ASTROPHYSICS AND COSMOLOGY

AW. BECKWITH,'! S.S. MOSKALIUK?

IPhysics Department, Chongging University,
College of Physics, Chongqging University Huxi Campus,
( No. 44 Dazuechen Nanlu, Shapinba District, Chongqing 401331, People’s Republic of China;

e-mail: abeckwith@Quh.edu)

2Bogolyubov Institute for Theoretical Physics,

Nat. Acad. of Sci. of Ukraine

(14-b, Metrolohichna str., Kiev, 03680, Ukraine; e-mail: mss@bitp.kiev.ua)

GENERALIZED HEISENBERG UNCERTAINTY
PRINCIPLE in QUANTUM GEOMETRODYNAMICS and

PACS 98.80.Qc, 98.80.Cq,
95.35.+d, 95.36.4x

GENERAL RELATIVITY

In this paper we focus on energy flows in Universe as a simple quantum system and are con-
centrating on the nonlinear Hamilton-Jacobi equation, which appears in the standard quantum
formalism based on Schridingier equation. The cases of the domination of radiation, barotropic
fluid, and the quantum matter-energy are considered too. As a result, there is formulated the
generalized Heisenberg uncertainty principle (GHUP) for a metric tensor. We also use the
Kuzmichevs Geometrodynamics as a way to quantify an inter relationship between the GHUP
for a metric tensor and conditions postulated as to a barotropic fluid, i.e. dust for the early
Universe conditions.
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1. Introduction

The answer to the question brought up in the ti-
tle of this paper can be provided after comparative
descriptions of the Universe by classical and quan-
tum theories. As is well known, the Universe is sub-
ject to classical theories on large space-time scales
whereas on small space-time scales, comparable with
Planck scales and length, it should be described from
a Quantum-theoretical perspective.

The first goal of our research will be to introduce
a framework about the speed of gravitons in “heavy
gravity”, and this is important eventually, as illus-
trated by C. Will [1, 2], as it could possibly be ob-
served. Secondly, it also will involve an upper bound
to the rest mass of a graviton. The third aspect of the
inquiry of our manuscript will be to come up with a
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variant of the HUP, involving a metric tensor, as well
as the Stress energy tensor, which will in time allow
us to establish a lower bound to the mass of a gravi-
ton, preferably at the start of cosmological evolution.
The article concludes as answering a statement by
Mukhanov, in Marcel Grossman 14 as to his inter-
pretation as to the importance of Causal barriers, in
place in terms of prior to present universe transitions
in cosmology. In the Mukhanov view, Causal barri-
ers create an averaging effect of contributions from
prior universe conditions to the present universe ini-
tial conditions. In fact, this means, that effectively,
in the case of a multiverse, that the existence of prior
universe contributions from a multiverse, would be
effectively a single universe repeating itself. I.e. our
view is instead very similar to an Ergodic mixing pro-
tocol. Even in the case of multiverse contributions to
a present universe. This is the basis of much of our
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analysis. Where Mukhanov implied stating that in-
stead of an Ergodic mixing of prior contributions from
a multiverse, that causal structure would ALWAYS
restrict our analysis of information from a prior en-
semble to be the same as a repeating single universe
model for cyclic universes. We regard the Mukhanov
interpretation as indefensible. And state why in the
last chapter of this article.

We reference what was done by Will in his living
reviews of relativity article as to the ‘Confrontation
between GR and experiment”. Specifically we make
use of his experimentally based formula of [1,2], with
Vgravitonthe speed of a graviton, and m ;.10 the rest
mass of a graviton, and F in the inertial rest

graviton
frame given as:
2 4
Vgraviton 2 -1 mgram’tonc 1
e ) T g (1)
c graviton

Our take away from Formulae 1 is that if a graviton
is massive, that the speed of travel of graviton drops
below the value of ¢, the speed of light, with massless
gravitons traveling at the speed of light. This in ad-
dition puts restrictions upon the energy of a graviton
and argues against simple approximations like. Hence
we follow [2] in terms of the following ideas as given
in Formula 2, next:

Vgraviton __ 1 __ —17 . ( 200Mpc \ | At
c =1-5x10 D ) (lsec)
-1 —17 , (200Mpc\ [ At=Ata—(1+2) Aty
=1-5x10 ( i ( —
o 2Mgraviton > 5% 10-17 . (200Mpe) o
Egraviton D
w ((Ata=(142)-Aty
1sec :

(2)

Here, At, is the difference in arrival time, and At,
is the difference in emission time in the case of the
early Universe, i.e. near the big bang, then if in the
beginning of time, one has, if we assume that there is
an average Egrqviton = I - Wgraviton, and

2z ~ 10°9.
(3)

(M) ~ 1, and if D ~ 4.6 x

1sec

Aty ~ 4.3 x 107 sec, At, ~ 10733 sec,

Then,

10%meters = radii(universe), so one can set

200Mpc 9
( D ) 107=. (4)

And if one sets the mass of a graviton [3] into Eq.
(1), then we have in the present era, that if we look
at primordial time generated gravitons, that if one
uses the

z ~ 1055.

(5)

Note that the above given frequency for the graviton
is for the present era, but it starts assuming an initial
genesis from an (initial) inflationary starring point
which is not a space-time singularity.

Note this comes from a scale factor, if z ~ 10%° <
Ascate— factor ~ 107°°  i.e. 55 orders of magnitude
smaller than what would normally consider, but here
note that the scale factor is not zero, so we do not
have a space — time singularity.

We will next discuss the implications of this point
in the next section, of a non zero smallest scale fac-
tor. Secondly the fact we are working with a massive
graviton, as given will be given some credence as to
when we obtain a lower bound, as will come up in our
derivation of modification of the values [3]

<(5guv)2 (Tuv)2> > vgzim

D v (20 o ©
(o (10)") = 5

uv—tt Volume

Aty ~ 4.3 x 107 sec, At. ~ 10733 sec,

& 5grr ~ 5999 ~ 59(15(15 ~ 0.

