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Ladies and gentlemen of the jury, exhibit number one is what the seraphs, the misinformed, simple, noble-winged
seraphs, envied. Look at this tangle of thorns. — Humbert Humbert in Lolita by Vladimir Nabokov (1955)

The Levi-Civita symbol is arguably the simplest mathematical quantity of importance that one can imagine. In n
dimensions, it carries n indices whose sole purpose is to keep track of the signs of various indexed mathematical
quantities that it operates on. Unlike matrices, vectors and tensors, the Levi-Civita symbol (also called the permuta-
tion symbol) has no individual components of its own to speak of—the indices all act in unison, returning either 0 or
±1, depending only on how they’re lined up. Nevertheless, the Levi-Civita symbol is ubiquitous in elementary vec-
tor and matrix algebra, though it also appears routinely in general relativity, quantum mechanics and even topology.

Despite its apparent simplicity, textbook derivations of some of the Levi-Civita symbol’s properties are notoriously
hard to come by. Indeed, to the consternation of the student the symbol’s properties are often just written down
as if they were obvious. Here we provide a simple overview of the symbol’s properties along with several of its
applications, with particular attention given to basic derivations.

1. Introduction and Notation

The Italian mathematician Tullio Levi-Civita (1873-1941) was the only doctoral student of the great
mathematician Gregorio Ricci-Curbastro, the Italian inventor of tensor calculus. Prolific in mathematics and
several other fields, Levi-Civita is acknowledged as being the inventor (or discoverer) of the handy symbol that
now carries his name. In n dimensions, the symbol is generally given as εa1a2a3...an

or εa1a2a3...an , where the a’s are
integers comprising some permutation of the integer set {1, 2,3 . . . n}. The symbol expresses the permutation
property

ε123...n = ε
123...n =







+1 if the integers are an even permutation of 1,2, 3 . . . n
−1 if the integers are an odd permutation of 1,2, 3 . . . n

0 if any two integers are the same

Consequently, the symbol’s sign depends upon an overall even or odd number of exchanges of the indices, going
to zero only when two or more indices are identical (older texts often refer to the LC symbol as the permutation
symbol or the antisymmetry symbol). Here are some examples:

ε12 = +1

ε21 = −1

ε1324 = −1

ε7125634 = +1

ε7163145 = 0

By convention, consecutive ordering of the integers results in +1, so that ε123... = ε123... = 1. As we will see, the
exchange antisymmetry of the symbols neatly parallels the symmetry of the ordinary two-index Kronecker symbol
δµν. Indeed, we will see that any LC symbol consists entirely of a string of Kronecker symbols. This relationship is
often called the ε-δ formalism.

There are nn possible number strings in an LC symbol of dimension n, but most of the symbols are zero due to
repeated indices. It is easily shown that there are always only n! non-zero terms in the permutation of the
123 . . . n string, with half of them being +1 and half −1. This behavior parallels the Laplace expansion of an n× n
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matrix A in the calculation of the matrix’s determinant |A|. This turns out to be no coincidence, and we will see
later that the LC symbol provides a compact way of representing the determinant of any square matrix.

2. Preliminaries

We will be dealing with a Minkowski (flat) space throughout. Consequently, the Levi-Civita symbol can be treated
as a tensor of rank n whose indices are raised and lowered with the flat-space metric tensors ηµν (and ηµν)
respectively, with the important distinction that the signature of the metric be given by (+++ . . .+); that is, in
any dimension the metric tensor is just the Kronecker delta δµν, δµν, where

δab = δ
ab =

§

1 if a = b
0 if a 6= b

While LC symbols can also have mixed indices (ελµν, etc.), we will not be using them. Hopefully, the student will
realize that the derivation of many of the properties of the LC symbol is difficult without the use of the special
metric ηµν we will be using.

Lastly, while we will use Einstein notation throughout (in which any repeated index in a term is to be summed
over from 1 to n), we won’t pay much attention to conventional niceties—for example, the sum εab Tac will be
treated the same as the more proper notation εab T ac .

3. The Levi-Civita Symbols as Determinants

Consider the simple two-dimensional LC symbol εab, which obviously has only two non-vanishing terms, ε12 = 1
and ε21 = −1. We can express the symbol by lowering the indices of its upper-indexed form via

εab = ηacηbdε
cd

Expanding, and replacing the metric terms with their equivalent Kronecker symbols, we have

εab = δa1δbdε
1d +δa2δbdε

2d

= δa1δb2ε
12 +δa2δb1ε

21

= ε12 (δa1δb2 −δa2δb1)

or

εab =

�

�

�

�

δa1 δa2
δb1 δb2

�

�

�

�

(3.1)

since ε12 = 1. Thus, the 2D LC symbol is a simple 2× 2 determinant of Kronecker deltas. We can repeat this exact
same argument for any LC symbol to show that in general

εabcd...n =

�

�

�

�

�

�

�

�

δa1 δa2 δa3 . . . δan
δb1 δb2 δb3 . . . δbn

...
...

