆tb
1 sec

)

⇔ 2mgravitonc2

Egraviton
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D

)

×
×
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∆ta−(1+z)·∆tb
1 sec

)

. (2)Here, ∆ta is the di�eren
e in arrival time, and ∆teis the di�eren
e in emission time in the 
ase of theearly Universe, i.e. near the big bang, then if in thebeginning of time, one has, if we assume that there isan average Egraviton ≈ ~ · ωgraviton, and
∆ta ∼ 4.3× 1017 sec, ∆te ∼ 10−33 sec, z ∼ 1050.(3)Then, (

∆ta−(1+z)·∆tb
1 sec

)

∼ 1, and if D ∼ 4.6 ×
1026meters = radii(universe), so one 
an set
(

200Mpc

D

)

∼ 10−2. (4)

And if one sets the mass of a graviton [3℄ into Eq.(1), then we have in the present era, that if we lookat primordial time generated gravitons, that if oneuses the
∆ta ∼ 4.3× 1017 sec, ∆te ∼ 10−33 sec, z ∼ 1055.(5)Note that the above given frequen
y for the gravitonis for the present era, but it starts assuming an initialgenesis from an (initial) in�ationary starring pointwhi
h is not a spa
e-time singularity.Note this 
omes from a s
ale fa
tor, if z ∼ 1055 ⇔
ascale−factor ∼ 10−55, i.e. 55 orders of magnitudesmaller than what would normally 
onsider, but herenote that the s
ale fa
tor is not zero, so we do nothave a spa
e � time singularity.We will next dis
uss the impli
ations of this pointin the next se
tion, of a non zero smallest s
ale fa
-tor. Se
ondly the fa
t we are working with a massivegraviton, as given will be given some 
reden
e as towhen we obtain a lower bound, as will 
ome up in ourderivation of modi�
ation of the values [3℄
〈

(δguv)
2
(

T̂uv

)2
〉

≥ ~
2

V 2
V olume

−−−−→
uv→tt

〈

(δgtt)
2
(

T̂tt

)2
〉

≥ ~
2

V 2
V olume

& δgrr ∼ δgθθ ∼ δgφφ ∼ 0+.

(6)The reasons for saying this set of values for the varia-tion of the non gttmetri
 will be in the 3rd se
tion andit is due to the smallness of the square of the s
alefa
tor in the vi
inity of Plan
k time interval.Leading to nonzero initial entropy as stated in Ap-pendix A, we also examine a Ri

i s
alar valueat the boundary between Pre Plan
kian to Plan
k-ian regime of spa
e-time, setting the magnitude ofRi

i S
alar k as approa
hing �at spa
e 
onditionsright after the Plan
k regime. Furthermore, we havean approximation as to initial entropy produ
tion
Sinitial(graviton) ∼ 1037. Then we get an initial ver-sion of the 
osmologi
al �
onstant� as it is shown inthe Appendix D whi
h is linked to initial value ofa graviton mass. Appendix E is written for theRiemannian- Penrose inequality, whi
h is either anonzero NLED s
ale fa
tor or quantum boun
e as ofLQG. Finally, Appendix F gives 
onditions so thata pre Plan
kian kineti
 energy (in�aton) value greater



3than Potential energy o

urs, whi
h is foundationalto the lower bound to Graviton mass. We will inthe future add more stru
ture to this 
al
ulation soas to 
on�rm via a pre
ise 
al
ulation that the lowerbound to the graviton mass, is about 10−70 grams.Our lower bound is a dimensional approximation sofar. We will make it exa
t.2. The �ow of energy in a quantum pro
essFollowing [4℄, we start with a quantum system de-s
ribed by a wave fun
tion, ψ(x, t), the time evolutionof whi
h is given by the S
hr�odinger equation. TheBorn probability rule is then used to 
al
ulate theprobability P (x′, t′) of �nding the system at x′ at alater time t′. Thus P (x′, t′) = |ψ(x′, t′)|2 = R2(x′, t)where R(x′, t) is the amplitude of the �eld. So our�nal result depends only on one of the pair of realnumbers in ψ(x, t) = R(x, t)eiS(x,t)/~. The informa-tion as to how the phase evolves in time is, as it were,`hidden' in the evolution of the 
omplex wave fun
-tion ψ(x, t). It would perhaps be revealing to have apair of equations showing expli
itly the evolution ofthe two real �elds R(x, t) and S(x, t).The simplest way to arrive at the equations 
on-taining R and S is to substitute ψ = ReiS/~ into theS
hr�odinger equation and separate the resulting equa-tion into its real and imaginary parts. The imaginarypart 
an be written in the form
∂ρ

∂t
+∇.

(

ρ
∇S
m

)

= 0, (7)where we have written ψ(x, t) = R(x, t)eiS(x,t)/~ with
R2 = ρ.Sin
e, at this stage, we are simply analysing theS
hr�odinger equation, equation (7) provides an ex-pression for the 
onservation of probability P (x, t).The real part takes the form1
∂S

∂t
+

(∇S)2
2m

− ~
2

2m

(∇2R

R

)

+ V = 0. (8)We will 
all this the quantum Hamilton-Ja
obi equa-tion [QHJ℄ for reasons that we will bring out as wego along.These two equations must have the same 
ontentas the S
hr�odinger equation and it would surely be1 We are well aware that we here in this segment are treating
S as a Torsor. For a physi
al treatment of S, see page 95 ofMa
key [5℄.