The reasons for saying this set of values for the varia-
tion of the non gymetric will be in the 37¢ section and
it is due to the smallness of the square of the scale
factor in the vicinity of Planck time interval.
Leading to nonzero initial entropy as stated in Ap-
pendix A, we also examine a Ricci scalar value
at the boundary between Pre Planckian to Planck-
ian regime of space-time, setting the magnitude of
Ricci Scalar k as approaching flat space conditions
right after the Planck regime. Furthermore, we have
an approximation as to initial entropy production
Sinitial(graviton) ~ 1037, Then we get an initial ver-
sion of the cosmological “constant” as it is shown in
the Appendix D which is linked to initial value of
a graviton mass. Appendix E is written for the
Riemannian- Penrose inequality, which is either a
nonzero NLED scale factor or quantum bounce as of
LQG. Finally, Appendix F gives conditions so that
a pre Planckian kinetic energy (inflaton) value greater



than Potential energy occurs, which is foundational
to the lower bound to Graviton mass. We will in
the future add more structure to this calculation so
as to confirm via a precise calculation that the lower
bound to the graviton mass, is about 10~7° grams.
Our lower bound is a dimensional approximation so
far. We will make it exact.

2. The flow of energy in a quantum process

Following [4], we start with a quantum system de-
scribed by a wave function, ¢ (z, t), the time evolution
of which is given by the Schrédinger equation. The
Born probability rule is then used to calculate the
probability P(a’,t") of finding the system at =’ at a
later time t'. Thus P(2',t") = [ (2, t')|> = R%(2',t)
where R(z/,t) is the amplitude of the field. So our
final result depends only on one of the pair of real
numbers in ¢(z,t) = R(x,t)e’S@H/" The informa-
tion as to how the phase evolves in time is, as it were,
‘hidden’ in the evolution of the complex wave func-
tion ¥ (x,t). It would perhaps be revealing to have a
pair of equations showing explicitly the evolution of
the two real fields R(z,t) and S(z,t).

The simplest way to arrive at the equations con-
taining R and S is to substitute 1 = Re*S/" into the
Schrédinger equation and separate the resulting equa-
tion into its real and imaginary parts. The imaginary
part can be written in the form

dp VSY\

where we have written o(z,t) = R(z,t)e*(®D/" with
R? = p.

Since, at this stage, we are simply analysing the
Schrédinger equation, equation (7) provides an ex-
pression for the conservation of probability P(z,t).
The real part takes the form?!

89S (VS R (V2R B
o T =) tv=0 (8)

We will call this the quantum Hamilton-Jacobi equa-
tion [QHJ] for reasons that we will bring out as we
go along.

These two equations must have the same content
as the Schrédinger equation and it would surely be

C2m

L We are well aware that we here in this segment are treating
S as a Torsor. For a physical treatment of S, see page 95 of
Mackey [5].
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of interest to see if they can give a different insight
into the evolution of quantum systems. Note we are
not departing from the usual interpretation yet, we
are merely drawing attention to an alternative form
of the mathematical structure. Already one sees that
there is a disadvantage of using these two equations
as they are no longer linear and therefore more dif-
ficult to analyse. Nevertheless as we will show, we
can obtain new information about energy flow using
equation (8), in spite of Bohr’s insistence that you
can talk either about an evolution in space-time or
about a causal (i.e. momentum-energy) evolution,
never both together.

Although the splitting of an equation into its real
and imaginary parts is a standard mathematical prac-
tice, we will re-derive these two equations again,
starting from Heisenberg’s expression [5] for the La-
grangian of the Schrédinger field [5] and applying the
standard Euler-Lagrange equations, treating R(z,t)
and S(z,t) as independent fields. This procedure
will enable us to find the components of the energy-
momentum tensor, thus allowing us to investigate the
energy and momentum flows involved in the quantum
process. In this way we are able show that equation
(8) is an expression for the local conservation of en-
ergy in this evolving quantum process.

This result should not be too surprising since, as is
well known, the Schrédinger equation must describe
the evolution of the energy involved in the process.
Why? Because the expression of the classical dynam-
ical energy, the Hamiltonian, albeit written in oper-
ator form, is at the heart of the equation. However
by focussing on the complex form of the wave func-
tion, we do not explicitly see how this energy flows
in the evolving process. The wave function then ap-
pears, as it were, ‘disembodied’ from the energy, so
that it then seems to take on, physically, the air of
some ghostly shadow of the evolving system, allowing
only probability outcomes to be discussed.

We then find that the wave function, with its de-
terministic equation, can be treated as an entity in its
own right giving the probability of finding a particu-
lar result. Its role in accounting for the energy flow
is then forgotten. In consequence we feel free to add
wave functions and to collapse wave functions with
no concern as to the energy involved, hoping that it
will be taken care of by the Schrédinger equation.

However a realisation that both the addition of
wave functions and the collapse of wave functions oc-
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cur outside of the Schrédinger equation, should be
a cause for concern since, unless care is taken with
such addition and collapse, any such move could con-
tradict the conservation of energy?. The purpose of
this paper is find a way to discuss the flow of energy
in a quantum process rather than relying only on the
¥(x,t) and the Schrodinger equation.

3. Kuzmichevs quantum constraint equations

In this section we follow Kuzmichevs paper [157]
and consider the homogeneous, isotropic and spa-
tially closed quantum cosmological system (universe).
The geometry of such a universe is described by the
Robertson-Walker metric. This metric has a max-
imally symmetric three-dimensional subspace of a
four-dimensional space-time. Since we consider the
spatially closed Universe, then the geometry of the
space-time depends on a single cosmological parame-
ter, namely the cosmic scale factor a which describes
the overall expansion or contraction of the Universe
[158]. The scale factor is a field variable which deter-
mines gravity in the formalism under consideration.
We assume that from the beginning the Universe is
filled with matter in the form of the uniform scalar
field ¢, the state of which is given by some Hermitian
Hamiltonian, Hy = HJ; This Hamiltonian is defined
in a curved space-time, and therefore, in the general
case, it depends on a scale factor a as a parameter,
Hy = Hy(a). In addition, it will be accepted that the
Universe is filled with a perfect fluid in the form of
relativistic matter (further referred as radiation) with
the proper energy M., = % in the comoving volume
%a3, where F is a real constant proportional to the
number of particles of the perfect fluid. The perfect
fluid defines a material reference frame [159, 160].

