Poisson Boltzmann equation cannot be solved using Dirichlet boundary condition
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The Poisson-Boltzmann equation (PBE) gives us very simple formula for charge density distribu-
tion (pe) within ionic solutions. PBE is widely solved by specifying values to electrostatic potential
() at different boundaries; this type of boundary condition (BC) is known as Dirichlet condition
(DC). Here we show that DC cannot be used to solve the PBE, because it leads to unphysical
consequences. For example, when we change the reference for 1, the functional forms of ¢ and p.
change in non-trivial ways i.e. it changes the physics, which is not acceptable. Our result should
have far reaching effects on many branches of physical, chemical and biological sciences.
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1. INTRODUCTION

Distribution of free charges within liquids is important
for the understanding of various physical, chemical and
biological processes, [1-4]. The linearized PBE, that ap-
peared almost 100 years back [5], has been serving as an
important tool to find the charge distribution theoreti-
cally. Assigning values to 1 at the boundaries i.e. the
DC is widely used to solve the PBE, [6, 7]. However,
we found some serious fundamental problems associated
with this. When v is measured w.r.t. different reference
points that should not alter 1) by more than an additive
constant, please see Refs. [8, 9]. Here we show that when
PBE is solved with DC to derive the spatial distribu-
tion for ¢, the function ¢ changes non-uniformly when
we measure it w.r.t. different reference points. It follows
that the charge density distribution p. also gets changed
with the origin; even the total charge in the domain gets
changed, which clearly violate physical principles. It is
an example where the mathematical correctness of a solu-
tion does not imply its physical correctness. We describe
the details below.

2. ANALYSIS AND CONCLUSION

Let’s introduce a few notations. Here we analyze a
1-D problem, see Ref. [6] for details; the fluid domain is
of rectangular cross-section; its width ‘2a’ is very small
compared to its length ‘L’ and height ‘H’; p. varies es-
sentially along the shortest side, the z-direction, say.
The net charge present in the total domain is given
by Qr = [[[ pedzdydz = LH fj; pedz. We define,
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Qo= fj_; pedx = Qr/(LH); it is a measurable quantity,
having unit Coulomb - meter—2.

The PBE is given by d?y/dx? = k?i; where (1/k) is
called the Debye length [6]. We solve PBE with DCs
[(z = +a) = (g and Y(z = —a) = (1] to get[10],

= (rf+(z) = Cf- () (1)

Where, fi(x) = sinh{k(z + a)}/sinh(2xa). We consider
a problem, where, for given values of k and a, a potential
difference V' is maintained between the right (R) and the
left (L) boundaries. We analyze the problem with two
different reference points (for ¢) O and O; the potential
of O is higher than that of O by an amount §*. At the
boundaries, if ¢ takes values (g and (7, w.r.t. O, then
its values w.r.t. OF will be (Cg —6*) and ((z — 6*) re-
spectively; the choice of different origins does not change
the potential difference between the boundaries, which is
given by V' = (g — (1, in both cases.

When O is chosen as the reference, the potential dis-
tribution is given by Eq. (1). When O is chosen as
reference the distribution is given by,

Vi(2) = (Cr = 8 f(2) = (CL =) f-(z)  (2)

Let’s see how 9(z), pe(z) and Qo are affected when we
move from O to O to measure . Subtracting Eq. (1)
from Eq. (2) we get,

Ay(z) = 9T (2) — v(x) = =0 [f1(2) — f-(2)]
= —[26" sinh(ka)] cosh(kz) (3)

According to Eq. (3), At is not a constant, but a func-
tion of z whenever @ and OF are at different potentials
(i.e. 8* #0). The charge distribution p.(z) also changes
with the origin since p.(z) x ¥(x), see Ref. [6].

The total charge in the system also changes with
the reference: using Eq. (3), we calculate: AQy =

S22 1Pl@) = pe(@)] dz - oc [20 [h(e) —db(e)] dz =
—[26* sinh(ka)] fjaa cosh(kx)dx. The function cosh(kx),
being the sum of two exponential functions, is strictly



positive, so its integral is positive, too. Therefore, when
0* # 0, we have AQo # 0. The above facts are not con-
sistent with the physics, because the physics should not
depend whether we measure ¢ w.r.t. O or Of. Hence,
DCs produce unphysical solution.
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