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Abstract: Prime numbers are the atoms of mathematics and mathematics is needed to make sense of the real 
world. Finding the Prime number structure and eventually being able to crack their code is the ultimate goal in 
what is called Number Theory. From the evolution of species to cryptography, Nature finds help in Prime 
numbers.  
 
One of the most important advances in the study of Prime numbers was the paper by Bernhard Riemann in 
November 1859 called “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse” (On the number of 
primes less than a given quantity). 
 
In that paper, Riemann gave a formula for the number of primes less than x in terms the integral of 1/log(x) 
and the roots (zeros) of the zeta function defined by: 
 

[RZF]    𝜁(𝑧) = ∑
1

𝑛𝑧

∞

𝑛=1

 

 
Where ζ(z) is a function of a complex variable z that analytically continues the Dirichlet series. 
 
Riemann also formulated a conjecture about the location of the zeros of RZF, which fall into two classes: the 
"trivial zeros" -2, -4, -6, etc., and those whose real part lies between 0 and 1. Riemann's conjecture Riemann 
hypothesis [RH] was formulated as this: 
 

[RH] The real part of every nontrivial zero z* of the RZF is 1/2. 

Proving the RH is, as of today, one of the most important problems in mathematics. In this paper we will provide 
a proof of the RH. The proof of the RH will be built following these five parts: 

- PART 1: Description of the RZF 𝜁(𝑧)  

- PART 2: The  C-transformation  

- PART 3: Application of the C-transformation to 𝑓(𝑧) =
1

𝑥𝑧  in Re(z)≥0 to obtain ζ(z)=X(z)-Y(z) (for) 

- PART 4:   

o Analysis of the values of z such that X(z)=Y(z), and |X(z)|=|Y(z)|, that equates to ζ(z)=0  

o Proof that |X(z)|=|Y(z)| only if  Re(z)=1/2 

o Conclude that ζ(z)=0 only if Re(z)=1/2 for Re(z)≥0 

 

- PART 5: We will also prove that all non-trivial zeros of ζ(z) in the critical line of the form 𝑧 = 1/2 + ß𝑖 

are not distributed randomly. There is a relationship between the values of those zeros and the 

Harmonic function that leads to an algebraic relationship between any two zeros. 

We will use mathematical and computational methods available for engineers. 

mailto:pcaceres@comcast.net
https://www.researchgate.net/profile/Pedro_Caceres2
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Complex_variable
https://en.wikipedia.org/wiki/Analytic_continuation
https://en.wikipedia.org/wiki/Dirichlet_series
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Nomenclature and conventions 

 
− ζ(z)=∑ 𝑘−𝑧∞

𝑘=1  is the Riemann Zeta Function (RZF). 

− z* is any nontrivial zero (NTZ) of the RZF verifying that ζ(z*) = 0.  

− ß*(n) is the nth zero of the Riemann function in the critical line Re(z)=1/2 in C  

− α=Re(z) is the real part of z  

− ß=Im(z) is the imaginary part of z 

− If z=α+iß, Modulus(z)= |𝑧| = √(𝛼2 + ß2) and SquareAbsolute(z)= |𝑧|2 
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PART 1: 
 

The Riemann Zeta function ζ(𝒔)  [RZF] 
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1. 𝜁(𝑠) 𝑖𝑛 𝑅  
 

As defined in literature (Sondow et al, Weisstein, Edwards, Jekel)  
 
1.1. ζ(s) = ∑ j−s∞

j=1     converges for s ≠ 1 

 

Fig 1. Riemann Zeta function in R 

 

1.2. Euler Product Formula that links ζ(s) with the distribution of prime numbers 

ζ(s) = ∑ j−s =  ∏
1

1 − p−s
𝑝=𝑝𝑟𝑖𝑚𝑒

∞

j=1

                                                                                                [1] 

Example for k=2 

1

12
+

1

22
+

1

32
+

1

42
+ ⋯  =  

1

1 − 2−2
𝑥 

1

1 − 3−2
𝑥

1

1 − 5−2
𝑥

1

1 − 7−2
𝑥 … 

 

1.3. Integral definition of ζ(s): 

ζ(s) = ∑ j−s =  
1

Γ(s)
∫

1

ex − 1
xs

dx

x

∞

0

∞

j=1

 

Where Γ(s), is the Gamma function  

 

1.4. Analytical continuation of ζ(s) for :   

 Re(s)>0: [Dirichlet] 

ζ(s) =  
1

𝑠 − 1
∑(

𝑛

(𝑛 + 1)𝑠
−

𝑛 − 𝑠

𝑛𝑠

∞

𝑘=1

 

 0<Re(s)<1: 

ζ(s) =  
1

1 − 21−𝑠
∑

(−1)𝑘−1

𝑘𝑠

∞

𝑘=1

 

 -k<Re(s) [Kopp, Konrad. 1945]: 
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ζ(s) =  
1

𝑠 − 1
∑

𝑘(𝑘 + 1)

2
(
2𝑘 + 3 + 𝑠)

(𝑘 + 1)𝑠+2

∞

𝑘=1

−
2𝑘 − 1 − 𝑠

𝑘𝑠+2
) 

1.5. Laurent series of  ζ(s): 

ζ(s) =  
1

𝑠 − 1
+ ∑

(−1)𝑘𝛾𝑛

𝑘!

∞

𝑘=

(𝑠 − 1)𝑘) 

 where 𝛾𝑛 are the Stieltjes constants. 

 

1.6. Hurwitz function ζ(k, z): 

ζ(k, z) = ∑(j + z)−k

∞

j=0

= ∑ j−k

∞

j=z

       converges for k > 1 

1.7. Generalized Harmonic Function Hn
(k)

: 

Hn
(k)

= ∑ j−k

n

j=1

=  (
1

1k
+

1

2k
+ ⋯ +

1

nk
)       converges for k > 1 

 

1.8.  ζ(s) converges for s>1 to the following values (Sloane): 

      s         ζ(s)                    Known ζ(s) representations over π  
 2     1.6449179   π2/6 
 4     1.0823232   π4/90 
 6     1.0173431   π6/945 
 8     1.0040774   π8/9450 
 ____________________________________________________________________ 
   Table 1. Values of ζ(s) 

 
1.9. An approximation for the values of ζ(s) for s>1 in R 

 

  One can calculate that: 
 

 lim (
𝑠→∞

ζ(s)

ζ(s)+1
)

1

𝑠 = 1 

  And: 
 

 lim
𝑠→∞

(
ζ(s)

ζ(s)−1
)

1

𝑠 = 2 

 
Based on this expression, for s sufficiently large, one can represent  ζ(s) as a multiple of 𝜋𝑠: 
 

 ζ(s) =
𝜋𝑠

𝐾𝑠
 with 𝐾𝑠 = (2𝑠 − 1) ∗

𝜋𝑠

2𝑠  

with a very good approximation given by: 

 𝐾𝑠
∗ = 𝑖𝑛𝑡 ((2𝑠 − 1) ∗

𝜋𝑠

2𝑠) − 1       where int(k) is the integer part of k.   [2] 