The restrictions in the form of the first-class con-
straint equations are imposed on the state vector of
the quantum Universe ¥ = (a, ¢|¥(T')), where T is a
time parameter. These constraints can be reduced to
two equations [160-162],

(i@T - %E) v =0, (9)

(-0% +a*>—2aH, — E) W =0, (10)

2 We are talking about energy non-conservation outside the
limits imposed by the energy-time uncertainty principle.

where Eq. (9) describes the time evolution of ¥, when
the number of particles of the perfect fluid conserves,
while Eq. (10) determines the quantum states of the
Universe at some fixed instant of time T" = Ty, Tp is
an arbitrary constant taken as a time reference point.
The coefficient 2 in Eq. (9) is caused by the choice of
the parameter 7" as the time variable. This time vari-
able is connected with the proper time 7 by the dif-
ferential equation d7 = adT'. Following the ADM for-
malism [163, 164], one can extract the so-called lapse
function N, that specifies the time reference scale,
from the total differential dT': dT" = Ndn, where n is
the “arc time” [165, 166].

The quantum constraints (9) and (10) can
be rewritten in the form of the time-dependent
Schrédinger-type equation

2

where

H=—02+a® — 2aHy. (12)
The minus sign before the partial derivative Or is
stipulated by the specific character of the cosmolog-
ical problem, namely that the classical momentum
conjugate to the variable a is defined with the minus
sign [167,168).

The partial solution of Eqgs. (9) and (10) has a form
U(T) = 3 FT=T)g(Ty), (13)
where the vector U(Ty) = (a, p|)) satisfies the sta-
tionary equation

H|p) = Ely). (14)
From the condition
d
0 = o7 [ Dlalup
2 \
_ —zg/D[a,qﬁ]\If (" - H] @, (15)

where Dla, ¢] is the measure of integration with re-
spect to the fields a and ¢ chosen in an appropriate
way, it follows that the operator (12) is Hermitian:
H="H



4. Non zero scale factor, initially and what
this is telling us physically. Starting with a
configuration from Unruh

Begin with the starting point of [112]

Al-Ap >

N>

(16)

We will be using the approximation given by Unruh
[112], of a generalization we will write as

591 B
(Al)yy =25, (Ap)yy = ATy; -6t - AA - (17)
If we use the following, from the Roberson-Walker

metric [140].

2
gt = 1, Grr = 1:1]6.(:23 goo = _a2(t) : T2a

gos = —a>(t) -sin® 0 - dg?.

(18)

Following Unruh [112], write then, an uncertainty of
metric tensor as, with the following inputs

a’(t) ~ 10719 r = Ip ~ 10> meters. (19)

Then, the surviving version of Eq. (16) and Eq. (17)
iS, then, if ATtt ~ Ap

VO =5t AA -,
59tt . ATtt -0t - AA-

& dgu - ATy > VZ) .

>4 (20)

r
2

This Eq. (20) is such that we can extract, up to a
point the HUP principle for uncertainty in time and
energy, with one very large caveat added, namely if
we use the fluid approximation of space-time [140]

T;i = diag(p, —p, —p, —p) (21)
Then

AFE
ATtt ~ Ap ~ V(—B) (22)

Then, Eq.(20) and Eq. (21) and Eq. (22) together
yield

OtAE > Whﬁ # 2, Unless 6gy ~ O(1). (23)
How likely is dg;x ~ O(1)? Not going to happen.
Why? The homogeneity of the early Universe will
keep

5gtt 7& git = 1 (24)

5

In fact, we have that from Giovannini [140], that if ¢
is a scalar function, and a?(t) ~ 107119, then if
8gu ~ a?(t) - ¢ << 1. (25)
Then, there is no way that Eq. (23) is going to come
close to 0tAE > % Hence, the Mukhanov suggestion
as will be discussed toward the end of this article, is

not feasible. Finally, we will discuss a lower bound to
the mass of the graviton.

5. How we can justifying writing very small
8grr ~ 8gp0 ~ 0ggse ~ 0T values

To begin this process, we will break it down into the
following coordinates:

In the rr, 80, and ¢¢ coordinates, we will use the Fluid
approximation, T;; = diag(p, —p, —p, —p) [170] with

a?(t)-r?

h
5grrTrr Z - ‘ ) a—>0} 05
h-a’(t
6999T99 > — ‘V(‘l)(i—(k)‘rz) a0 0; (26)
fi-a®(t)-sin® 0-dg?>
094¢T 0 = *’ S — 0.

If as an example, we have negative pressure, with T;..,
The, and Tyy < 0, and p = —p, then the only choice
we have, then is to set dgr, ~ 0ggg ~ dgps ~ 0T,
since there is no way that p = —p is zero valued.
Having said this, the value of §g;; being non zero, will
be part of how we will be looking at a lower bound
to the graviton mass which is not zero.

In our analysis of Pre Planckian space-time accord-
ing to the HUP which is written in this paper in terms
of a reduction of contributions of all but the time
component of the metric tensor, we face the problem
of arguing how fluctuations drop off, unless they are
directly connected to the time component. Which
makes sense, since if there is a nonsingular start to
the universe, as given by [150,171], the Pre planckian
space-time regime is part and parcel of an emergent
space-time which would place a premium upon non
spatial metric tensor fluctuations. Hence, we will de-
lineate reasons for why the metric tensor fluctuations
are restricted to the time components only.