...
...

...
δn1 δn2 δn3 . . . δnn

�

�

�

�

�

�

�

�

(3.2)

It is often necessary to evaluate products of same-dimensional LC symbols, such as εabεcd and εabcεde f . Even for
simple products, the number of terms quickly becomes unwieldy upon direct multiplication:

εabεcd =

�

�

�

�

δa1 δa2
δb1 δb2

�

�

�

�

·
�

�

�

�

δc1 δc2
δd1 δd2

�

�

�

�

,

which expands out to

εabεcd = δa1δb2δc1δd2 −δa1δb2δc2δd1 +δa2δb1δc2δd1 −δa2δb1δc1δd2
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Well, this is a real mess. In an effort to simplify matters, let’s consider the identity

δab = ηacηbd δ
cd

= δa1δbd δ
1d +δa2δbd δ

2d

= δa1δb1 +δa2δb2 (3.3)

(where, of course, δ11 = δ22 = 1 and δ12 = δ21 = 0). Using the identity in (1) to calculate δacδbd −δadδbc , we
get precisely the same expression in (2). But this shows that

εab εcd =

�

�

�

�

δac δad
δbc δbd

�

�

�

�

(3.4)

A similar argument can be used for larger LC symbols (although you really wouldn’t want to), in which case we
have

εABC ...n εabc...n =

�

�

�

�

�

�

�

�

δAa δAb δAc . . . δAn
δBa δBb δBc . . . δBn

...
...

...
...

...
δna δnb δnc . . . δnn

�

�

�

�

�

�

�

�

(3.5)

Upper-index and mixed products can be shown to work the same way. For example,

εABC ...n εabc...n =

�

�

�

�

�

�

�

�

�

δA
a δA

b δA
c . . . δA

n

δB
a δB

b δB
c . . . δB

n
...

...
...

...
...

δn
a δn

b δn
c . . . δn

n

�

�

�

�

�

�

�

�

�

(3.6)

4. The Levi-Civita Symbols in Determinant Computation

The alternating signs associated with the terms of the LC symbol provide a convenient means of connecting them
to the determinants of square matrices. There’s no magic formula for easily computing determinants, but we can
use the fact that for any n× n matrix, its determinant—obtained by Laplace expansion about any row or
column—always has n! product terms, with an equal number of positive and negative elements. The same applies
to any LC symbol of the same dimension. So, if we can associate the positive and negative LC terms with those of
the determinant of a matrix, we might be able to identify a relationship between the two.

Consider the 3× 3 matrix

A=





a11 a12 a13
a21 a22 a23
a31 a32 a33





whose determinant is the 3!= 6-term quantity

|A|= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

The six non-zero LC symbol terms are

ε123 = +1, ε231 = +1, ε312 = +1, ε132 = −1, ε213 = −1, ε321 = −1

By matching up the LC terms with the determinant products, it should be clear that the expression

|A|= εi jk ai1a j2ak3

is valid for the 3× 3 case. It is in fact true for all square matrices of any dimension:

|A|= εi jk... ai1a j2ak3 . . . (4.1)
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We can ‘‘derive’’ one more expression relating LC symbols and determinants. If we multiply the left side of (1) by
ε123 = 1, it is not difficult to see that the general expression

εµνλ... |A|= εabc...aaµabνacλ . . . (4.2)

is also valid.

5. Densities

Although the LC symbol can be used to generate scalar-like quantities (such as εabVaVb, where Vi is some vector),
such quantities do not transform like scalars under coordinate transformations. Instead, use of the LC symbol
results in the creation of scalar, vector and tensor densities. This behavior is of signficant importance in topological
field theory and the related Chern-Simons theory of quantum mechanics.

Let us see how the index-less vector quantity T = εabcVaVbVc behaves under the coordinate tranformation x → x̄ .
While the LC symbol remains unchanged, we have

V̄a =
∂ xµ

∂ x̄a
Vµ (5.1)

so that

T̄ = εabc V̄a V̄b V̄c → εabc ∂ xµ

∂ x̄a

∂ xν

∂ x̄ b

∂ xλ

∂ x̄ c
VµVνVλ

Treating the differential terms as matrices, we can use (4.1) to express this as

T̄ = εµνλ VµVνVλ

�

�

�

�

∂ x
∂ x̄

�

�

�

�

where the end term is the Jacobian determinant of the coordinate transformation,

�

�

�

�

∂ x
∂ x̄

�

�

�

�

=

�

�

�

�

�

�

�

∂ x1

∂ x̄1
∂ x1

∂ x̄2
∂ x1

∂ x̄3

∂ x2

∂ x̄1
∂ x2

∂ x̄2
∂ x2

∂ x̄3

∂ x3

∂ x̄1
∂ x3

∂ x̄2
∂ x3

∂ x̄3

�

�

�

�

�

�

�

(5.2)

But this is just

T̄ =

�

�

�

�

∂ x
∂ x̄

�

�

�

�

T,

so the quantity
T
�

�

∂ x
∂ x̄

�

�

(5.3)

is now a true scalar under coordinate transformations. Thus, the LC symbol in this case creates what is known as a
scalar density or pseudoscalar. In view of this, the symbol itself is often referred to as a pseudotensor.