The error between the 𝐾𝑠
∗ calculated and 𝐾𝑠 actual is very small for s>4. 
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Some calculated values of 𝐾𝑠
∗ calculated and 𝐾𝑠 actual: 

 

 

Table 2. Values of 𝐾𝑠
∗ calculated and 𝐾𝑠 actual 

 

One can use [2] to propose the following approximation for ζ(s): 

 CZ(s) =  
1

1−π−s−2−s         [3] 

 

 s=3 s=4 s=10 s=14 

ζ(s) 1.20206 1.0823 1.000994 1.0000612 

CZ(s) 1.18659 1.0784 1.000988 1.0000611 

Table 3. Comparing ζ(s) and CZ(s) 

 

Graphically:  

 

Fig 2. Caceres’ approximation for the Riemann Zeta function in R 

 
 

s Calculated Actual

2 6.0                       6.0                       

3 26.0                     25.8                     

4 90.0                     90.0                     

5 295.0                  295.1                  

6 945.0                  945.0                  

7 2,995.0               2,995.3               

8 9,450.0               9,450.0               

9 29,749.0            29,749.4            

10 93,555.0            93,555.0            

11 294,059.0          294,058.7          

12 924,042.0          924,041.8          

13 2,903,321.0      2,903,321.0      

14 9,121,613.0      9,121,612.5      

15 28,657,270.0    28,657,269.4    

16 90,030,846.0    90,030,845.0    
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PART 2: 
 

The C-Transformation 
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1. C-Transformation of f(x) 

Let’s define the C-transformation of an integrable function f(x) by: 

𝐶𝑛{𝑓(𝑥)} =  ∑ 𝑓(𝑘) −  ∫ 𝑓(𝑛)  𝑑𝑛

𝑛

𝑘=1

                                                                                               [4] 

 
And the C-values is the limit, if it exists, of the C-transformation when 𝑛 → ∞: 
 

𝐶{𝑓(𝑥)} = lim
𝑛→∞

𝐶𝑛{𝑓(𝑥)}                                                                                                                    [5] 

 

1.1. C-Transformation of 𝑓(𝑥) =
1

𝑥
 for 𝑥 ∈ 𝑅: 

𝐶𝑛 {
1

𝑥
} = ∑

1

k
− ∫

𝑑𝑛

𝑛
 

n

k=1

 

And the C-Value of 𝑓(𝑥) =
1

𝑥
 is 𝛾 =  0.5772 (Euler-Mascheroni constant)  

C {
1

𝑥
} = lim

𝑛→∞
(∑

1

𝑘
− ln (𝑛))

𝑛

𝑘=1

= 𝛾 

1.2. C-Transformation of 𝑓(𝑥) =
ln(x)m

𝑥
 for 𝑥 ∈ 𝑅, 𝑚 ∈ 𝑍: 

𝐶𝑛 {
ln(x)m

𝑥
 } = ∑

ln(𝑘)𝑚

k
− ∫

ln(𝑛)𝑚 𝑑𝑛

𝑛
 

n

k=1

 

And the C-Value of 𝑓(𝑥) =
ln(x)m

𝑥
  are the Stieltjes constants that occur in the Laurent series expansion of 

the Riemann zeta function: 

C {
ln(x)m

𝑥
 } = lim

m→∞
( ∑

(ln 𝑘)𝑛

k
−

(ln 𝑛)𝑚+1

𝑚 + 1
) 

m

k=1

= 𝛾𝑚 

m approximate value of γm 

0 +0.57721566490153286060651209 

1 −0.07281584548367672486058637 

2 −0.00969036319287231848453038 

3 +0.00205383442030334586616004 

 

1.3. C-Transformation of 𝑓(𝑥) = 𝑚 , for 𝑚 ∈ 𝑅 constant: 

 

𝐶𝑛{𝑚} = ∑ 𝑚 − ∫ 𝑚 𝑑𝑛 

n

k=1

 

𝐶𝑛{m} = 𝑚 ∗ 𝑛 − 𝑚 ∗ 𝑛 = 0         

and the C-values of f(x) =m constant is: 
 

𝐶{𝑚} = 0 
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1.4. C-Transformation of 𝑓(𝑥) = sin(𝑥) for 𝑥 ∈ 𝑅: 

𝐶𝑛{sin(𝑥)} = ∑ sin(k) − ∫ sin(𝑛) 𝑑𝑛 

n

k=1

 

𝐶𝑛{sin(𝑥)} =
1

2 (sin(𝑛) − cot (
1
2

) cos(𝑛) + cot (
1
2

) + cos(𝑛))
 

 

And the C-values of 𝑓(𝑥) = sin(𝑥) are in the interval: 

   

C{sin(𝑥)} ∈ [
1

2
(2 cot (

1

2
) − 3) ,

3

2
] 

 

One can also calculate that: 

 

C{cos(𝑥)} ∈ [
1

2
(cot (

1

2
) − 4) ,

1

2
(2 − cot (

1

2
))] 

 

 

1.5. C-Transformation of 𝑓(𝑥) = e−x for 𝑥 ∈ 𝑅: 

𝐶𝑛{e−x} = ∑ e−k − ∫ 𝑒−𝑛𝑑𝑛 

n

k=1

 

𝐶𝑛{sin(𝑥)} = ∑ e−k +
𝑒−𝑛

𝑛
   

n

k=1

 

And the C-values of 𝑓(𝑥) = e−x are: 

   

C{e−x} =
1

e − 1
 

 
1.6. C-Transformation of 𝑓(𝑥) = 𝑥−𝑠 for 𝑥, 𝑠 ∈ 𝑅, s>1: 

𝐶𝑛 {
1

𝑥𝑠
} = ∑

1

ks
− ∫

𝑑𝑛

𝑛𝑠
 

n

k=1

 

𝐶𝑛 {
1

𝑥𝑠
} = ∑

1

ks
−

𝑛1−𝑠

1 − 𝑠
 

n

k=1

 

and the C-value of 𝑓(𝑥) =
1

𝑥𝑠  is the Riemann Zeta function for s>1: 

   

C {
1

𝑥𝑠
} = lim

𝑛→∞
( ∑

1

ks
−

n1−s

1 − s

𝑛

𝑘=1

) = lim
𝑛→∞

( ∑
1

ks
) − lim

𝑛→∞
(

n1−s

1 − s

𝑛

𝑘=1

) = 𝜁(𝑠) 

 

1.7. C-Transformation of 𝑓(𝑧) =
1

𝑥𝑧 for 𝑧 ∈ 𝐶, 𝑅𝑒(𝑧) ≥ 0, 𝑧 ≠ 1 

𝐶𝑛 {
1

𝑥𝑧
} = ∑

1

kz
− ∫

𝑑𝑛

𝑛𝑧
 

n

k=1
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One can use Euler’s identity: 
 

𝑒𝑥 = cos(𝑥) + 𝑖 ∗ sin(𝑥) 
 