6. Lower bound to the graviton mass using
Barbour’s emergent time

In order to start this approximation, we will be using
Barbour’s value of emergent time [115,116] restricted
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to the Plank spatial interval and massive gravitons,
with a massive graviton [117]

mgramtoan : ZP

2 (E—V)

(50 gt = 0

emergent 9. (E _ V) (27)

Initially, as postulated by Babour [115,116], this set
of masses, given in the emergent time structure could
be for say the planetary masses of each contribution
of the solar system. Our identification is to have an
initial mass value, at the start of creation, for an in-
dividual graviton.

If (5t)imergent = 6t? in Eq.(20), using Eq.(20) and
Eq. (27) we can arrive at the identification of

2h? (E-V)
(6gu)? 1% AT3

Key to Eq. (28) will be identification of the kinetic
energy which is written as £ — V. This identifica-
tion will be the key point raised in this manuscript.
Note that it raises the distinct possibility of an initial
state, just before the ‘big bang’ of a kinetic energy
dominated ‘pre inflationary’ universe. I.e. in terms
of an inflaton ¢ >> (P.E ~ V) [170]. The key find-
ing which is in [118] is, that, if the kinetic energy is
dominated by the ‘inflaton’ that

>

Mygraviton =

(28)

KE. ~(E-V)~¢*xa™® (29)
This is done with the proviso that w < —1, where
w= pressure /density [172]. Le., the convention re-
ferred to is of avoiding density—= - pressure, which is
used frequently. In effect, what we are saying is that
during the period of the ‘Planckian regime’ we can
seriously consider an initial density proportional to
Kinetic energy, and call this K.E. as proportional to
[170]

P X a73(17w) ]

(30)

If we are where we are in a very small Planckian
regime of space-time, we could, then say write Eq.
(30) as proportional to g*T* [170], with g* initial de-
grees of freedom, and T the initial temperature as
low just before the onset of inflation. The question
to ask, then is, what is the value of the initial degrees
of freedom, and what is the temperature, T, at the
start of expansion? For what it is worth, the starting
supposition, is that there would then be a likelihood
for an initial low temperature regime.

7. Metric uncertainty principle as inter
relationship of general relativity and
quantum geomerodynamics

We will be using, the inputs from Section 3 exten-
sively as a way to intertwine the predictions as to a
HUP connected with the metric tensor of space-time
and the resulting initial conditions for space-time ac-
cording to Geometrodynamics. The end result will be
that we are supplying initial conditions which cannot
be obtained, by other means. We also will quantify
via a version of dust dynamics, how this affects can-
didate DM and possibly DE contributions to initial
cosmological conditions. To do this, we will review
the concepts used in both the Heisenberg Uncertainty
principle, for metric tensors, and the Geometrody-
namics equations used. The conclusion of what we
are talking about is use of the HUP, for metric ten-
sors to form bounds on the Getrodynamics equations
in the pre Planckian space-time era.

7.1. Application of the HUP to metric
tensors

We will be examining a Friedmann equation for the
evolution of the scale fa tor, using explicitly two cases,
one case being when the acceleration of expansion of
the scale factor is kept in, another when it is out,
and the intermediate cases of when the acceleration
factor, and the scale factor is important but not dom-
inant. In doing so we will be tying it in our discussion
with the earlier work done on the HUP but from the
context, of how the acceleration term will affect the
HUP, and making sense of why our generalized un-
certainty principle, as given in the beginning of Eq.
(31) is from [3,112,150] leading to a restriction of the
metric tensor fluctuation to being the time compo-
nent only, in the denominator of the modified HUP
expression. [3] gives us the initial generalized HUP,
and [112,150] express the fluctuation restricted to

((090)*(Tu)?) =

volume

=t ((0gu)* (T)*) = 72

volume

&697‘7“ ~ 5996 ~ 5g¢¢ ~ 0+ . (31)



Namely we will be working with

StAE = s = o <n (32)

¢ a?(t)¢
= Sinitial(Withwgtt]) = (5gtt)73Sinitial(WithOUt[égtt])
> Shnitial (without[dgst])

i.e. the fluctuation d¢g;; < 1 dramatically boost initial
entropy. Not what it would be if dg;; =~ 1. The next
question to ask would be how could one actually have
5git ~ a*(t) - ¢ Very targt 1 (33)
Furthermore, we have that Eq. (31) has an explicit
restriction of the modified HUP: to be influenced by
only the time fluctuation of the metric tensor, which
is given by , and this in the denominator of the modi-
fied HUP is < 1. Eq. (32) is highlighted by the term
< 1 in the denominator of the modified HUP lead-
ing to specific entropy generation. As is expected, in
the Pre Planckian to Planckian transition, referred
to in Eq. (32), second line, delineates if < 1 that
the entropy generation is very different, than when
approaches 1, which is after the Pre Planckian to
Planckian emergent physics regime. In addition, Eq.
(33) specifically alludes to if approaches 1, marking
the transition to the Planckian regime and beyond,
and this is due to the inflaton growing extremely
large.

In short, we would require an enormous “inflaton”
style ¢ valued scalar function, and a?(t) ~ 107110,
How could ¢ be initially quite large? Within Planck
time the following for mass holds, as a lower bound

oo (BE-V)
Mgravitation = (69“)215 ATtQt

(34)

Here, we are using the following approximation as to
Kinetic energy in the beginning of the expansion of
the Universe.

K.E.~(E—-V)~ ¢*c0a™". (35)

Then, up to first order, we could approximate, with
H.O.T. being higher order terms
p~a e prt-a P+ HOT . (36)

This Eq.(36) will be considerably refined in the sub-
sequent, document.

7.2. Metric uncertainty principle and its
applications in Geometrodynamics

From Eq. (10) we have

(ur|Hglur ) = My(a) - O pr

Vo bR ey - (%) 7 o (4552)

oS (ug|Hylup) = My(ev) - Sg

Ve bR e - (2) 7 o (0552)

a=by2ha - (k +1/2) = Ma(a).