of interest to see if they 
an give a di�erent insightinto the evolution of quantum systems. Note we arenot departing from the usual interpretation yet, weare merely drawing attention to an alternative formof the mathemati
al stru
ture. Already one sees thatthere is a disadvantage of using these two equationsas they are no longer linear and therefore more dif-�
ult to analyse. Nevertheless as we will show, we
an obtain new information about energy �ow usingequation (8), in spite of Bohr's insisten
e that you
an talk either about an evolution in spa
e-time orabout a 
ausal (i.e. momentum-energy) evolution,never both together.Although the splitting of an equation into its realand imaginary parts is a standard mathemati
al pra
-ti
e, we will re-derive these two equations again,starting from Heisenberg's expression [5℄ for the La-grangian of the S
hr�odinger �eld [5℄ and applying thestandard Euler-Lagrange equations, treating R(x, t)and S(x, t) as independent �elds. This pro
edurewill enable us to �nd the 
omponents of the energy-momentum tensor, thus allowing us to investigate theenergy and momentum �ows involved in the quantumpro
ess. In this way we are able show that equation(8) is an expression for the lo
al 
onservation of en-ergy in this evolving quantum pro
ess.This result should not be too surprising sin
e, as iswell known, the S
hr�odinger equation must des
ribethe evolution of the energy involved in the pro
ess.Why? Be
ause the expression of the 
lassi
al dynam-i
al energy, the Hamiltonian, albeit written in oper-ator form, is at the heart of the equation. Howeverby fo
ussing on the 
omplex form of the wave fun
-tion, we do not expli
itly see how this energy �owsin the evolving pro
ess. The wave fun
tion then ap-pears, as it were, `disembodied' from the energy, sothat it then seems to take on, physi
ally, the air ofsome ghostly shadow of the evolving system, allowingonly probability out
omes to be dis
ussed.We then �nd that the wave fun
tion, with its de-terministi
 equation, 
an be treated as an entity in itsown right giving the probability of �nding a parti
u-lar result. Its role in a

ounting for the energy �owis then forgotten. In 
onsequen
e we feel free to addwave fun
tions and to 
ollapse wave fun
tions withno 
on
ern as to the energy involved, hoping that itwill be taken 
are of by the S
hr�odinger equation.However a realisation that both the addition ofwave fun
tions and the 
ollapse of wave fun
tions o
-



4
ur outside of the S
hr�odinger equation, should bea 
ause for 
on
ern sin
e, unless 
are is taken withsu
h addition and 
ollapse, any su
h move 
ould 
on-tradi
t the 
onservation of energy2. The purpose ofthis paper is �nd a way to dis
uss the �ow of energyin a quantum pro
ess rather than relying only on the
ψ(x, t) and the S
hr�odinger equation.3. Kuzmi
hevs quantum 
onstraint equationsIn this se
tion we follow Kuzmi
hevs paper [157℄and 
onsider the homogeneous, isotropi
 and spa-tially 
losed quantum 
osmologi
al system (universe).The geometry of su
h a universe is des
ribed by theRobertson-Walker metri
. This metri
 has a max-imally symmetri
 three-dimensional subspa
e of afour-dimensional spa
e-time. Sin
e we 
onsider thespatially 
losed Universe, then the geometry of thespa
e-time depends on a single 
osmologi
al parame-ter, namely the 
osmi
 s
ale fa
tor a whi
h des
ribesthe overall expansion or 
ontra
tion of the Universe[158℄. The s
ale fa
tor is a �eld variable whi
h deter-mines gravity in the formalism under 
onsideration.We assume that from the beginning the Universe is�lled with matter in the form of the uniform s
alar�eld φ, the state of whi
h is given by some HermitianHamiltonian, Hφ = H†

φ. This Hamiltonian is de�nedin a 
urved spa
e-time, and therefore, in the general
ase, it depends on a s
ale fa
tor a as a parameter,
Hφ = Hφ(a). In addition, it will be a

epted that theUniverse is �lled with a perfe
t �uid in the form ofrelativisti
 matter (further referred as radiation) withthe proper energy Mγ = E

2a in the 
omoving volume
1
2a

3, where E is a real 
onstant proportional to thenumber of parti
les of the perfe
t �uid. The perfe
t�uid de�nes a material referen
e frame [159, 160℄.The restri
tions in the form of the �rst-
lass 
on-straint equations are imposed on the state ve
tor ofthe quantum Universe Ψ = 〈a, φ|Ψ(T )〉, where T is atime parameter. These 
onstraints 
an be redu
ed totwo equations [160�162℄,
(

−i∂T − 2

3
E

)

Ψ = 0, (9)
(

−∂2a + a2 − 2aHφ − E
)

Ψ = 0, (10)2 We are talking about energy non-
onservation outside thelimits imposed by the energy-time un
ertainty prin
iple.

where Eq. (9) des
ribes the time evolution of Ψ, whenthe number of parti
les of the perfe
t �uid 
onserves,while Eq. (10) determines the quantum states of theUniverse at some �xed instant of time T = T0, T0 isan arbitrary 
onstant taken as a time referen
e point.The 
oe�
ient 2
3 in Eq. (9) is 
aused by the 
hoi
e ofthe parameter T as the time variable. This time vari-able is 
onne
ted with the proper time τ by the dif-ferential equation dτ = adT . Following the ADM for-malism [163, 164℄, one 
an extra
t the so-
alled lapsefun
tion N , that spe
i�es the time referen
e s
ale,from the total di�erential dT : dT = Ndη, where η isthe �ar
 time� [165, 166℄.The quantum 
onstraints (9) and (10) 
anbe rewritten in the form of the time-dependentS
hr�odinger-type equation

−i∂TΨ =
2

3
HΨ, (11)where

H = −∂2a + a2 − 2aHφ. (12)The minus sign before the partial derivative ∂T isstipulated by the spe
i�
 
hara
ter of the 
osmolog-i
al problem, namely that the 
lassi
al momentum
onjugate to the variable a is de�ned with the minussign [167, 168℄.The partial solution of Eqs. (9) and (10) has a form
Ψ(T ) = ei

2
3E(T−T0)Ψ(T0), (13)where the ve
tor Ψ(T0) ≡ 〈a, φ|ψ〉 satis�es the sta-tionary equation

H|ψ〉 = E|ψ〉. (14)From the 
ondition
0 =

d

dT

∫

D[a, φ] |Ψ|2

= −i2
3

∫

D[a, φ] Ψ∗ [H† −H
]

Ψ, (15)where D[a, φ] is the measure of integration with re-spe
t to the �elds a and φ 
hosen in an appropriateway, it follows that the operator (12) is Hermitian:
H = H†.



