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Abstract. The Lorentz transformation of the special theory of relativity (STR) describes the time 
dilation between two reference frames moving relative to each other at a constant speed. The present 
work focuses on the fact that the time observed on the ‘other’ system depends on the location of the 
clocks used for time comparisons. First, the paper presents a unified framework for the various 
‘observational principles’, i.e. the specification of which clocks to apply; throughout restricting to 
consider a single space coordinate. Next we suggest that the time can be defined by a two-dimensional 
variables, involving both ‘clock time’ and position. This two-dimensional (time, space)-vector intends 
to alleviate the inherent paradox of time dilation. One suggestion is to formulate this vector as a complex 
number. Here both the absolute value, as well as the real and imaginary part have simple interpretations. 
The real part is denoted ‘positional time’ and is actually invariant under the Lorentz transformation. The 
paper also includes a discussion of the travelling twin example. 
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1. Introduction 

The Lorentz transformation provides the mathematical description of space-time for two reference 
frames moving relative to each other at constant speed; i.e. the situation described in the special theory 
of relativity (STR). The present work strives to explore the Lorentz transformation, and the interpretation 
of time dilation. The first part of the paper (Ch. 2-3) presents an abridged and modified version of [1]; 
discussing essentially well-known results. This includes some critical remarks to the current narrative 
on time dilation. 

The basis for the discussions is the standard theoretical experiment, with two co-ordinate systems 
(reference frames), K and K' moving relative to each other at speed, v. We investigate the relation 
between space and time parameters, (x, t) on system K and the corresponding parameters (x', t') on 
system K', (thus, restricting to have just one space coordinate). The relation is provided by the Lorentz 
transformation. 

A vast amount of literature exists on this topic. As a background we consider a small sample, authored 
by experienced scientists in the field: books by Bridgman,[2], Giulini, [3] and Mermin, [4]; further, 
some web pages; Andrew Hamilton, [5] and Pössel, (‘Einstein Online’), [6]. These references mainly 
address non-experts. But it is of interest to see how the main ideas of the STR are presented.  

Definition of simultaneity becomes crucial when clocks are moving relative to each other. However, we 
will in this paper restrict to consider events which occur at the same location and time. We will assume 
that each reference frame has a set of calibrated clocks, located at virtually any position. So in principle 
we can at any position compare the clocks of the two reference frames. Thus, any convention to define 
simultaneity across reference frames by use of light rays is not considered in the present paper. 

The question of symmetry is interesting. The STR essentially describes a symmetric situation for the two 
systems/observers moving relative to each other. And for instance the reference [5] specifies an 
experiment of complete symmetry, referring to two spaceships moving relative to each other. Other 
references, however, are not found that explicit, and describe situations apparently involving some 
asymmetry. 

Further, I find the sources somewhat ambiguous regarding the very interpretation of time dilation. In 
what sense – and under which precise conditions – is time dilation to be considered a true physical 
phenomenon? How should we interpret the common statement: 'Moving clock goes slower'? Many 
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authors apply the expression 'as seen' by the observer on the other reference system, perhaps indicating 
that it is an apparent effect, not a physical reality, without elaborating on the interpretation of 'as seen'. 
However, others stress that 'everything goes slower' on the 'moving system', not only the clocks; truly 
stating that the time dilation represents a physical reality also under the conditions of STR, (i.e. no 
gravitation etc.).  On the other side Giulini [3] in Section 3.3 of his book states: ‘Moving clocks slow 
down’ is ‘potentially misleading and should not be taken too literally’. However, the expression ‘not be 
taken too literally’ is not very precise.  

Further, I miss a more thorough discussion of the multitude of (time) solutions offered by the Lorentz 
transformation. As pointed out e.g. by Pössel [6] the phenomenon of time dilation stems from the fact 
that clocks of the two systems have to be compared at least twice, so it cannot be the same two clocks 
being compared. Mermin [4] states that what 'moves' is decided by which clocks are chosen to be 
synchronized. This seems to be is in line with the views of the present work: the procedure of clock 
synchronization and clock comparison decides which reference system has the time moving 
faster/slower.  

In the present paper we specify the various expressions for the time dilation following from the Lorentz 
transformation. In doing so, we introduce the concept of observational principle; that is, the specification 
of which clocks to apply for the required time comparisons. A unified framework for these observational 
principles is given, stressing that time measured for 'the other system' is given by the location where the 
time reading/comparison is carried out.  

So rather than specifying one single time dilation formula – which is typically based on a somewhat 
arbitrary definition of simultaneity – we will in the present work look at the total picture of all 
expressions for time dilation.  

This multitude of expressions/solutions represents a kind of paradox: There is a clock synchronization 
both locally on each reference frame and between reference frames; but nevertheless clock comparisons 
show different values. So in the second part of this work (Ch. 5) we investigate alternative formulations 
of the (time, space) variable. One formulation applies complex numbers, and both the absolute value 
and the real and imaginary parts have simple interpretations. The real part depends on both the clock 
reading of the reference frame and on the location, and we refer to this as positional time. Further, this 
real part is invariant under the Lorentz transformation; thus, assigning the same value to the positional 
time at this location for all reference frame of constant relative speed. 