(37)

Here, we can also assign a density functional and
then a change of energy as given by AEF =2-1077 -
I3 M>(a)/a®. So then, that one will have

pm = 2Ms(a)/a® = \/23 - Xg - a® - (k+1/2),
AE=2-1077-1>Ms(a)/a® =

=1077 13- /23 Xp- a7 (K +1/2).

Here the subscript &, as in Eq. (38) is a “particle
count” and we will refer to this heavily in the rest of
this paper. If we have Eq. (38) we will, if we have an
emergent field reference using a change in energy, in
the Pre Planckian domain as

(38)

h

o9~ SiAE (39)
h
=(ot)" " :
1077 3-v2% Xg-a=3 - (k+1/2)
Or, if the inequality is strictly adhered to
h
> =
dgtt > SIAE (40)

h
107 B2 Ag-ad (k+1/2)

= (51)"

The smallness of the initial scale factor would be of
the order of a=3 ~ 10'%%, and we have that k ~ 1020,
initially, and that I3 ~ 107'%, and we pick h = 1
dimensionally, so then if 6t ~ 10744, we have if we
use Eq. (39) as an estimator, that the following has
to be done to insure in pre Planckian space time, for
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the following to hold:

Ao <1072 & bgy <1
& AR > 1
& A> 107727 o 6gy > 1

& St0E < 1. (41)

Ie. the violation of an uncertainty principle for com-
mences for any situation which implies restraints on
Ao <1072 & gy < 1< StAE > 1 when

Ao > 10727 o gy > 1

& 0tAE < 1. (42)

For the problem represented by Eq. (42) to hold it
would mean that the following Pre-Planckian Poten-
tial energy would be then small when the following
Potential energy as given in Eq. (43) is much smaller
than the Kinetic energy given in Eq. (32)

V(9) = Xad™ = Ao,

From inspection, for Eq. (43) to hold, for our phys-
ical system we would want Eq. (41) to hold which
would mean an extremely small Potential energy, as
opposed to the large value of the Kinetic energy given
in Eq. (34). Hence the role of Geometrodynamics
given in Eqgs. (37) and (38), will in the case of a quar-
tic potential imply that Eq. (43) as Potential energy
is much smaller than the kinetic energy as represented
for Pre Planckian space-time physics.

(43)

8. Discussion and conclusions

A way to rewrite the approach given here in terms
of the early Universe theory is to refer to Einstein
spaces [121] as well as to make certain of the terms
and components of the stress energy tensor [122] as
we can write it as a modified Einstein field equation.
With, then N as a constant.

Here, the term in the Left hand side of the metric
tensor is a constant, so then if we write, with R also
a constant [122]

2 68 1
[ = —— . [N — Al - qg;;
\/—_g5gij 8 [ R+ ] Gij

Tij = (45)

The terms, if we use the fluid approximation given by
Eq. (21) as well as the metric given in Eq. (18) will
then tend to a constant energy term on the RHS of
Eq. (45) as well as restricting 4, and j, to, correspod-
ingly, t and t.

So as to recover, via the Einstein spaces, the seem-
ingly heuristic argument given above. Furthermore
when we refer to the Kinetic energy space as an infla-
ton ¢ >> (P.E ~ V) [170], we can also then utilize
the following operator equation for the generation of
an ‘inflaton field’ given by the following set of equa-
tions

b (t,-) = cos(tVE)f + %g

= 0’
o) 0
,itf = K¢

In the case of the general elliptic operator K if we
are using the Fulling reference [123] in the case of the
above Roberson-Walker metric, with the results that
the elliptic operator, in this case become,

K =-V?+ (m?+¢R)
g%/ |det glaj)

== 2 Jiderel +(m? +£R)
—g—; + (m? +¢R)

(47)
1,j—t,t

Then, according to [123], if R above, in Eq. (47)
is initially a constant, we will see then, if m is the
inflation mass, that

@ (t,) = cos(tVK)f
2 w2 (48)
& ¢ (t,-) = cos(ty/w? + (m? +ER))

Then ¢, as an unspecified, for now constant will lead
to a first approximation of a Kinetic energy domi-
nated initial configuration, with details to be gleaned
from [123-125] to give more details to the following
equation, R here is linked to curvature of spacetime,
and m is an inflaton mass, connected with the field
6 (t,-) = cos(tv/K) f with the result that
¢ (t,) = [w? + (M +ER)] - 1 >> V(9) (49)
If the frequency, of say, Gravitons is of the order of
Planck frequency, then this term, would likely dom-
inate Eq.(49). More of the details of this will be



worked out, and also candidates for the V(¢) will
be ascertained, most likely, we will be looking the
Rindler Vacuum as specified in [126] as well as also
details of what is relevant to maintain local covariance
in the initial space-time fields as given in [127].

Why is a refinement of Eq. (49) necessary?

The details of the elliptic operator K will be cleaned
from [123-125] whereas the details of inflaton ¢? >>
(P.E ~ V) [170] are important to get a refinement
on the lower mass of the graviton. The mass, m, in
Eq.(47) for the inflaton, not the Graviton, so as to
have links to the beginning of the expansion of the
Universe. We look to what Corda did, in [128] for
guidance as to picking values of m relevant to early
universe conditions.