54. Non zero s
ale fa
tor, initially and whatthis is telling us physi
ally. Starting with a
on�guration from UnruhBegin with the starting point of [112℄
∆l ·∆p ≥ ~

2
(16)We will be using the approximation given by Unruh[112℄, of a generalization we will write as

(∆l)ij =
δgij
gij

· l
2 , (∆p)ij = ∆Tij · δt ·∆A. (17)If we use the following, from the Roberson-Walkermetri
 [140℄.

gtt = 1, grr =
−a2(t)
1−k·r2 , gθθ = −a2(t) · r2,

gφφ = −a2(t) · sin2 θ · dφ2.
(18)Following Unruh [112℄, write then, an un
ertainty ofmetri
 tensor as, with the following inputs

a2(t) ∼ 10−110, r ≡ lP ∼ 10−35meters. (19)Then, the surviving version of Eq. (16) and Eq. (17)is, then, if ∆Ttt ∼ ∆ρ

V (4) = δt ·∆A · r,
δgtt ·∆Ttt · δt ·∆A · r

2 ≥ ~

2

⇔ δgtt ·∆Ttt ≥ ~

V (4) .
(20)This Eq. (20) is su
h that we 
an extra
t, up to apoint the HUP prin
iple for un
ertainty in time andenergy, with one very large 
aveat added, namely ifwe use the �uid approximation of spa
e-time [140℄

Tii = diag(ρ,−p,−p,−p). (21)Then
∆Ttt ∼ ∆ρ ∼ ∆E

V (3).
(22)Then, Eq.(20) and Eq. (21) and Eq. (22) togetheryield

δt∆E ≥ ~

δgtt
6= ~

2 , Unless δgtt ∼ O(1). (23)How likely is δgtt ∼ O(1)? Not going to happen.Why? The homogeneity of the early Universe willkeep
δgtt 6= gtt = 1. (24)

In fa
t, we have that from Giovannini [140℄, that if φis a s
alar fun
tion, and a2(t) ∼ 10−110, then if
δgtt ∼ a2(t) · φ << 1. (25)Then, there is no way that Eq. (23) is going to 
ome
lose to δt∆E ≥ ~

2 . Hen
e, the Mukhanov suggestionas will be dis
ussed toward the end of this arti
le, isnot feasible. Finally, we will dis
uss a lower bound tothe mass of the graviton.5. How we 
an justifying writing very small
δgrr ∼ δgθθ ∼ δgφφ ∼ 0+ valuesTo begin this pro
ess, we will break it down into thefollowing 
oordinates:In the rr, θθ, and φφ 
oordinates, we will use the Fluidapproximation, Tii = diag(ρ,−p,−p,−p) [170℄ with
δgrrTrr ≥ −

∣

∣

∣

~·a2(t)·r2
V (4)

∣

∣

∣
−−−→
a→0

0,

δgθθTθθ ≥ −
∣

∣

∣

~·a2(t)
V (4)(1−k·r2)

∣

∣

∣
−−−→
a→0

0,

δgφφTφφ ≥ −
∣

∣

∣

~·a2(t)·sin2 θ·dφ2

V (4)

∣

∣

∣
−−−→
a→0

0.

(26)If as an example, we have negative pressure, with Trr,
Tθθ, and Tφφ < 0, and p = −ρ, then the only 
hoi
ewe have, then is to set δgrr ∼ δgθθ ∼ δgφφ ∼ 0+,sin
e there is no way that p = −ρ is zero valued.Having said this, the value of δgtt being non zero, willbe part of how we will be looking at a lower boundto the graviton mass whi
h is not zero.In our analysis of Pre Plan
kian spa
e-time a

ord-ing to the HUP whi
h is written in this paper in termsof a redu
tion of 
ontributions of all but the time
omponent of the metri
 tensor, we fa
e the problemof arguing how �u
tuations drop o�, unless they aredire
tly 
onne
ted to the time 
omponent. Whi
hmakes sense, sin
e if there is a nonsingular start tothe universe, as given by [150,171℄, the Pre plan
kianspa
e-time regime is part and par
el of an emergentspa
e-time whi
h would pla
e a premium upon nonspatial metri
 tensor �u
tuations. Hen
e, we will de-lineate reasons for why the metri
 tensor �u
tuationsare restri
ted to the time 
omponents only.6. Lower bound to the graviton mass usingBarbour's emergent timeIn order to start this approximation, we will be usingBarbour's value of emergent time [115,116℄ restri
ted



6to the Plank spatial interval and massive gravitons,with a massive graviton [117℄
(δt)

2
emergent =

∑

imili · li
2 · (E − V )

→ mgravitonlP · lP
2 · (E − V )

. (27)Initially, as postulated by Babour [115, 116℄, this setof masses, given in the emergent time stru
ture 
ouldbe for say the planetary masses of ea
h 
ontributionof the solar system. Our identi�
ation is to have aninitial mass value, at the start of 
reation, for an in-dividual graviton.If (δt)2emergent = δt2 in Eq.(20), using Eq.(20) andEq. (27) we 
an arrive at the identi�
ation of
mgraviton ≥ 2~2

(δgtt)
2
l2P

· (E − V )

∆T 2
tt

. (28)Key to Eq. (28) will be identi�
ation of the kineti
energy whi
h is written as E − V . This identi�
a-tion will be the key point raised in this manus
ript.Note that it raises the distin
t possibility of an initialstate, just before the `big bang' of a kineti
 energydominated `pre in�ationary' universe. I.e. in termsof an in�aton φ̇2 >> (P.E ∼ V ) [170℄. The key �nd-ing whi
h is in [118℄ is, that, if the kineti
 energy isdominated by the `in�aton' that
K.E. ∼ (E − V ) ∼ φ̇2 ∝ a−6. (29)This is done with the proviso that w < −1, where
w= pressure /density [172℄. I.e., the 
onvention re-ferred to is of avoiding density= - pressure, whi
h isused frequently. In e�e
t, what we are saying is thatduring the period of the `Plan
kian regime' we 
anseriously 
onsider an initial density proportional toKineti
 energy, and 
all this K.E. as proportional to[170℄
ρw ∝ a−3(1−w). (30)If we are where we are in a very small Plan
kianregime of spa
e-time, we 
ould, then say write Eq.(30) as proportional to g∗T 4 [170℄, with g∗ initial de-grees of freedom, and T the initial temperature aslow just before the onset of in�ation. The questionto ask, then is, what is the value of the initial degreesof freedom, and what is the temperature, T , at thestart of expansion? For what it is worth, the startingsupposition, is that there would then be a likelihoodfor an initial low temperature regime.