To calculate for z=α+ßi: 
 

𝑘−𝑧 = 𝑘−𝛼  [cos(ß ∗ ln 𝑘) − 𝑖 (sin (ß ∗ ln k)] 
 
And: 

∫
𝑑𝑛

𝑛𝑧
= 𝑛

(1−𝛼)  [cos(ß ∗ 𝑙𝑛(𝑛) − 𝑖 𝑠𝑖𝑛(ß ∗ 𝑙𝑛(𝑛)] ∗   
[(1 − 𝛼) + 𝑖ß]

[(1 − 𝛼)2 + ß2]
 

 
One can now express the real and imaginary components of 𝐶𝑛{𝑓} as: 
 

𝑅𝑒(𝐶𝑛{𝑓}) =  ∑ 𝑘−𝛼 (cos (ß ∗ ln(𝑘)𝑛
𝑘=1 ) + 

    + 
1

[(1−𝛼)2+ß2] (𝑛
(1−𝛼) 

  [(1-α)*cos(ß*ln(n))+ß* sin(ß*ln(n))]) [6] 

 
𝐼𝑚(𝐶𝑛{𝑓}) =  − ∑ 𝑘−𝛼 (sin (ß ∗ ln(𝑘)𝑛

𝑘=1 )+ 

+ 
1

[(1−𝛼)2+ß2] (𝑛
(1−𝛼)   [ß*cos(ß*ln(n)) - (1-α)*sin(ß*ln(n))]) [7] 

 
One can calculate that, for α=Re(z)>1, and for any 𝜖 arbitrarily small, there is a value of n=N such that for 
n>N, 𝐶𝑁{𝑓} - ζ(𝑧)< 𝜖, as the following table shows: 
 
 

α ß 𝐶𝑁{𝑓} for N=500 ζ(𝑧) |𝐶_𝑁 {𝑓} −ζ(𝑧)| 
2 0 1.644934068 1.654934067 <  10−8 
2 1 1.150355702 + 0.437530865 i 1.150355703+0.437530866 i <  10−8 
3 0 1.202056903 1.202056903 <  10−9 

 
Table 4. Values of 𝐶𝑛{𝑓(𝑛) = 𝑘−𝑧} for α=Re(z)>1 for N=500 

 

That shows that the C-values of f(z) =
1

𝑥𝑧 for Re(z)>1 is ζ(z). 
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PART 3 : 
 

A decomposition of ζ(z) based on the C-transformation of 𝒇(𝒙) =
𝟏

𝒙𝒛
 

for 𝒛 ∈ 𝑪, 𝟎 ≤ 𝑹𝒆(𝒛) < 𝟏 
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1. C-Transformation of 𝑓(𝑧) =
1

𝑥𝑧 for 𝑧 ∈ 𝐶, 0 ≤ 𝑅𝑒(𝑧) < 1 

 

The C-values of 𝑓(𝑧) =
1

𝑥𝑧 from [6] and [7] are equal to the ζ(𝑧) when Re(z)>1, this error |𝐶𝑛{𝑓} - ζ(𝑧)| 

grows significantly in the critical strip 𝑓𝑜𝑟 0 ≤ 𝑅𝑒(𝑧) < 1 as observed in the following table: 
 

 
Α ß 𝐶𝑛{𝑓} ζ(𝑧) |𝐶_𝑛 {𝑓} −ζ(𝑧)| 

0.0 0 𝐶𝑁{𝑓} for N=500 -0.5 0.5 
0.2 2 0.399824505+0.322650799 i 0.360103 + 0.266246 i > 0.05 
0.7 0 -2.777900606 -2.7783884455 > 10−4 

 
Table 5. Values of 𝐶𝑛{𝑓(𝑛) = 𝑘−𝑧} for 0≤Re(z)<1 for N=500 

 

To understand better the value of the difference 𝐶𝑛 {
1

𝑘𝑧} - ζ(𝑧), one can plot the difference for 𝛼 ∈

[0,1) and ß = 0: (Similar exponential charts occur for all values of 𝛼 ∈ [0,1) for any given value of ß) 
 

 
Fig 3. Where a=Re(z) and b=Im(z) 

 
 
And plot the difference for variable values of ß ∈ [0,1) and 𝛼 = 0: (Similar sine charts occur for all values 
of ß ∈ [0,1) for any given value of α) 
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Fig 4. Where a=Re(z) and b=Im(z) 

 

These charts lead to the following calculation of the difference 𝐶𝑛 {
1

𝑘𝑧} −  ζ(𝑧): 

 

Re[𝐶𝑛 {
1

𝑘𝑧} −  ζ(𝑧)] =  
1

2
 𝑛−𝑎 ∗ cos (ß ∗ ln (n)) + O(

1

n
) 

 

Im[𝐶𝑛 {
1

𝑘𝑧} −  ζ(𝑧)] =  
1

2
 𝑛−𝑎 ∗ sin (ß ∗ ln (n)) + O(

1

n
) 

 
With 𝑂(1/𝑛 )−> 0 when 𝑛−> ∞. 

 
And one can finally write: 

 
  𝑅𝑒(𝐶𝑛{𝑓}) =  ∑ 𝑘−𝛼 (cos (ß ∗ ln(𝑘)𝑛

𝑘=1 ) + 
     

+ 
1

[(1−𝛼)2+ß2] (𝑛
(1−𝛼)   [(1-α)*cos(ß*ln(n))+ß* sin(ß*ln(n))]) 

 

+
1

2
 𝑛−𝑎 ∗ cos(ß ∗ ln(n))      [8] 

  
 

𝐼𝑚(𝐶𝑛{𝑓}) =  − ∑ 𝑘−𝛼 (sin (ß ∗ ln(𝑘)𝑛
𝑘=1 )+ 

 

+ 
1

[(1−𝛼)2+ß2] (𝑛
(1−𝛼) 

  [ß*cos(ß*ln(n)) - (1-α)*sin(ß*ln(n))]) 

 

+
1

2
 𝑛−𝑎 ∗ sin(ß ∗ ln(n))      [9] 

 

and the C-value of 𝑓(𝑥) =
1

𝑥𝑧  for 𝑧 ∈ 𝐶, 𝑅𝑒(𝑧) ≥ 0, 𝑧 ≠ 1 is the Riemann Zeta function ζ(z). 
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2. Decomposition of 𝜁(𝑧) = 𝑋(𝑧) − 𝑌(𝑧) 

 

One can rewrite [8] and [9] creating the 𝑋(𝑧, 𝑛) and 𝑌(𝑧, 𝑛) functions: 

 
  𝜁(𝑧)  =  𝑙𝑖𝑚

𝑛→∞
[𝑋(𝑧, 𝑛) −  𝑌(𝑧, 𝑛)], where: 

 
 

  𝑋(𝑧, 𝑛)  =  (∑ 𝑘−𝛼 ∗ 𝑐𝑜𝑠 (ß ∗ 𝑙𝑛(𝑘)𝑛
𝑘=1 ) +

1

2
 𝑛−𝛼𝑐𝑜𝑠 (ß 𝑙𝑛(𝑛)) +   [10] 