Finally, as far as Eq. (49) is concerned, there is one
serious linkage issue to classical and quantum me-
chanics, which should be the bridge between classical
and quantum regimes, as far as space time applica-
bility. Namely, from Wald (28), if we look at first of
all arbitrary operators, A and B

@a® - @8)* > (5 (48] ). (50

As we can anticipate, the Pre Planckian regime may
the place to use classical mechanics, and then to
bridge that to the Planckian regime, which would be
quantum mechanical. Taking [126] again, this would
lead to a sympletic structure via the following modi-
fication of the Hamilton equations of motion, namely
we will from (28) get the following rewrite,

d& _ OH dpu __ OH

dt — Op,’ dt —  Oq,

H=H(q,...qn;D1,......Pn)
(51)
QMY = 0, otherwise

dy" _ n uv OH
dt — ZV:l Q oyv

Then there exists a re formulation of the Poisson
brackets, as seen by

{fa g} = Qlwvufvug' (52)

9

So, then the following, for classical observables, f,
and g, we could write, by [126]

A:O—=©O
© = classical — observable
6= quantum — observable

h=1
[£.6] = (Fa)

Then, we could write, say Eq. (50) and Eq.(53) as

. A
|f.a] =i-(hgh)

f = classical — observable
f = quantum — observable

()" @07 = (£ (([7.6]))) = (s tslom)
(54)

If so, then we can set, in the interconnection between
the Planck regime, and just before the Planck regime,
say, by setting classical variables, as given by

f= _ R-R+AJ-gs
87 (55)
g =109

Then by utilization of Eq.(54) we may be able to ef-
fect more precision in our early Universe derivation,
especially making use of derivational work, in addi-
tion as to what is given here, as to understand how
to construct a very early universe partition function
Z based upon the inter relationship between Eq.(54)
and Eq.(55) so as to write up an entropy based upon,
as given in [126]

S(entropy) =InZ + BE. (56)
If this program were affected, with a first principle
construction of a partition function, we may be able
to answer if Entropy were zero in the Planck regime,
or something else, which would give us more moti-
vation to examine the sort of partition functions as
stated in [129, 130]. See appendix A as to possi-
ble scenarios. Here keep in mind that in the Planck
regime we have non standard physics. Appendix A
indicates that due to the variation we have worked
out in the Planckian regime of space-time that the
initial entropy is not zero. The consequences of this
show up in this paper’s Appendix B, as to a specific
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formulation of the Ricci scalar. The consequences of
Appendix A and Appendix B may be for a small
cosmological constant, and large “Hubble expansion”
that there would be an initially large magnitude of
cosmological pressure, even if negative, which would
give credence to a non zero cosmological entropy, that
if large negative pressure, even in the Pre Planckian
regime will lead to a large ATy terms which would
show up in Eq. (1A), even if we used a partition func-
tion based upon Lattice Hamiltonians, as on page
135 of [130] which would usually in a lattice gauge
arrangement would have considerably smaller contri-
butions than ATy;. Note the conditions of flat space,
are that Eq.(B9) almost vanishes due to the behav-
ior of the numerator, no matter how small a? ;. /is.
The supposition is that the numerator becomes far
smaller than a? ;.. The initiation of conditions
of flat space, is also the regime in which we think
that non zero entropy is started, and Appendix
C gives an initial estimate of what we think En-
tropy would be in the aftermath of the uncertainty
relationship we have outlined in this paper, i.e. to
first order, Sinitiai(graviton) ~ 1037. We finalize our
treatment as of space-time fluctuations and geometry
by considering the applications of Appendix D to
graviton mass, and Appendix E to the Riemann-
Penrose inequality for conditions as to a minimum
frequency, as a consequence of cosmological evolu-
tion, and what it portrays as consequences for Elec-
tromagnetic fields. Appendix D and E give varying
initial graviton masses as a starting point, with Ap-
pendix D giving a higher initial graviton mass than
what is assumed as of today. Finally, Appendix F
states a pre Planckian kinetic energy so the inflaton
$? >> (P.E ~ V) [170]. This last step, so important
to our development will be considerably refined in a
future paper.

What we are doing now is confirming the material
given in this paper as well as giving an explanation
for our future research activity. The quartic poten-
tial, we used above, is the simplest version of the
potential systems in this paper and the cases of non
quartic potential should be examined fully, as part
of a comprehensive study. This will be part of the
research project which the authors will initiate in fu-
ture publications. We should keep this discussion and
the discussion of scalar fields separate from the ideas
given in inflation, namely of the fluctuations not nec-

essarily having an upper bound of

/60
> o M, ~ 3.1M, = 3.1.

Since our modeling is not predicated upon the in-
flationary model of cosmology but which is address-
ing the issue brought up in [147], which is the con-
tribution of Pre Planckian space time to cosmologi-
cal evolution we wish to adhere to non inflationary
treatments as to Eq. (43) and Eq. (57) but will ad-
here to the questions poised at the beginning of this
document. Furthermore we will adhere to, in future
papers in delineating a departure from the standard
treatment of the evolution of the scalar field, as given
in conventional inflation cosmology as the following
dp __V'(¢)  H*?(¢)

i~ 3H(®) | ox & (0).

-

(57)

(58)

This has a quasi “quantum mechanical” effective
white noise introduced term £(¢), and is similar to £(t)
in a first order differential equation being a “driving”
term to a quasi chaotic oscillatory behavior to the
scalar field. We argue that this Eq. (58) in [148] is
wrong, albeit well motivated by conventional infla-
tionary cosmology and part of our future discussion
will be in, for the Pre Planckian regime of space time
as partly brought up in [149] discussing what we are
putting in instead as a replacement. This Eq. (58)
contravenes our description of Kinetic energy as the
dominant term in Pre Planckian space-time physics
which deserves future developments for establishing
experimental measurements.

Appendix A. Scenarios as to the value of
entropy in the beginning of space-time
nucleation

We will be looking at inputs from page 290 of [23] so
that if B ~ M ~ ATtt . 5ttime -AA- ZP

S(entropy) =InZ + —(Ek;ATtT:;'J:;aAtfiP ) (1A)

And using Ng’s infinite quan%um statistics, we have
to first approximation [131, 132]

S(entropy) ~In Z + (BE~ATy)-6t-AALp)

kBTtemperature
~ 7+ (e

BTtemperaturedgtt

[S(entropy) ~ Neount] # 0

Tiemperature —#Hanything
(24)
This is due to a very small but non vanishing dg;; with
the partition functions covered by [130], and also due



to [131, 132] with ncounta non zero number of ini-
tial ‘particle’ or information states, about the Planck
regime of space-time, so that the initial entropy is non
ZET0.