7. Metri
 un
ertainty prin
iple as interrelationship of general relativity andquantum geomerodynami
sWe will be using, the inputs from Se
tion 3 exten-sively as a way to intertwine the predi
tions as to aHUP 
onne
ted with the metri
 tensor of spa
e-timeand the resulting initial 
onditions for spa
e-time a
-
ording to Geometrodynami
s. The end result will bethat we are supplying initial 
onditions whi
h 
annotbe obtained, by other means. We also will quantifyvia a version of dust dynami
s, how this a�e
ts 
an-didate DM and possibly DE 
ontributions to initial
osmologi
al 
onditions. To do this, we will reviewthe 
on
epts used in both the Heisenberg Un
ertaintyprin
iple, for metri
 tensors, and the Geometrody-nami
s equations used. The 
on
lusion of what weare talking about is use of the HUP, for metri
 ten-sors to form bounds on the Getrodynami
s equationsin the pre Plan
kian spa
e-time era.7.1. Appli
ation of the HUP to metri
tensorsWe will be examining a Friedmann equation for theevolution of the s
ale fa tor, using expli
itly two 
ases,one 
ase being when the a

eleration of expansion ofthe s
ale fa
tor is kept in, another when it is out,and the intermediate 
ases of when the a

elerationfa
tor, and the s
ale fa
tor is important but not dom-inant. In doing so we will be tying it in our dis
ussionwith the earlier work done on the HUP but from the
ontext of how the a

eleration term will a�e
t theHUP, and making sense of why our generalized un-
ertainty prin
iple, as given in the beginning of Eq.(31) is from [3,112,150℄ leading to a restri
tion of themetri
 tensor �u
tuation to being the time 
ompo-nent only, in the denominator of the modi�ed HUPexpression. [3℄ gives us the initial generalized HUP,and [112, 150℄ express the �u
tuation restri
ted to
〈

(

δguv
)2(

T̂uv
)2
〉

≥ ~
2

V 2
volume

−−→
uv→tt

〈

(

δgtt
)2(

T̂tt
)2
〉

≥ ~
2

V 2
volume

&δgrr ∼ δgθθ ∼ δgφφ ∼ 0+ . (31)



7Namely we will be working with
δt∆E = ~

δgtt
≡ ~

a2(t)·φ ≪ ~ (32)
⇔ Sinitial(with[δgtt]) = (δgtt)

−3Sinitial(without[δgtt])

≫ Sinitial(without[δgtt])i.e. the �u
tuation δgtt ≪ 1 dramati
ally boost initialentropy. Not what it would be if δgtt ≈ 1. The nextquestion to ask would be how 
ould one a
tually have
δgtt ∼ a2(t) · φ −−−−−−→

V ery Large 1 (33)Furthermore, we have that Eq. (31) has an expli
itrestri
tion of the modi�ed HUP: to be in�uen
ed byonly the time �u
tuation of the metri
 tensor, whi
his given by , and this in the denominator of the modi-�ed HUP is ≪ 1. Eq. (32) is highlighted by the term
≪ 1 in the denominator of the modi�ed HUP lead-ing to spe
i�
 entropy generation. As is expe
ted, inthe Pre Plan
kian to Plan
kian transition, referredto in Eq. (32), se
ond line, delineates if ≪ 1 thatthe entropy generation is very di�erent, than whenapproa
hes 1, whi
h is after the Pre Plan
kian toPlan
kian emergent physi
s regime. In addition, Eq.(33) spe
i�
ally alludes to if approa
hes 1, markingthe transition to the Plan
kian regime and beyond,and this is due to the in�aton growing extremelylarge.In short, we would require an enormous �in�aton�style φ valued s
alar fun
tion, and a2(t) ∼ 10−110.How 
ould φ be initially quite large? Within Plan
ktime the following for mass holds, as a lower bound
mgravitation ≥ 2~2

(δgtt)2l2p
· (E − V )

∆T 2
tt

. (34)Here, we are using the following approximation as toKineti
 energy in the beginning of the expansion ofthe Universe.
K.E. ∼ (E − V ) ∼ φ̇2∞a−6. (35)Then, up to �rst order, we 
ould approximate, withH.O.T. being higher order terms
φ̇ ∼ a−3 ⇔ φ ≈ t · a−3 +H.O.T . (36)This Eq.(36) will be 
onsiderably re�ned in the sub-sequent do
ument.

7.2. Metri
 un
ertainty prin
iple and itsappli
ations in Geometrodynami
sFrom Eq. (10) we have
〈uk|Hφ|uk′〉 =Mk(a) · δk,k′

−−−−−−−−−−−→
V (φ)−λαφα& k−k′ εk ·

(

λα

2

)( 2
2+α

)
a

(

3(2−α)
2+α

)

−→
α−2〈uk|Hφ|uk′〉 =Mk(α) · δk,k′

−−−−−−−−−−−→
V (φ)−λαφα& k−k′ εk ·

(

λα

2

)( 2
2+α

)
a

(

3(2−α)
2+α

)

−→
α−2

√
2λ2 · (k + 1/2) =M2(a). (37)Here, we 
an also assign a density fun
tional andthen a 
hange of energy as given by ∆E = 2 · 10−γ ·

l3pM2(a)/a
3. So then, that one will have

ρm = 2M2(a)/a
3 =

√

23 · λ2 · a3 · (k + 1/2) ,

∆E = 2 · 10−γ · l3pM2(a)/a
3 =

= 10−γ · l3p ·
√

23 · λ2 · a−3 · (k + 1/2). (38)Here the subs
ript k, as in Eq. (38) is a �parti
le
ount� and we will refer to this heavily in the rest ofthis paper. If we have Eq. (38) we will, if we have anemergent �eld referen
e using a 
hange in energy, inthe Pre Plan
kian domain as
δgtt ≈

~

δt∆E
= (39)

= (δt)−1 · ~

10−γ · l3p ·
√
23 · λ2 · a−3 · (k + 1/2)

.Or, if the inequality is stri
tly adhered to
δgtt ≥

~

δt∆E
= (40)

= (δt)−1 · ~

10−γ · l3p ·
√
23 · λ2 · a−3 · (k + 1/2)

.The smallness of the initial s
ale fa
tor would be ofthe order of a−3 ∼ 10165, and we have that k ∼ 1020,initially, and that l3p ∼ 10−105, and we pi
k ~ = 1dimensionally, so then if δt ∼ 10−44, we have if weuse Eq. (39) as an estimator, that the following hasto be done to insure in pre Plan
kian spa
e time, for