+ 𝑖 ∗ (∑ 𝑘−𝛼 ∗ 𝑠𝑖𝑛 (ß ∗ 𝑙𝑛(𝑘))

𝑛

𝑘=1

+
1

2
 𝑛−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑛)))) 

 
 

  𝑌(𝑧, 𝑛) =  n
(1−α) 

 
1

[(1−α)2+ß2]  [((1 − α) ∗ cos(ß ln(n)) + ß ∗ sin(ß ln(n))) +  [11] 

+ i  (ß ∗ cos(ß ln(n)) − (1 − α) ∗ sin(ß ln(n)))] 
 
 
and define: 
 

𝑋(𝑧) =  lim
𝑛→∞

X(z, n) and 

 
𝑌(𝑧) =  lim

𝑛→∞
Y(z, n)  

     
to write: 
 

𝜁(𝑧) = 𝑋(𝑧) − 𝑌(𝑧)        [12] 
 
 
The following table compared the values of 𝜁(𝑧) and 𝑋(𝑧) − 𝑌(𝑧): 

 
 

z= 0 +j* 0   and n=500 

Zeta(z)      = -0.5 + i* 0.0 
 X(z)-Y(z)  = -0.5 +i* 0.0 
 ---> Error =  0.0 +i* 0.0 
 

z= 0.2 +j* 2   and n=500 

Zeta(z)   = 0.360102590022591 + i* -0.266246199765574 
X(z)-Y(z) = 0.360102741838091 +i* -0.266246128959438 
---> Error= -1.5181550 e-7 +i* -7.080613 e-8 
 

z= 0.4 +j* 0   and n=500 

Zeta(z)   = -1.13479778386698 + i* 0.0 
X(z)-Y(z) = -1.1347977871726 +i* 0.0 
---> Error= 3.305619 e-9 +i* 0.0 

 
Table 6. ζ(z) compared to X(z) - Y(z) 

 
 

The highest error for α∈ [0,1), ß ∈ [0,100], n=1000 is 8𝑥10−6.  
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3. Representation of the function 𝜁(𝑧) = 𝑋(𝑧) − 𝑌(𝑧) for Re(z)=1/2 

 

 
Fig. 5: ζ(z) = X(z) - Y(z) 

  

4. Representation of the function |𝜁(𝑧)| = |𝑋(𝑧) − 𝑌(𝑧)| for Re(z)=1/2 

 
Fig. 6: |ζ(z)| = |X(z) - Y(z)| 
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5. Representation of the function 𝑋(𝑧, 𝑛) 

 

The following chart represents 𝑋(𝑧, 𝑛) for 𝑎 = 1/2 and 𝑏 ∈ [1,6] and 𝑛 = 250 

 

 
Fig. 7: 𝑋(𝑧, 𝑛) 

 
The following chart represents 𝑋(𝑧, 𝑛) for 𝑎 ∈ [1,6] and 𝑏 = 1 and 𝑛 = 250 

 

 

Fig. 8: 𝑋(𝑧, 𝑛) 
 



  

 

17 | Page “An Engineer’s Approach To The Riemann Hypothesis And Why It Is True” Pedro Caceres 

 

6. Representation of the function 𝑌(𝑧, 𝑛) 

 

The following chart represents 𝑌(𝑧, 𝑛) for 𝑎 = 1/2 and 𝑏 ∈ [1,6] and 𝑛 = 250 

 
Fig. 9: 𝑌(𝑧, 𝑛) 

 
The following chart represents 𝑌(𝑧, 𝑛) for 𝑎 ∈ [1,6] and 𝑏 = 1 and 𝑛 = 250 

 

 

Fig. 10: 𝑌(𝑧, 𝑛) 
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7. Representation of |𝑋(𝑧, 𝑛)| 

 

Wave representation for |𝑋(𝑧, 𝑛)| 𝑓𝑜𝑟 𝑅𝑒(𝑧) = 1/2 𝑎𝑛𝑑 𝐼𝑚(𝑧) 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. [Fig 11] 

 
Parabolic representation for |𝑋(𝑧, 𝑛)| 𝑓𝑜𝑟 (𝑧) a nontrivial zero of Riemann Zeta. [Fig. 12] 

 
Linear representation for |𝑋(𝑧, 𝑛)|2 𝑓𝑜𝑟 (𝑧) a nontrivial zero of Riemann Zeta. [Fig. 13] 
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8. Representation of |𝑌(𝑧, 𝑛)| 

 

Polynomial representation for |𝑌(𝑧, 𝑛)| 𝑓𝑜𝑟 𝑅𝑒(𝑧) = 1/2 𝑎𝑛𝑑 𝐼𝑚(𝑧) 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. [Fig. 14] 

 
Parabolic representation for |𝑌(𝑧, 𝑛)| 𝑓𝑜𝑟 (𝑧)a nontrivial zero of Riemann Zeta. [Fig. 15] 

 
Linear representation for |𝑌(𝑧, 𝑛)|2 𝑓𝑜𝑟 (𝑧) a nontrivial zero of Riemann Zeta. [Fig. 16] 
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9. Conclusion PART 3 

Using the defined C-transformation, one can write the Riemann Zeta function as the difference of two 
functions X(z) and Y(z). This will provide a new way of analyzing the zeros of the Zeta function, and a new 
approach to the Riemann Hypothesis. 
 
The decomposition is as follows: 
 

 
 𝜁(𝑧)  =  𝑋(𝑧)  −  𝑌(𝑧), where: 
 
 

 𝑋(𝑧, 𝑛)  = ∑ 𝑘−𝛼 ∗ cos (ß ln(𝑘))𝑛
𝑘=1 +

1

2
 𝑛−𝛼cos (ß ln(𝑛)) + 

   + 𝑖 ∗ (∑ 𝑘−𝛼 ∗ sin (ß ln(𝑘))𝑛
𝑘=1 +

1

2
 𝑛−𝛼 sin(ß ln(𝑛))) 

 
 

and: 𝑋(𝑧)  =  𝑙𝑖𝑚
𝑛→∞

𝑋(𝑧, 𝑛) 

 
 

 𝑌(𝑧, 𝑛) =  n
(1−α)  

1

[(1−α)2+ß2]  [((1 − α) ∗ cos(ß ln(n)) + ß ∗ sin(ß ln(n))) + 

+ i  (ß cos(ß ln(n)) − (1 − α) ∗ sin(ß ln(n)))] 
 
  

and:  𝑌(𝑧)  =  𝑙𝑖𝑚
𝑛→∞

𝑌(𝑧, 𝑛) 

 
 
 

Observations: 
 
a. |𝑋(𝑧, 𝑛)| has a wave representation 

b. |𝑋(𝑧, 𝑛)| becomes a parable when z is a nontrivial zero of Riemann Zeta 

c. |𝑋(𝑧, 𝑛)|2 becomes a line when z is a nontrivial zero of RZF with slope equal 
1