Appendix B. Calculation of the Ricci Tensor
for a Roberson-Walker space-time, with its
effect upon the measurement of if or not a
space time, is open, closed or flat

We begin with Kolb and Turner [170] discussion of
the Roberson-Walker metric, say page 49 with, if R
is the Ricci scalar, and k the measurement of if we
have a close, open, or flat universe, that if

a = Qinitial - €xp(H - t) (B1)

Then by [170]

H2 a_2 + 87I'Gp (B2)
3H? + [% + ] 0 (B3)
Leading to

a? =1 - [£+8rGp] (B4)
If p = —p [7], then with a bit of algebra

Il = 52 [% + (@initiar)” - exp [\/@ : ttime” (B5)

Next, using [134], on page 47, at the boundary be-
tween Pre Planckian to Planckian space-time we will
find

R = 8 (Te+TH+T3+T13) +

4A 8t - (T7) + 4A
Pre—Planckian—Conditions

(B6)

Then, we can obtain right at the start of the Planck-
ian era,

1 87 (T9+T1 +T5+T5 ) +4A
Erye 6

(B7)

The consequences of this would be that right after the
entry into Planckian space time, that there would be
the following change of pressure

1 87 (T9)+4A

|p|Pre—Planckian — 3G’ 6

<o [y ]

= |p|Pr e—Planckian ™

|p| Planckian ™

+ (ainitial)2:| X

1 8 (T0 )+4A

G +0*

1 8 (TQ+T] +T5+T5)+4A

|p|Planckian ~ 8nG 6

(T +T3+715)
AP = |p|Planckian - |p|PrefPlanckian ~ |: - Gé :
(B8)

Then, the change in the k term would be like, say,
from Pre Planckian to Planckian space time
Ak = - [87G(p — AP)] (B9)

initial
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This goes almost to zero if the numerator shrinks far
more than the denominator, even if the initial scale
factor is of the order of 107119 or so.

Appendix C. Initial entropy, from first
principles

We are making use of the Padmanabhan publication
of [135,136] where we will make use of

GES
2 1 : (Esystem/EPlanck)6

system
Planck

Y\

pA =
(1)
Then, if Egystem is for the energy of the Universe
after the initiation of Eq.(20) as a bridge between
Pre Planckian, to Planckian physics regimes we could
write, then

cBh?

Es stem X Ngravitons * Mgraviton
Y g9 g
1

Ar
Radius—Universe—today

grams = Ngravitons ™~ 1037
037at — Planck — time

< Mgraviton ™~ 10~
= Sinitial(graviton) ~1
(C2)

The value of initial entropy, Sinitial(graviton) ~ 1
should be contrasted with the entropy for the entire
Universe as given in [137] below.

037

Appendix D. Information flow, Gravitons,
and also upper bounds to Graviton mass

Here we can view the possibility of considering the
following, namely [138] is extended by [139], so we
can we make the following identiﬁcation

N = Ngravitoan Gdh : % ~ A (Dl)
Should the N above be related to entropy, and Eq.
(17)? This supposition has to be balanced against
the following identification, namely, as given by T.

Padmanabhan [135, 136]
AEinstein7Const.Padmanabhan = 1/ll2jlanck
(E/EPlanck)6 . (DZ)

But should the energy in the numerator in Eq. (D2)
be given as say by (C2), of Appendix C, we have
defacto quinessence. then there would have been de-
facto quintessence, i.e. variation in the “Einstein con-
stant”, which would have a large impact upon mass of
the graviton, with a sharp decrease in g, being con-
sistent with an evolution to the ultra light value of
the Graviton, with initial frequencies of the order of
say for wavelength values initially the size of an atom,
Winitial |TH~atomic—size 10*' Hz (Ds)

The final value of the frequency would be of a mag-
nitude smaller than one Hertz, so as to have value of
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the mass of the graviton would be then of the order of
10~%2grams [117], due to Eq.(D2) approaching [138]
below, namely

AEinStei"*Cf’"St- = 1/l%adiustniverse' (D4)

Leading to the upper bound of the Graviton mass of
about 107%2grams [138,139] in the present era

Mygraviton = % . \/ % ~ % (D5)

Eq. (D5) has a different value if the entropy / particle
count is lower, as has been postulated in this note.
But the value of Eq.(D5) becomes the Graviton mass
of about 107%2grams [117] in the present era which is
in line with the entropy being far larger in the present
era [137].

Appendix E. Applying the Riemannian
Penrose Inequality with applications in our
fluctuation

dgu ~ a*(t) - ¢ << 1 (E1)

Refining the inputs from Eq. ( E1) means more study
as to the possibility of a non zero minimum scale fac-
tor [171], as well as the nature of ¢ as specified by
Giovannini [140]. We hope that this can be done as
to give quantifiable estimates and may link the non
zero initial entropy to either Loop quantum gravity
“quantum bounce” considerations [142] and/or other
models which may presage modification of the sort of
initial singularities of the sort given in [1]. Further-
more if the non zero scale factor is correct, it may
give us opportunities as to fine tune the parameters
given in [171] below

4rG
3MOCBO

h\ (defined) = Ac® /3

ag =

+ X
2\ (defined)

— 1/4

X [(\/ag + 32 )\ (defined) - pow - B3 — ao)]

(E2)

Where the following is possibly linkable to minimum
frequencies linked to F and M fields [171], and pos-
sibly relic Gravitons

B > 5— (E3)

So, now we investigate the question of applicability
of the Riemann Penrose inequality which is [143], p.
431, which is stated as

Riemann Penrose Inequality: Let ( M, g) be a
complete, asymptotically flat 3- manifold with Non

Gmin = 4o * |:

negative-scalar curvature, and total mass m, whose
outermost horizon X has total surface area A. Then

Asurface—Area
Mtotal—mass 2 167 (E4)

And the equality holds, iff ( M, g) is isometric to the
spatial isometric spatial Schwartzshield manifold M
of mass m outside their respective horizons.