Along with vectors, the LC symbol also acts on tensors in a similar manner. Just for the hell of it, let’s take the
metric tensor gµν(x) in four dimensions and see where the expression

εµναβ |g|= εabcd gµa gνb gαc gβd

leads under the change of coordinates x → x̄ . Let us therefore break down

εµναβ | ḡ|= εabcd ḡµa ḡνb ḡαc ḡβd

where

ḡµa =
∂ x e

∂ x̄µ
∂ x f

∂ x̄a
ge f (5.4)
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We then have

εµναβ | ḡ|= εabcd ∂ x e

∂ x̄µ
∂ x f

∂ x̄a

∂ xh

∂ x̄ν
∂ x i

∂ x̄ b

∂ x j

∂ x̄α
∂ x k

∂ x̄ c

∂ x l

∂ x̄β
∂ xm

∂ x̄d
ge f ghi g jk glm

= εabcd

�

∂ x f

∂ x̄a

∂ x i

∂ x̄ b

∂ x k

∂ x̄ c

∂ xm

∂ x̄d

�

∂ x e

∂ x̄µ
∂ xh

∂ x̄ν
∂ x j

∂ x̄α
∂ x l

∂ x̄β
ge f ghi g jk glm

Using (4.2), this reduces to

εµναβ | ḡ|= ε f ikm

�

�

�

�

∂ x
∂ x̄

�

�

�

�

∂ x e

∂ x̄µ
∂ xh

∂ x̄ν
∂ x j

∂ x̄α
∂ x l

∂ x̄β
ge f ghi g jk glm

= εµναβ |g|
�

�

�

�

∂ x
∂ x̄

�

�

�

�

2

Of course, all of this is just a long-winded way of saying that

ḡ =

�

�

�

�

∂ x
∂ x̄

�

�

�

�

2

g

or
Æ

| ḡ|=
�

�

�

�

∂ x
∂ x̄

�

�

�

�

Æ

|g| ,

which could have been deduced immediately from (5.4). Nevertheless, it is heartening to see that the LC
formalism is consistent with other (and sometimes more obvious) methods.

6. Advanced Applications

In general relativity it is conventional to use
p

|g| in the scalar densities associated with the Lagrangians of
gravitation. For example, the integral

IEH =

∫

Æ

|g| R d4 x

(where R is the Ricci scalar) defines the Einstein-Hilbert action for free-space general relativity. Note that the
determinant of any second-rank tensor Aµν could be used in this regard, as the overall goal is to simply make
p

|A| d4 x a coordinate-invariant quantity. (It is amusing to note that the integral
∫p

|g| d4 x is a perfectly good
action Lagrangian. Its only problem is that it doesn’t lead to anything meaningful.)

Lastly, in view of the foregoing it should be noted that quantities such as
∫

Rεµναβ Rµναβ d4 x ,

∫

εµναβ Rµν Rαβ d4 x

are completely valid candidates for gravity theories since the presence of the LC symbol guarantees coordinate
invariance of the integrands. What is particularly fascinating about actions such as these is that they don’t
necessarily involve the metric tensor gµν or its determinant

p

|g|. (One might argue that, since Ricci curvature
terms are composed of the metric tensor, this claim in not true. However, all curvature tensors can be expressed
purely in terms of affine connections, negating this argument.) As Zee has rightly noted, these actions are
completely unaware of any metric quantity, so things like time (clocks) and distance (rulers) don’t enter into the
formalism at all. They are purely topological in nature—one may stretch and squeeze spacetime in any arbitrary
way, and the actions will remain unscathed.

The above observation has led to the search for topologically invariant quantities in gravity theory. Of particular
interest is the formalism known as Regge calculus, in which spacetime is discretized into a mesh of interconnecting,
purely flat shapes (usually triangles). The primary advantage of this formalism involves the development of
efficient numerical methods in general relativity which can be run on high-speed computers. Exact analogies of
this approach are the finite-difference and finite-element methods commonly used in structural engineering.
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Regge calculus is fascinating, and the student is encouraged to look into it. It begins with the Euler characteristic
(or symbol), which relates the connectedness of vertices, edges and loops (or faces) in a simple closed graph, and
progresses to the notion of angular deficits associated with a topological construction (such as a geodesic dome).
Simplicity is the rule in this calculus—the basic shapes (triangles, tetrahedrons, dodecahedrons, etc.) used to
describe a spacetime can be mangled in almost any possible way without altering the underlying invariants of the
topology. The notion of spacetime curvature itself in Regge calculus is topological in nature, providing a hint that
the natural world is entirely grounded in geometry.

I am thinking of aurochs and angels, the secret of durable pigments, prophetic sonnets, the refuge of art. And this is
the only immortality you and I may share, my Lolita.
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