ß2+¼
 

 
d. |𝑌(𝑧, 𝑛)| has a polynomial representation 

e. |𝑌(𝑧, 𝑛)| becomes a parable when z is a nontrivial zero of Riemann Zeta 

f. |𝑌(𝑧, 𝑛)|2 becomes a line when Re(z)=1/2 with slope equal 1/(ß2 + ¼) 

 
So, the only common representation for |X(z)| and |Y(z)| occurs when Re(z)=1/2, so 
 
𝑋(𝑧)  −  𝑌(𝑧) = 0 if and only if Re(z)=1/2 
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PART 4: 
 

Proof of the Riemann Hypothesis using the decomposition 
 

𝜻(𝒛)  =  𝑿(𝒛)  −  𝒀(𝒛) 
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1. Analysis of Absolute Square |𝑌(𝑧, 𝑛)|2  

 

|𝑌(𝑧, 𝑛)|2 =  [( 𝑛
(1−𝛼)  

1

[(1 − 𝛼)2 + ß2]
 [(1 − 𝛼) ∗ 𝑐𝑜𝑠(ß𝑙𝑛(𝑛)) + ß ∗ 𝑠𝑖𝑛(ß𝑙𝑛(𝑛))])

2

  

 +  (𝑛
(1−𝛼)  

1

[(1 − 𝛼)2 + ß2]
 [ß ∗ 𝑐𝑜𝑠(ß𝑙𝑛(𝑛)) − (1 − 𝛼) ∗ 𝑠𝑖𝑛(ß𝑙𝑛(𝑛))])

2

] 

 

 |𝑌(𝑧, 𝑛)|2  =  𝑛2(1−𝛼) ∗ 
1

[ß2+(1−𝛼)2]
    Polynomial representation    [13] 

 
 This could be observed in Fig. 14, 15, 16. 

1.1. |𝑌(𝑧, 𝑛)|2 is a straight line if and only if 𝛼 =
1

2
 

The slope of |𝑌(𝑧, 𝑛)|2  with respect to n is given by: 
 

 𝑠𝑙𝑜𝑝𝑒(|𝑌(𝑧, 𝑛)|2)  = 𝑑(|𝑌(𝑧, 𝑛)|2)/𝑑𝑛 
Which equals to: 

𝑑(|𝑌(𝑧, 𝑛)|2)/𝑑𝑛 =  2(1 − 𝛼) 𝑛1−2𝛼 ∗  
1

[ß2 + (1 − 𝛼)2]
  

 
|𝑌(𝑧, 𝑛)|2  can only be a line when the slope is constant, which can only happen if and only if:  

 
(1 − 2α) = 0 

therefore:  

 |𝑌(𝑧, 𝑛)|2 is a straight line if and only if 𝛼 =
1

2
      [14] 

 

1.2. Summary for |𝑌(𝑧, 𝑛)|2  for 𝛼 =
1

2
: 

 the slope |𝑌(𝑧, 𝑛)|2 is constant if and only if 𝛼 =
1

2
   

 When α=1/2, |𝑌(𝑧, 𝑛)|2  = 
𝑛

[ß2+
1

4
]
   

 The slope for |𝑌(𝑧, 𝑛)|2  is  
1

[ß2+
1

4
]
 for 𝛼 =

1

2
 

 
2. Analysis of Absolute Square |𝑋(𝑧, 𝑛)|2        [15]  

 

|𝑋(𝑧, 𝑛)|2  =  (
1

2
𝑛−𝑎 cos(ß ln(𝑛)) + ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘)))2 +  

(
1

2
𝑛−𝑎sin (ß ln(𝑛)) + ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘)))2 

 
Applying properties of infinite series (Kopp): 
 

|𝑋(𝑧, 𝑛)|2  =
1

4
𝑛−2𝑎(cos2(ß ln(𝑛)) + sin2(ß ln(𝑛))) + 

(∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘)))2 + (∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘)))2 + 

+ 𝑛−𝑎[cos (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘))] + 

+𝑛−𝑎[sin (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘))] 
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|𝑋(𝑧, 𝑛)|2  = ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗=1

𝑛

𝑘=1

+ ∑ 𝑘−2𝛼

𝑛

𝑘=1

+ 

  +
1

4
𝑛−2𝑎 +  𝑛−𝑎[cos (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘))] + 

+ 𝑛−𝑎[sin (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘))] 

 
One can express the previous expression replacing: 
 

𝑅(𝑛) =
1

4
𝑛−2𝑎 + 𝑛−𝑎 [cos (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑐𝑜𝑠(ß 𝑙𝑛(𝑘)) + sin (ß ln(𝑛)) ∗ ∑ 𝑘−𝛼 𝑠𝑖𝑛(ß 𝑙𝑛(𝑘))] 

 
With: 
 
 lim
𝑛→∞

𝑅(𝑛) = 0 if α>0 , therefore,        [16] 

 

|𝑋(𝑧, 𝑛)|2  = ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß ∗ 𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗=1

𝑛

𝑘=1

+ ∑ 𝑘−2𝛼

𝑛

𝑘=1

+ 𝑅(𝑛)                                                            [17] 

  
    

When |𝑋(𝑧, 𝑛)|2 is represented graphically, one can observe that: 
 

- |𝑋(𝑧, 𝑛)|2 is a wave that converges when n → ∞ and α>1 (Fig. 17) 

 

- |𝑋(𝑧, 𝑛)|2 is a wave that does not converge when n → ∞ and α<1 (Fig. 18) 

 

- |𝑋(𝑧, 𝑛)|2 is a wave that collapses to a line when n → ∞ and α=1/2 and ß=Im( 𝜁(𝑧∗)) (Fig. 19) 

 

 
Fig 17.  |𝑋(𝑧, 𝑛)|2 for α>1 
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Fig 18.  |𝑋(𝑧, 𝑛)|2for α<1 

 
 
 

 
Fig 19. For a=0.5, b=ß1, |𝑋(𝑧, 𝑛)|2collapses to a line 
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2.1. |𝑋(𝑧, 𝑛)|2 converges when 𝑛 → ∞ and α>1 to |𝜁(𝛼, ß)|2 

 

The limit of |𝑋(𝑧, 𝑛)|2outside the critical strip [0,1] can be calculated using [16]: 
 

𝑙𝑖𝑚
𝑛→∞

|𝑋(𝑧, 𝑛)|2   = lim
𝑛→∞

∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))𝑛

𝑗=1
𝑛
𝑘=1   

 
As one can see in some examples in the following table where z=α+iß: 
 

 α ß  lim
𝑛→∞

|𝑋(𝑧, 𝑛)|2      |𝜁(𝛼, ß)|2 

  1.0 7  1.074711506185445  1.074756 
  1.0 10  1.4413521753699579  1.441430 
  2.5 7  1.0093487944300192  1.009349  

2.5 10  1.0507402208589398  1.050740 
_______________________________________________________________________________ 