8the following to hold:
λ2 ≤ 10−74+2γ ⇔ δgtt ≤ 1

⇔ δt∆E ≥ 1

& λ > 10−74+2γ ⇔ δgtt > 1

⇔ δtδE < 1. (41)I.e. the violation of an un
ertainty prin
iple for 
om-men
es for any situation whi
h implies restraints on
λ2 ≤ 10−74+2γ ⇔ δgtt ≤ 1 ⇔ δt∆E ≥ 1 when
λ2 > 10−74+2γ ⇔ δgtt > 1

⇔ δt∆E < 1. (42)For the problem represented by Eq. (42) to hold itwould mean that the following Pre-Plan
kian Poten-tial energy would be then small when the followingPotential energy as given in Eq. (43) is mu
h smallerthan the Kineti
 energy given in Eq. (32)
V (φ) = λαφ

α = λ2φ
2. (43)From inspe
tion, for Eq. (43) to hold, for our phys-i
al system we would want Eq. (41) to hold whi
hwould mean an extremely small Potential energy, asopposed to the large value of the Kineti
 energy givenin Eq. (34). Hen
e the role of Geometrodynami
sgiven in Eqs. (37) and (38), will in the 
ase of a quar-ti
 potential imply that Eq. (43) as Potential energyis mu
h smaller than the kineti
 energy as representedfor Pre Plan
kian spa
e-time physi
s.8. Dis
ussion and 
on
lusionsA way to rewrite the approa
h given here in termsof the early Universe theory is to refer to Einsteinspa
es [121℄ as well as to make 
ertain of the termsand 
omponents of the stress energy tensor [122℄ aswe 
an write it as a modi�ed Einstein �eld equation.With, then N as a 
onstant.

Rij = Ngij (44)Here, the term in the Left hand side of the metri
tensor is a 
onstant, so then if we write, with R alsoa 
onstant [122℄
Tij = − 2√−g

δS

δgij
= − 1

8π
· [N−R+ Λ] · gij (45)

The terms, if we use the �uid approximation given byEq. (21) as well as the metri
 given in Eq. (18) willthen tend to a 
onstant energy term on the RHS ofEq. (45) as well as restri
ting i, and j, to, 
orrespod-ingly, t and t.So as to re
over, via the Einstein spa
es, the seem-ingly heuristi
 argument given above. Furthermorewhen we refer to the Kineti
 energy spa
e as an in�a-ton φ̇2 >> (P.E ∼ V ) [170℄, we 
an also then utilizethe following operator equation for the generation ofan `in�aton �eld' given by the following set of equa-tions
φ (t, ·) = cos(t

√
K)f + sin(t

√
K)√

K
g

f(x) = φ(0, x)

g(x) = ∂φ(0,x)
∂t

−∂2φ
∂t2 = Kφ

(46)In the 
ase of the general ellipti
 operator K if weare using the Fulling referen
e [123℄ in the 
ase of theabove Roberson-Walker metri
, with the results thatthe ellipti
 operator, in this 
ase be
ome,
K = −∇2 + (m2 + ξR)

= −∑

i,j

∂i

(

gij
√

|det g|∂j

)

√
|det g|

+ (m2 + ξR)

−−−−→
i,j→t,t

− ∂2

∂t2 + (m2 + ξR)

(47)Then, a

ording to [123℄, if R above, in Eq. (47)is initially a 
onstant, we will see then, if m is thein�ation mass, that
φ (t, ·) = cos(t

√
K)f

− ∂2

∂t2 → ω2

⇔ φ (t, ·) = cos(t
√

ω2 + (m2 + ξR))

(48)Then c1 as an unspe
i�ed, for now 
onstant will leadto a �rst approximation of a Kineti
 energy domi-nated initial 
on�guration, with details to be gleanedfrom [123�125℄ to give more details to the followingequation, R here is linked to 
urvature of spa
etime,and m is an in�aton mass, 
onne
ted with the �eld
φ (t, ·) = cos(t

√
K)f with the result that

φ̇2 (t, ·) ≈
[

ω2 + (m2 + ξR)
]

· c1 >> V (φ) (49)If the frequen
y, of say, Gravitons is of the order ofPlan
k frequen
y, then this term, would likely dom-inate Eq.(49). More of the details of this will be



9worked out, and also 
andidates for the V (φ) willbe as
ertained, most likely, we will be looking theRindler Va
uum as spe
i�ed in [126℄ as well as alsodetails of what is relevant to maintain lo
al 
ovarian
ein the initial spa
e-time �elds as given in [127℄.Why is a re�nement of Eq. (49) ne
essary?The details of the ellipti
 operator K will be 
leanedfrom [123�125℄ whereas the details of in�aton φ̇2 >>
(P.E ∼ V ) [170℄ are important to get a re�nementon the lower mass of the graviton. The mass, m, inEq.(47) for the in�aton, not the Graviton, so as tohave links to the beginning of the expansion of theUniverse. We look to what Corda did, in [128℄ forguidan
e as to pi
king values of m relevant to earlyuniverse 
onditions.Finally, as far as Eq. (49) is 
on
erned, there is oneserious linkage issue to 
lassi
al and quantum me-
hani
s, whi
h should be the bridge between 
lassi
aland quantum regimes, as far as spa
e time appli
a-bility. Namely, from Wald (28), if we look at �rst ofall arbitrary operators, A and B
(∆A)

2 · (∆B)
2 ≥

(

1

2i
〈[A,B]〉

)

. (50)As we 
an anti
ipate, the Pre Plan
kian regime maythe pla
e to use 
lassi
al me
hani
s, and then tobridge that to the Plan
kian regime, whi
h would bequantum me
hani
al. Taking [126℄ again, this wouldlead to a sympleti
 stru
ture via the following modi-�
ation of the Hamilton equations of motion, namelywe will from (28) get the following rewrite,
dqµ
dt = ∂H

∂pµ
,

dpµ

dt = − ∂H
∂qµ

H = H(q1,......,qn; p1,......,pn)
y = (q1,......,qn; p1,......,pn)
Ωµν = 1, ifν = µ+ n
Ωµν = 0, otherwise
dyµ

dt =
∑n

ν=1 Ω
µν ∂H

∂yν

(51)
Then there exists a re formulation of the Poissonbra
kets, as seen by
{f, g} = Ωµν∇µf∇νg. (52)

So, then the following, for 
lassi
al observables, f ,and g, we 
ould write, by [126℄
∧ : Θ → Θ̂
Θ = classical− observable