Agsume that the frequency, say using the frequency
of Eq.(E3) , and A ~ Apmof Eq.(E4) is employed.
So then say we have , if we use dimensional analysis
appropriately, that

(v =welocity = ¢) = f(frequency) x A(wavelength)

~

= W R Winitial ™~

(E5)

dmin dmin | =1

Assume that we also set the input frequency as to Eq.
(E3) as according to 10 < ¢ < 37 i.e. does

2
(mtotal—mass ~ 10< : mgraviton) X afmn/16ﬂ'
—2/3
& W R Winitial ™ ﬁ ~ (167T X 10< ' mgraviton) /
(E6)
Our supposition is that Eq.(E6) should give the same
frequency as of Eq. (D3) above. So if we have in
doing this, this is a frequency input into Eq. (E3)
above where we are safely assuming a graviton mass
of about [117]

37
Mtotal—mass ™~ 10°7- Mgraviton
—62
Mygraviton ™~ 10 grams

(E7)

Does the following make sense? Le. look at it, when
10 < ¢ <37

2 3
(mtotalfmass ~ 10< : mgraviton) X a'min/l67r
N 1 —-2/3
& W R Winitial ™~ Tonim ~ (167T X 10< . mgraviton)

(E8)

We claim that if this is an initial frequency and that it
is connected with relic graviton production, that the
minimum frequency would be relevant to Eq. (E3),
and may play a part as to admissible B fields.

Note, if Appendix D is used, this makes a re do of
Eq. (E8) which is a way of saying that the graviton
mass given by [117] no longer holds.

In either case, Eq. (E8) and Eq. (E3) in some con-
figuration may argue for implementation of work, it
was done in reference [144], as to relic cylindrical GW,
i.e. their allowed frequency and magnitude, so con-
sidered.

! &dmin ~ A1/3 X Qmin



Appendix F. First principle treatment of pre
Planckian kinetic energy so the Inflaton

¢ >> (PE~V)

We give this as a plausibility argument which un-
doubtedly will be considerably refined, but its impor-
tance cannot be overstated. L.e. this is for Pre infla-
tionary, Pre Planckian physics, so as to get a lower
bound to the Graviton mass. To do this, we look at
what [170] is saying and also we will be enlisting a
new reference, [145], by Bojowald, and also T. Pad-
manbhan [146] as to details to put in, so as to confirm
a dominance of Kinetic energy. Start with a Friedman

equation of
i\2 | kewrvature _ AnG | PG
()" + Bospee = 556 5 1 A (F)
We will treat, then the Hubble parameter, as
(&) = Hinitiat = t(lj_g) z
: P P=—p+et t‘(T) t—tp

tp2.5+ (F2)

Now from Padmanabhan [146], we can write density,
in terms of flux according to

%E*F:l V(S):é’olume ’ (A = ATB(I) ’
(\s_lp uz) (F3)

Then using p. 463 of [146], if T' is temperature, here,
then if NV is the particle count in the flux region per
unit time (say Planck time), as well as using the ‘ideal

gas law’ approximation, for superhot conditions
dp

_ 1
t — VB =Volume
(S=Flux)

(S = Flux) ~

p~ c

- N 1 .. /8 J__ kT
= H = et V@ =4—Dim Volume \/; M fluz—particle
(F4)

Next, according to [145] we can make the following
substitution.

ps =a’- ¢ (F5)

Therefore, if

¢? ~ a8 (120G) - VW . (H? + |A|)= a - (127G) - V

2
1 /8 [ —EsT |4 |p 9.
V(4 =4—Dim Volume T\ Mfluz—particle

<[ﬂ .
et
(F6)

If the scale factor is very small, say of the order of
@ = Qinitiay ~ 107°%, then no matter how fall the
initial volume is, in four space (it cancels out in the
first part of the brackets), its easy to see then that
¢? >> (P.E ~ V) [170].

We will in the future add more structure to this
calculation so as to confirm via a precise calculation
that the lower bound to the graviton mass, is about
10~ Ograms.

(A= Area) - (S = Fluz) ~ W

4)
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V3ATAJILHEHUM IIPUHIINAII HEBU3HAYEHOCTI TAL-
3EHBEPTA B KBAHTOBI TEOMETPOIMHAMIIII TA
3TB

Peswowme

B pmamiit pobori posrisimaerscs morik emepril y Bcecsiti ma
OCHOBI mpOCTOI KBAHTOBOI CHCTEMH, IO OMUCYETHCS HeJiHil-
HuM piBHsHHAM [aminsroxa-fkobi, sike BHHHKAE B PaMKax
CTAHZAPTHOrO KBAHTOBOro dopmamiamy pisusaas [IIpeninre-
pa. Po3riissmaroThCsa TaKOXK BUMAIKH JOMIHYBAHHS BUIIPOMiHIO-
BaHHsI, 6apoTponHOl pigwHE Ta KBAHTOBOI Marepii-emeprii. B
pe3yIbTaTi, COPMYIBOBAHO y3araJbHEeHUN TPUHITUI HEBU3HA-
genocri aiizenbepra (VIITHI') myist METPUYHOrO T€H30DA Ta, HA
ocHOBI popmamnizamy Ky3pbMuI0BHUX 17151 KBAHTOBOI F€OMETPOIH-
HaMiK¥, BCTAHOBJIEHO BHYTpINIHI# B3a€MO3B’s130K Mix YIIHT
JIJIST MeTPUIHOTO TE€H30PA TA YMOBAMH, SIKi IOCTYJIIOTHCS § BU-
majKy CTaHy, B SIKOMY JOMIHYIOUOI € 6ApOTpOIHA piiWHA Y
dopwmi muiy.