Table 7 
 

 
𝑙𝑖𝑚
𝑛→∞

|𝑋(𝑧, 𝑛)|2 =  |𝜁(𝑧)|2 = 𝜁(𝛼 + ß𝑖) ∗ 𝜁(𝛼 − ß𝑖)   𝑓𝑜𝑟 𝛼 > 1 

 
 

And also, in the following Fig. 20: 
 

|X(z,n)|2 with α and ß variable 

 
Fig 20. |𝑋(𝑧, 𝑛)|2 converges when 𝑛 → ∞ and α>1 

 
One can observe that the graphs for α=1 do not converge while graphs for α>1 they all converge. 
This observation can be used to prove that there are no zero values of ζ(z) for z with Re(z)>1. 
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2.2. |𝑋(𝑧, 𝑛)|2 diverges when 𝑛 → ∞ for α≤1 

 

|𝑋(𝑧, 𝑛)|2diverges when 𝑛 → ∞ for α<1 because of [16] and [17]: 
 

|cos (ß (ln (
𝑘

𝑗
)) | < 1 

 
 
And:  

∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼

𝑛

𝑗=1

𝑛

𝑘=1

 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠 𝑓𝑜𝑟 𝛼 < 1 

 
 
Therefore: 

𝑙𝑖𝑚
𝑛→∞

|𝑋(𝑧, 𝑛)|2   = ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗=1

𝑛

𝑘=1

 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠 𝑓𝑜𝑟 𝛼 < 1 

 
 
 

2.3. |𝑋(𝑧, 𝑛)|2 does not collapse to any polynomial function |𝑋(𝑧, 𝑛)|2 = 𝐶 ∗ 𝑛𝑡  𝑓𝑜𝑟 𝑡 > 1, 𝑎𝑛𝑑 𝐶 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 
One can prove it with a reduction to absurd. 
 

Let’s assume that |𝑋(𝑧, 𝑛)|2 = 𝐶 ∗ 𝑛𝑡 𝑓𝑜𝑟 𝑡 > 1 where C and t integers C>0 and t>0 
 

If |𝑋(𝑧, 𝑛)|2 = 𝐶 ∗ 𝑛𝑡  then: 
 

lim
𝑛→∞

|𝑋(𝑧, 𝑛)|2/𝑛𝑡  = 𝐶 

 
But: 

lim
𝑛→∞

|𝑋(𝑧, 𝑛)|2 /𝑛𝑡   =
1

𝑛𝑡 ∗ lim
𝑛→∞

∑ 𝑘−2𝛼𝑛
𝑘=1 +

1

𝑛𝑡 ∗ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (
𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1  

 
And: 
 

1

𝑛𝑡
∗ lim

𝑛→∞
∑ 𝑘−2𝛼

𝑛

𝑘=1

= 0   𝑓𝑜𝑟 𝑡 > 1 

 

1

𝑛𝑡
∗ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

=  0 𝑓𝑜𝑟 𝑡 > 1 

 
So, 𝐶 must be 0 which is an absurd. 
 
 

2.4. |𝑋(𝑧, 𝑛)|2 collapses to a straight-line |𝑋(𝑧, 𝑛)|2 = 𝐶𝑛   𝑖𝑓 𝑅𝑒(𝑧) = 1/2 

 
The proposition says that the following limit exists only for Re(z) = 1/2 
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lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2/ 𝑛) = S 

 
 
Using the expression: 
 

𝑙𝑖𝑚
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 / 𝑛) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼

𝑛

𝑘=1

+ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) 

 
2.4.1. For α>1/2, one can see that 𝑙𝑖𝑚

𝑛→∞
(|𝑥(𝑧, 𝑛)|2/ 𝑛) = 0: 

 

lim
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼𝑛

𝑘=1 ) = 0 because 2α>1 and the series is convergent 

 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) < 𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ ∑(𝑘−𝛼 ∗ 𝑗−𝛼

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) < 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼

𝑛

𝑘=1

) 

 
So: 
 

lim
𝑛→∞

(
1

𝑛
∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) = 0 

 
2.4.2. For α<1/2, one can see that 𝑙𝑖𝑚

𝑛→∞
(|𝑋(𝑧, 𝑛)|2/𝑛)= ∞ as: 

lim
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼

𝑛

𝑘=1

) < lim
𝑛→∞

1

𝑛
(𝑛 ∗

1

𝑛
) = lim

𝑛→∞

1

𝑛
=  0 

 
And: 
 

lim
𝑛→∞

1

𝑛
∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ cos (ß (ln (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) > lim
𝑛→∞

(
1

𝑛
∗  𝑛2 ∗

1

𝑛2𝛼
) = ∞ 

 
Where the summations are replaced by the number of elements in the matrix (n x n) times the smallest 
value in each row (1/n) then 1>(2-1-2α)>0 when α<1/2 
 
 
2.4.3. Limit for α=1/2.  

 

When α=1/2, one can express (|𝑋(𝑧, 𝑛)|2/n) as: 
 
 

lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 /𝑛)  = 

= lim
𝑛→∞

1

𝑛
(∑ 𝑘−1

𝑛

𝑘=1

+ ∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ cos (ß (ln (
𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) 

=  𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−1

𝑛

𝑘=1

) + 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

)  = 
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=  0 + 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) =  

=  𝑙𝑖𝑚
𝑛→∞

2𝑛

𝑛
(∑ 𝑛−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑛

𝑗
))

𝑛−1

𝑗=1

) = 

 

=  𝑙𝑖𝑚
𝑛→∞

2( 𝑛−
1
2  ∑∗ 𝑗−

1
2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑛

𝑗
))

𝑛−1

𝑗=1

) =    

 
Using the integral approximation of the infinite series 
 

= 2 ∗ lim
𝑛→∞

2 ∗ √𝑛 ∗ cos (ß ∗ 𝑙𝑛 (
𝑛
𝑛

)) − 2 ∗ ß ∗ sin (ß ∗ ln (
𝑛
𝑛

)

4 ∗ ß2 + 1
∗ 𝑛−

1
2 

 

=  2 ∗  
2 ∗ √𝑛

4 ∗ ß2 + 1
𝑛−

1
2  =  2 ∗  

2

4 ∗ ß2 + 1
 =   

1

ß2 + 1/4
 

 

So, if lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 /𝑛) exists will be equal to: 

 

lim
𝑛→∞

(|𝑋(𝑧, 𝑛)|2/𝑛) =  
1

ß2 + 1/4
                             [18] 

 
     if z=1/2+iß 
  
 
And this limit can only exist when |X(z, n)|2 is monotonous which means that the curve will cross the x-
axis only once.  
 

|𝑋(𝑧, 𝑛)|2 = (∑ ∑ 𝑘
−

1

2 ∗ 𝑗
−

1

2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗=𝑘

𝑛

𝑘=1

) 

    = 2 ∗ 𝑛−𝑎 ∗ (∑  𝑗−𝑎 ∗ cos (ß ∗ (ln (
𝑥

𝑗
)))𝑛−1

𝑗=1 ) 

 
 
 
 

3.  Calculating the zeros of |𝑋(𝑧, 𝑛)|2    

 