Θ̂ = quantum− observable
~ = 1
[

f̂ , ĝ
]

= i ·
∧

({f, g})

(53)Then, we 
ould write, say Eq. (50) and Eq.(53) as
[

f̂ , ĝ
]

= i ·
∧

({f, g})
f = classical− observable

f̂ = quantum− observable
(

∆f̂
)2

· (∆ĝ)2 ≥
(

1
2i

(〈[

f̂ , ĝ
]〉)

)

=

(

1
2

∧
(({f, g}))

)(54)If so, then we 
an set, in the inter
onne
tion betweenthe Plan
k regime, and just before the Plan
k regime,say, by setting 
lassi
al variables, as given by
f = − [ℵ−R+Λ]·gtt

8π
g = δgtt

(55)Then by utilization of Eq.(54) we may be able to ef-fe
t more pre
ision in our early Universe derivation,espe
ially making use of derivational work, in addi-tion as to what is given here, as to understand howto 
onstru
t a very early universe partition fun
tion
Z based upon the inter relationship between Eq.(54)and Eq.(55) so as to write up an entropy based upon,as given in [126℄
S(entropy) = lnZ + βE. (56)If this program were a�e
ted, with a �rst prin
iple
onstru
tion of a partition fun
tion, we may be ableto answer if Entropy were zero in the Plan
k regime,or something else, whi
h would give us more moti-vation to examine the sort of partition fun
tions asstated in [129, 130℄. See appendix A as to possi-ble s
enarios. Here keep in mind that in the Plan
kregime we have non standard physi
s. Appendix Aindi
ates that due to the variation we have workedout in the Plan
kian regime of spa
e-time that theinitial entropy is not zero. The 
onsequen
es of thisshow up in this paper's Appendix B, as to a spe
i�




10formulation of the Ri

i s
alar. The 
onsequen
es ofAppendix A and Appendix B may be for a small
osmologi
al 
onstant, and large �Hubble expansion�that there would be an initially large magnitude of
osmologi
al pressure, even if negative, whi
h wouldgive 
reden
e to a non zero 
osmologi
al entropy, thatif large negative pressure, even in the Pre Plan
kianregime will lead to a large ∆Ttt terms whi
h wouldshow up in Eq. (1A), even if we used a partition fun
-tion based upon Latti
e Hamiltonians, as on page135 of [130℄ whi
h would usually in a latti
e gaugearrangement would have 
onsiderably smaller 
ontri-butions than ∆Ttt. Note the 
onditions of �at spa
e,are that Eq.(B9) almost vanishes due to the behav-ior of the numerator, no matter how small a2initialis.The supposition is that the numerator be
omes farsmaller than a2initial. The initiation of 
onditionsof �at spa
e, is also the regime in whi
h we thinkthat non zero entropy is started, and AppendixC gives an initial estimate of what we think En-tropy would be in the aftermath of the un
ertaintyrelationship we have outlined in this paper, i.e. to�rst order, Sinitial(graviton) ∼ 1037. We �nalize ourtreatment as of spa
e-time �u
tuations and geometryby 
onsidering the appli
ations of Appendix D tograviton mass, and Appendix E to the Riemann-Penrose inequality for 
onditions as to a minimumfrequen
y, as a 
onsequen
e of 
osmologi
al evolu-tion, and what it portrays as 
onsequen
es for Ele
-tromagneti
 �elds. Appendix D and E give varyinginitial graviton masses as a starting point, with Ap-pendix D giving a higher initial graviton mass thanwhat is assumed as of today. Finally, Appendix Fstates a pre Plan
kian kineti
 energy so the in�aton
φ̇2 >> (P.E ∼ V ) [170℄. This last step, so importantto our development will be 
onsiderably re�ned in afuture paper.What we are doing now is 
on�rming the materialgiven in this paper as well as giving an explanationfor our future resear
h a
tivity. The quarti
 poten-tial, we used above, is the simplest version of thepotential systems in this paper and the 
ases of nonquarti
 potential should be examined fully, as partof a 
omprehensive study. This will be part of theresear
h proje
t whi
h the authors will initiate in fu-ture publi
ations. We should keep this dis
ussion andthe dis
ussion of s
alar �elds separate from the ideasgiven in in�ation, namely of the �u
tuations not ne
-

essarily having an upper bound of
˜̃
φ >

√

60

2π
Mp ≈ 3.1Mp ≡ 3.1. (57)Sin
e our modeling is not predi
ated upon the in-�ationary model of 
osmology but whi
h is address-ing the issue brought up in [147℄, whi
h is the 
on-tribution of Pre Plan
kian spa
e time to 
osmologi-
al evolution we wish to adhere to non in�ationarytreatments as to Eq. (43) and Eq. (57) but will ad-here to the questions poised at the beginning of thisdo
ument. Furthermore we will adhere to, in futurepapers in delineating a departure from the standardtreatment of the evolution of the s
alar �eld, as givenin 
onventional in�ation 
osmology as the following

dφ

dt
= − V ′(φ)

3H(φ)
+
H3/2(φ)

2π
· ξ(t). (58)This has a quasi �quantum me
hani
al� e�e
tivewhite noise introdu
ed term ξ(t), and is similar to ξ(t)in a �rst order di�erential equation being a �driving�term to a quasi 
haoti
 os
illatory behavior to thes
alar �eld. We argue that this Eq. (58) in [148℄ iswrong, albeit well motivated by 
onventional in�a-tionary 
osmology and part of our future dis
ussionwill be in, for the Pre Plan
kian regime of spa
e timeas partly brought up in [149℄ dis
ussing what we areputting in instead as a repla
ement. This Eq. (58)
ontravenes our des
ription of Kineti
 energy as thedominant term in Pre Plan
kian spa
e-time physi
swhi
h deserves future developments for establishingexperimental measurements.Appendix A. S
enarios as to the value ofentropy in the beginning of spa
e-timenu
leationWe will be looking at inputs from page 290 of [23℄ sothat if E ∼M ∼ ∆Ttt · δttime ·∆A · lP

S(entropy) = lnZ + (E∼∆Ttt·δt·∆A·lP )
kBTtemperature

(1A)And using Ng's in�nite quantum statisti
s, we haveto �rst approximation [131, 132℄
S(entropy) ∼ lnZ + ((E∼∆Ttt)·δt·∆A·lP )

kBTtemperature

∼ lnZ +
(

~

kBTtemperatureδgtt

)