Let’s define the function 𝐶2(𝑛, 𝑎, 𝑏) =  |𝑋(𝑧, 𝑛)|2 in R (where z=a+bi) such that: 
 

 𝐶2(𝑛, 𝑎, 𝑏) = 2 ∗ 𝑛−𝑎 ∗ (∑  𝑗−𝑎 ∗ cos (𝑏 ∗ (ln (
𝑛

𝑗
)))

𝑛−1

𝑗=1

)                               [19] 

 
With the following wave representation for 𝐶2(𝑛, 𝑎, 𝑏): 
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Fig 21. 𝐶2(𝑥, 𝑎, 𝑏) for a=0.4 and variable b 

 
 
 

 
 

Fig 22. 𝐶2(𝑛, 𝑎, 𝑏) for a=0.5 and variable b 
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Fig 23. 𝐶2(𝑛, 𝑎, 𝑏) for a=0.6 and variable b 
 

As a wave, 𝐶2(𝑛, 𝑎, 𝑏) can have one or more zeros. For 𝐶2(𝑛, 𝑎, 𝑏) to have only one zero, it must cross the 

axis y=0 only once, which means that the wave collapses to a polynomial line. A numeric method has been 

created and coded (Python) to find the values of  (𝑛, 𝑎, 𝑏)  such that 𝐶2(𝑛, 𝑎, 𝑏)=0. The following table 

shows an example of those calculated values, where x=n, a=Alfa, and b=Beta: 

 

 
Table 8. Number of Zeros of 𝐶2(𝑥, 𝑎, 𝑏)for different values of a=Alfa, and b=Beta 
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The calculations for 𝑎 ∈ (0,1) and 𝑏 ∈ [1, 100] only found single zeros for 𝐶2(𝑥, 𝑎, 𝑏) for values of 𝑎 = 0.5 

as shown in the following table that summarizes the single zeros found in those intervals: 

 

 
 

Table 9. List of first Zeros of 𝐶2(𝑥, 𝑎, 𝑏) 
 

One can observe that: 
  𝑖𝑓  𝐶2(𝑥, 𝑎, 𝑏) = 0 → 

 
𝑎 = 1/2 

       
     𝑏 =  𝐼𝑚(𝑧)        𝑤𝑖𝑡ℎ 𝜁(𝑧) = 0 

 
(a, b) are the Nontrivial Zeros of ζ(z) in the critical line. 

 

𝑥 = 𝑏2 +
1

4
 

      
And the calculated values of lim

𝑥→∞
𝐶2(𝑥, 𝑎, 𝑏) for the values of (a,b) from Table 9 are: 

 

 
Table 10. Limit of 𝐶2(𝑥, 𝑎, 𝑏) for b in Table 10 and x->∞ 
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Table 11. Comparing “b” calculated with known zeros of ζ(z) 

 
 

Therefore, |𝑋(𝑧, 𝑛)|2 = C(𝑛, 𝑎, 𝑏) has the following special properties for all (a,b) such that ζ(a+bi)=0.  
 

 if S=  
1

𝑏2+1/4
 

 

  𝐶2(𝑛, 𝑎, 𝑏) =  0 𝑤ℎ𝑒𝑛 𝑥 =
1

𝑆
, 𝑎 =

1

2
,   𝑏 = 𝐼𝑚(𝑧∗) with z∗ a nontrivial zero of 𝜁(𝑧) 

 

  lim
𝑥→∞

𝐶2 (𝑛,
1

2
, 𝑏) = 𝑆 

 
 
 

Graphically: 
 
 

 
Fig 24. 𝐶2(𝑛, 1/2, 𝑏) such that ζ(1/2+b*i)=0 
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4. Theorem: For Re(z)≥0, if z* is a nontrivial zero of ζ(z), then Re(z*)=1/2 

 
Proof: 

 
➢ From [10], [11], [12]: ζ(z) = 𝑋(𝑧) − 𝑌(𝑧) for Re(z)>0, z≠1 

➢ From [13]:   |Y(z, n)|2 is always a polynomial line. 

➢ From [14]:   |Y(z, n)|2 is only straight line if and only if Re(z)= ½  

|𝑌(𝑧∗)|2 = lim
𝑛→∞

|Y(z∗, n)|2  tends to a straight line with slope 
1

[ß∗2+1/4]
 

➢ From [15]: |X(z, n)|2 is a wave function that has only one polynomial representation in the form of a 

straight line if and only if Re(z)= ½ [18] and for certain values of Im(z)=ß* calculated using [19]. 

These values of ß* coincide with the imaginary parts of the nontrivial zeros of Riemann Zeta z*, so: 

|𝑋(𝑧∗)|2 = lim
𝑛→∞

|X(z∗, n)|2  tends to a straight line with slope 
1

[ß∗2+1/4]
  

when Re(z)=1/2 and ß=NTZ of RZF 

➢ Therefore |𝑋(𝑧∗)|2 = |𝑌(𝑧∗)|2 and |𝑋(𝑧)| = |𝑌(𝑧)| only occur when Re(z*) = ½  

➢ As ζ(z)=X(z)-Y(z), therefore all zeros of ζ(z) for z>=0, z≠1 have Re(z)=1/2. [QED] 

 

 

Fig. 25: for ζ(z)=X(z)-Y(z)=0   -> |X(z)| =  |Y(z)| for Re(z) = 1/2, 
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PART 5: 
 

On the distribution of the zeroes of the RZF in the critical line 
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1. From [17] one can write: 

𝑋(𝑧, 𝑛)  =  (∑ 𝑘−2𝛼

𝑛

𝑘=1

+ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) 

 
therefore, the limit of (|𝑋(𝑧, 𝑛)|2/𝑛 

 

𝑙𝑖𝑚
𝑛→∞

(|𝑋(𝑧, 𝑛)|2 / 𝑛) = 𝑙𝑖𝑚
𝑛→∞

1

𝑛
(∑ 𝑘−2𝛼

𝑛

𝑘=1

+ ∑ ∑ 𝑘−𝛼 ∗ 𝑗−𝛼 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

) 

 
 

From [18], if lim
𝑛→∞

(|X(z, n)|2 /𝑛) exists will be equal to: 

 

lim
𝑛→∞

(|X(z, n)|2 /𝑛) =  
1

ß2+1/4
  𝑖𝑓  𝑧 =

1

2
+ 𝑖ß 

 
 
 
2. Calculating the nontrivial zeros of ζ(z) using the Harmonic function 

 

From the previous equations, and for any 𝑧∗ =
1

2
+ ß𝑖 , a nontrivial zero of Zeta in the critical line α=1/2, 

one can write:  
 

 

∑ 𝑘−1𝑛
𝑘=1 →  

𝑛

(ß2+
1

4
)
 −  ∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (

𝑘

𝑗
))𝑛

𝑗≠𝑘
𝑛
𝑘=1  when 𝑛 → ∞ 

 
Where 𝐻𝑛 =  ∑ 𝑘−1𝑛

𝑘=1  is the Harmonic function. One can simplify the expression by creating functions 
𝑂(𝑛) and 𝑃(𝑛): 
 

𝑂(𝑛) = − ∑ ∑ 𝑘−1/2 ∗ 𝑗−1/2 ∗ 𝑐𝑜𝑠 (ß (𝑙𝑛 (
𝑘

𝑗
)

𝑛

𝑗≠𝑘

𝑛

𝑘=1

 

And  

𝑃(𝑛) =  
𝑛

(ß2 +
1
4

)
 

 
From the definition of limit, one can write that for any ε arbitrarily small, there exists and N such that for 
any n>N: 

 

𝐻𝑛 − (𝑂(𝑛) + 𝑃(𝑛)) <  𝜀                                 [20] 

 
If 𝐻(𝑛) = 𝑂(𝑛) + 𝑃(𝑛), then [20] can be written as: 
 

𝐻𝑛 − 𝐻(𝑛) <∈  [21] 
 
 

The following chart shows the representation of H(n), O(n), and P(n) [P(n) is a straight line with slope 
1

(ß2+1/4 )
]: 
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Fig 26. Straight Lines P(n) 

 

 

The equation [20] can be used to create an algorithm to find the nontrivial zeros of zeta in the critical line 
without knowing any of them based on their connection to the Harmonic function.  
 
An example of a Python code to calculate the zeros of zeta in the critical line with 1 decimal places 
accuracy based on [20]: 

 
# __Python 3.7 

# __Pedro Caceres__ 2020 Feb 17 

#Rough code to find zeros of Riemann Zeta using the Harmonic function 

harmo   = 0 

epsilon = 0.01 

nn      = 50 

 

for j in range(1,nn): 

     harmo += 1 / j 

print('Harmonic(',nn,')=', harmo) 

 

for b in range (1,500): 

     b = b / 10 

     a1   = nn/((1-alfa)**2 + b**2) 

     b1 = 0 

     for k in range(1,nn): 

         for j in range(1,nn): 

             if j!=k: 

                 b1 += (k*j)**(-alfa) * m.cos(b * m.log(k/j)) 

     h1=a1-b1 

     

     if abs(h1-harmo) < epsilon: 

         print('------> Solution beta=',b, '  ... and->', h1-harmo) 

#end_of_code 
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This code tends the following results: 
 

Harmonic( 50 )= 4.4792053383294235 

 

--------------> Solution beta= 14.1   ... and error -> 0.0067952158225219605 

--------------> Solution beta= 25.0   ... and error -> -0.008460202279115592 

--------------> Solution beta= 30.4   ... and error -> 0.0024237587453344034 

--------------> Solution beta= 37.6   ... and error -> 0.0012958863904977136 

--------------> Solution beta= 40.9   ... and error -> -0.009083573623293262 

--------------> Solution beta= 48.0   ... and error -> -0.0027214317425938717 

--------------> Solution beta= 49.6   ... and error -> 0.0024275253143217768 
 

 

These values compared to (Odlyzko): 
 

ß(1)   = 14.134725142 
ß(3)   = 25.010857580 
ß(4)   = 30.424876126 
ß(6)   = 37.586178159 
ß(7)   = 40.918719012 
ß(9)   = 48.005150881 
ß(10) = 49.773832478 

 
Changing the values of “n” and epsilon, one can increase the accuracy of the results. 
 
The fact that the Harmonic function, Hn , can be expressed in an infinite number of ways as a function of 
any ß=Im(z) imaginary part of a nontrivial solution of ζ(z), provides also an algorithm to calculate all 
nontrivial zeros from any known zero.  
 
Let’s define the function: 

 

𝐻(𝛼, ß, 𝑛)−>  
𝑛

(ß2 +
1
4

)
 – ∑ ∑ 𝑘−

1
2 ∗ 𝑗−

1
2 ∗ cos (ß ∗ (𝑙𝑛 (

𝑘

𝑗
))

𝑛

𝑗≠𝑘

𝑛

𝑘=1

 𝑤ℎ𝑒𝑛 𝑛 → ∞ 

 
For α=1/2, and ε arbitrarily small, for any two nontrivial zeros of zeta (𝛼, ß1) and (𝛼, ß2), there exists and 
N such that for any n>N: 

 

𝐻 (𝛼 =
1

2
, ß1, 𝑛) − 𝐻 (𝛼 =

1

2
, ß2, 𝑛) < 𝜀                                         [21] 

 
This proposition means that the nontrivial zeros of the Riemann Zeta are not distributed randomly, and 
they follow a defined structure.  
 
Sample code to show how [21] can be used to find zeros based on a known zero: 

 
# Code to find zeros from any known zero 

# __Pedro Caceres__ 2020 Feb 17 

nn = 60 #Not really high. Used for a rough calculation 

 

epsilon = 0.00002 

# Known Zero ß(1) 

zero= 14.134725142 

 

#Calculating H(1/2,zero,n) = a - b 

a2  = nn/((1-alfa)**2 + zero**2) 

b2=0 

for k in range(1, nn): 

    for j in range(1, nn): 
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        if j != k: 

            b2 += (k * j) ** (-alfa) * m.cos(zero * m.log(k / j)) 

 

h2 = a2-b2 #H2 to compare against 

 

# range to find additional zeros of zeta 

for b in range (245000,310000): #adding digits increases accuracy 

    b = b / 10000 

 

    #Calculating a, b 

    a1   = nn/((1-alfa)**2 + b**2) 

    b1 = 0 

    for k in range(1,nn): 

        for j in range(1,nn): 

            if j!=k: 

                b1 += (k*j)**(-alfa) * m.cos(b * m.log(k/j)) 

 

    #Calculating H1 

    h1=a1-b1 

 

    #If error < epsilon, then print potential zero 

    if abs(h1-h2) < epsilon: 

        print('-----------> Solution beta=',b, '  ... and error ->', h1-h2) 

 

#end_of_code 

 
 

Results: 
 

-----> Solution beta= 25.0155   ... and error -> +1.442262027140373 e-05 

-----> Solution beta= 30.4385   ... and error -> -1.140533215249206 e-05 

 

These values compared to (Odlyzko): 
 
  ß(3) = 25.010857580 
  ß(4) = 30.424876126 

 
Changing the values of  the variable “nn” and epsilon in the code, the accuracy can be increased to more 
decimal places. 

 
 
3. Conclusion 

The distribution of the nontrivial zeros of the Riemann Zeta function in the critical line is not random. They 

are located in values of 𝑧∗ =
1

2
+ ß𝑖 that verify that for any ß, and ε arbitrarily small, there exists and N such 

that for any n>N: 
 

∑ 𝑘−1

𝑛

𝑘=1

− ( 
𝑛

(ß2 +
1
4

)
 −  ∑ ∑ 𝑘−

1
2 ∗ 𝑗−

1
2 ∗ cos (ß (𝑙𝑛 (

𝑘

𝑗
))) <  𝜀

𝑛

𝑗≠𝑘

𝑛

𝑘=1

                                       [22] 
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