−−−−−−−−−−−−−−−−−→
Ttemperature→#anything

[S(entropy) ∼ ncount] 6= 0(2A)This is due to a very small but non vanishing δgtt withthe partition fun
tions 
overed by [130℄, and also due



11to [131, 132℄ with ncounta non zero number of ini-tial `parti
le' or information states, about the Plan
kregime of spa
e-time, so that the initial entropy is nonzero.Appendix B. Cal
ulation of the Ri

i Tensorfor a Roberson-Walker spa
e-time, with itse�e
t upon the measurement of if or not aspa
e time, is open, 
losed or �atWe begin with Kolb and Turner [170℄ dis
ussion ofthe Roberson-Walker metri
, say page 49 with, if Ris the Ri

i s
alar, and k the measurement of if wehave a 
lose, open, or �at universe, that if
a = ainitial · exp(H · t) (B1)Then by [170℄
H2 = − k

a2 + 8πGρ
3 (B2)

3H2 +
[

2k
a2 + R

6

]

= 0 (B3)Leading to
a2 = 1

k ·
[

R
6 + 8πGρ

] (B4)If ρ = −p [7℄, then with a bit of algebra
|p| = 1

8πG ·
[

R
6 + (ainitial)

2 · exp
[
√

4Λ
3 · ttime

]] (B5)Next, using [134℄, on page 47, at the boundary be-tween Pre Plan
kian to Plan
kian spa
e-time we will�nd
R = 8π ·

(

T 0
0 + T 1

1 + T 2
2 + T 3

3

)

+
4Λ −−−−−−−−−−−−−−−−−−−→

Pr e−Planckian−Conditions
8π ·

(

T 0
0

)

+ 4Λ(B6)Then, we 
an obtain right at the start of the Plan
k-ian era,
|p|Planckian ∼ 1

8πG ·
[

8π·(T 0
0 +T 1

1 +T 2
2 +T 3

3 )+4Λ

6

] (B7)The 
onsequen
es of this would be that right after theentry into Plan
kian spa
e time, that there would bethe following 
hange of pressure
|p|Pr e−Planckian = 1

8πG ·
[

8π·(T 0
0 )+4Λ

6 + (ainitial)
2

]

×

×
[

exp
[
√

4Λ
3 · ttime

]]

⇒ |p|Pr e−Planckian ∼ 1
8πG ·

∣

∣

∣

∣

8π·(T 0
0 )+4Λ

6 + 0+
∣

∣

∣

∣

|p|Planckian ∼ 1
8πG ·

∣

∣

∣

∣

8π·(T 0
0 +T 1

1 +T 2
2 +T 3

3 )+4Λ

6

∣

∣

∣

∣

∆P = |p|Planckian − |p|Pr e−Planckian ∼
[

(T 1
1 +T 2

2 +T 3
3 )

6G

](B8)Then, the 
hange in the k term would be like, say,from Pre Plan
kian to Plan
kian spa
e time
∆k = 1

a2
initial

· [8πG(ρ−∆P )] (B9)

This goes almost to zero if the numerator shrinks farmore than the denominator, even if the initial s
alefa
tor is of the order of 10−110 or so.Appendix C. Initial entropy, from �rstprin
iplesWe are making use of the Padmanabhan publi
ationof [135, 136℄ where we will make use of
ρΛ ≈ GE6

system

c8~4 ⇔ Λ ≈ 1
l2
Planck

· (Esystem/EPlanck)
6(C1)Then, if Esystem is for the energy of the Universeafter the initiation of Eq.(20) as a bridge betweenPre Plan
kian, to Plan
kian physi
s regimes we 
ouldwrite, then

Esystem ∝ ngravitons ·mgraviton

Λ ≈ 1
l2
Radius−Universe−today

⇔ mgraviton ∼ 10−62grams⇒ ngravitons ∼ 1037

⇒ Sinitial(graviton) ∼ 1037at− Planck − time(C2)The value of initial entropy, Sinitial(graviton) ∼ 1037should be 
ontrasted with the entropy for the entireUniverse as given in [137℄ below.Appendix D. Information �ow, Gravitons,and also upper bounds to Graviton massHere we 
an view the possibility of 
onsidering thefollowing, namely [138℄ is extended by [139℄, so we
an we make the following identi�
ation
N = Ngraviton|rH = c3

G·~ · 1
Λ ≈ 1

Λ (D1)Should the N above, be related to entropy, and Eq.(17)? This supposition has to be balan
ed againstthe following identi�
ation, namely, as given by T.Padmanabhan [135, 136℄
ΛEinstein−Const.Padmanabhan = 1

/

l2Planck ·
(E/EPlanck)

6
. (D2)But should the energy in the numerator in Eq. (D2)be given as say by (C2), of Appendix C, we havedefa
to quinessen
e. then there would have been de-fa
to quintessen
e, i.e. variation in the �Einstein 
on-stant�, whi
h would have a large impa
t upon mass ofthe graviton, with a sharp de
rease in g∗ being 
on-sistent with an evolution to the ultra light value ofthe Graviton, with initial frequen
ies of the order ofsay for wavelength values initially the size of an atom,

ωinitial|rH∼atomic−size ∼ 1021Hz (D3)The �nal value of the frequen
y would be of a mag-nitude smaller than one Hertz, so as to have value of



12the mass of the graviton would be then of the order of
10−62grams [117℄, due to Eq.(D2) approa
hing [138℄below, namely
ΛEinstein−Const. = 1

/

l2Radius−Universe. (D4)Leading to the upper bound of the Graviton mass ofabout 10−62grams [138, 139℄ in the present era
mgraviton = ~

c ·
√

(2Λ)
3 ≈

√

(2Λ)
3 . (D5)Eq. (D5) has a di�erent value if the entropy / parti
le
ount is lower, as has been postulated in this note.But the value of Eq.(D5) be
omes the Graviton massof about 10−62grams [117℄ in the present era whi
h isin line with the entropy being far larger in the presentera [137℄.Appendix E. Applying the RiemannianPenrose Inequality with appli
ations in our�u
tuation

δgtt ∼ a2(t) · φ << 1 (E1)Re�ning the inputs from Eq. ( E1) means more studyas to the possibility of a non zero minimum s
ale fa
-tor [171℄, as well as the nature of φ as spe
i�ed byGiovannini [140℄. We hope that this 
an be done asto give quanti�able estimates and may link the nonzero initial entropy to either Loop quantum gravity�quantum boun
e� 
onsiderations [142℄ and/or othermodels whi
h may presage modi�
ation of the sort ofinitial singularities of the sort given in [1℄. Further-more if the non zero s
ale fa
tor is 
orre
t, it maygive us opportunities as to �ne tune the parametersgiven in [171℄ below
α0 =

√

4πG
3µ0c

B0
⌢

λ (defined) = Λc2
/

3

amin = a0 ·
[

α0

2
⌢

λ (defined)

]

×

×
[(

√

α2
0 + 32

⌢

λ (defined) · µ0ω · B2
0 − α0

)]1/4(E2)Where the following is possibly linkable to minimumfrequen
ies linked to E and M �elds [171℄, and pos-sibly reli
 Gravitons
B > 1

2·√10µ0·ω (E3)So, now we investigate the question of appli
abilityof the Riemann Penrose inequality whi
h is [143℄, p.431, whi
h is stated asRiemann Penrose Inequality: Let ( M, g) be a
omplete, asymptoti
ally �at 3- manifold with Non

negative-s
alar 
urvature, and total mass m, whoseoutermost horizon Σ has total surfa
e area A. Then
mtotal−mass ≥

√

Asurface−Area

16π (E4)And the equality holds, i� (M, g) is isometri
 to thespatial isometri
 spatial S
hwartzshield manifold Mof mass m outside their respe
tive horizons.Assume that the frequen
y, say using the frequen
yof Eq.(E3) , and A ≈ Aminof Eq.(E4) is employed.So then say we have , if we use dimensional analysisappropriately, that
(v = velocity ≡ c) = f(frequency)× λ(wavelength)

⇒ ω ≈ ωinitial ∼ c
dmin

∼ 1
dmin

∣

∣

∣

c≡1
&dmin ∼ A1/3 ∝ amin(E5)Assume that we also set the input frequen
y as to Eq.(E3) as a

ording to 10 < ζ ≤ 37 i.e. does

(

mtotal−mass ∼ 10ζ ·mgraviton

)2 ∝ a3min/16π

⇔ ω ≈ ωinitial ∼ 1
dmin

∼
(

16π × 10ζ ·mgraviton

)−2/3(E6)Our supposition is that Eq.(E6) should give the samefrequen
y as of Eq. (D3) above. So if we have indoing this, this is a frequen
y input into Eq. (E3)above where we are safely assuming a graviton massof about [117℄
mtotal−mass ∼ 1037 ·mgraviton

mgraviton ∼ 10−62grams
(E7)Does the following make sense? I.e. look at it, when

10 < ζ ≤ 37
(

mtotal−mass ∼ 10ζ ·mgraviton

)2 ∝ a3min/16π

⇔ ω ≈ ωinitial ∼ 1
dmin

∼
(

16π × 10ζ ·mgraviton

)−2/3(E8)We 
laim that if this is an initial frequen
y and that itis 
onne
ted with reli
 graviton produ
tion, that theminimum frequen
y would be relevant to Eq. (E3),and may play a part as to admissible B �elds.Note, if Appendix D is used, this makes a re do ofEq. (E8) whi
h is a way of saying that the gravitonmass given by [117℄ no longer holds.In either 
ase, Eq. (E8) and Eq. (E3) in some 
on-�guration may argue for implementation of work, itwas done in referen
e [144℄, as to reli
 
ylindri
al GW,i.e. their allowed frequen
y and magnitude, so 
on-sidered.



13Appendix F. First prin
iple treatment of prePlan
kian kineti
 energy so the In�aton
φ̇2 >> (P.E ∼ V )We give this as a plausibility argument whi
h un-doubtedly will be 
onsiderably re�ned, but its impor-tan
e 
annot be overstated. I.e. this is for Pre in�a-tionary, Pre Plan
kian physi
s, so as to get a lowerbound to the Graviton mass. To do this, we look atwhat [170℄ is saying and also we will be enlisting anew referen
e, [145℄, by Bojowald, and also T. Pad-manbhan [146℄ as to details to put in, so as to 
on�rma dominan
e of Kineti
 energy. Start with a Friedmanequation of
(

ȧ
a

)2
+ kcurvature

a2 = 4πG
3 · p2

φ

a6 + Λ (F1)We will treat, then the Hubble parameter, as
(

ȧ
a

)

= Hinitial ≡ 2

t·(1+P
ρ )

−−−−−−−→
P=−ρ+ε+

2

t·
(

ε+

ρ

) −−−→
t→tP

2ρ
tP ·ε+ (F2)Now from Padmanabhan [146℄, we 
an write density,in terms of �ux a

ording to
dρ
dt = 1

V (3)=V olume
· (A = Area) · (ℑ = Flux) ∼

(ℑ=Flux)
lP

(F3)Then using p. 463 of [146℄, if T is temperature, here,then if N is the parti
le 
ount in the �ux region perunit time (say Plan
k time), as well as using the `idealgas law' approximation, for superhot 
onditions
dρ
dt = 1

V (3)=V olume
· (A = Area) · (ℑ = Flux) ∼ (ℑ=Flux)

lP

ρ ∼ (ℑ=Flux)
c

⇒ H = N
ε+ · 1

V (4)=4−Dim V olume
·
√

8
π

√

kBT
mflux−particle(F4)Next, a

ording to [145℄ we 
an make the followingsubstitution.

pφ = a3 · φ̇ (F5)Therefore, if
φ̇2 ≈ a−6 · (12πG) · V (4) ·

(

H2 + |Λ|
)

≈ a−6 · (12πG) · V (4)
(

[

N
ε+ · 1

V (4)=4−Dim V olume
·
√

8
π

√

kBT
mflux−particle

]2

+ |Λ|
)(F6)If the s
ale fa
tor is very small, say of the order of

a = ainitial ∼ 10−55, then no matter how fall theinitial volume is, in four spa
e (it 
an
els out in the�rst part of the bra
kets), its easy to see then that
φ̇2 >> (P.E ∼ V ) [170℄.We will in the future add more stru
ture to this
al
ulation so as to 
on�rm via a pre
ise 
al
ulationthat the lower bound to the graviton mass, is about
10−70grams.
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