The considerations of the present work are essentially of mathematical nature, exploring the model 
suggested by the Lorentz transformation. However, in Chapter 4 we include a discussion of the travelling 
twin case, based on the views formulated in Chapter 3. 

2. The Lorentz transformation 

2.1 Basic assumptions  

The main focus of this paper is the Lorentz transformation, describing two reference frames, K and K' 
passing each other at a relative speed, v. We restrict to consider just one space co-ordinate, (x-axis), with 
speed of light (c) observed to be constant for all reference frames. We apply ‘Newtonian/classical’ 
arguments for events relative to a specific coordinate system, and the model represents a completely 
idealized situation. Further, the discussions are based on the following specifications: 

 There is a complete symmetry between the two co-ordinate systems, K and K'; the systems being 
identical in all respects. 

 On both reference frames there is an arbitrary number of identical, synchronized clocks, located at 
various positions where it is required to measure time. Thus, restricting to consider events on a single, 
specific reference frame, simultaneity is simply decided by comparing clock readings of the relevant 
clocks.  
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 When we consider two different reference system, simultaneity of events will mean that they occur 
at the same time and at the same location; i.e. clocks at different systems are only compared when 
they are at the same location. 

 At time t = t' = 0, clocks at the location x = 0 on K and location x' = 0' on K' are synchronized. This 
represents the definite starting point, from which all events are measured; it is the ‘point of initiation’. 

 We may choose the perspective of one of the systems, say K, and refer to this as the primary system. 
This could in general refer to the system where the (main) experimental equipment is located. In the 
present context it will simply mean that the time on this ‘primary’ system, for any position, x, is 
given as a constant, t(x) ≡ t (of the synchronized clocks); directly defining simultaneity on this 
reference frame. Consequently, the observed of time, t' on the 'other' system will depend on the 
location, x where the time reading is carried out.  
 

2.2 Formulation of the Lorentz transformation 

The Lorentz transformation represents the fundament for our discussion of time dilation. The so-called 
length contraction along the x-axis equals, 

                                                                     ݇௫ = ට1 − (
௩


)ଶ                                                                (1) 

The Lorentz transformation for time and one space co-ordinate is given by  

ᇱݔ                                                                        =  
௫ି௩௧

ටଵି(ೡ


)మ
                                                                    (2) 

ᇱݐ                                                                        =  
௧ି ೡ

మ௫

ටଵି(ೡ


)మ
                                                                    (3) 

This transformation relates simultaneous time readings, t and t' performed at identical locations x on K 
and x' on K'. We note that an observer at K and an observer at K', who at an instant in time are at the 
same location - actually passing each other at the moment in question - will agree both on the time t at 
K and on the time t' at K'; these observed values being specified by the above Lorentz transformation. 
They will, however, (usually) observe t ≠ t'. 

3 Observational principles and time dilation 
 

3.1 Two main observational principle 

We now point to some direct consequences of the Lorentz transformation. At time, t = t' = 0 a first 
comparison of clocks at the two systems is carried out at the origin, x = 0, x' = 0'. The reference frames 
are moving relative to each other at speed, v, and for the next clock comparison we must take a crucial 
decision: Either to compare the clock at x' = 0' with a clock on K, or to compare the clock at x = 0 with 
a passing clock on K'. 

In case 1, the clock at x' ≡ 0' on K' passes a position, x (on K) at time t. This actually means the location, 
x = vt. Inserting this value for x in the Lorentz transformation, (3), we get the well-known relation 
between t and t' at this location: 

ᇱݐ                                                                      = ට1 ݐ  − (
௩


)ଶ                                                             (4) 

This is the 'standard' time dilation formula, and in the perspective of K we will refer to this as the 
observational principle A; (we follow one fixed clock, moving relative to K). 
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In case 2 we follow a clock at x ≡ 0 on K, and at this position we make comparisons with clocks on K' 
as they pass along. Inserting this value, x=0 in the Lorentz transformation, it directly follows that at time 
t on K, then the time ݐᇱ observed on K' at this location is given as 

ᇱݐ                                                                       =  
ଵ

ටଵି(ೡ


)మ
 (5)                                                                 ݐ

In the perspective of K we refer to this as observational principle B, (all observations on K made from 
one fixed position, x = 0). In a way, this eq. (5) gives the ‘opposite’ result of principle A, and due to the 
symmetry this should be no surprise.  

To summarize, when the clock at x' = 0' on K' is compared with various clocks on K, these clocks must 

have position x = vt, and we get the relation t' = ݐ ඥ1 −  ଶ. However, when a specific clock at(ܿ/ݒ)

position x = 0, on K is used for comparisons with clocks on K', we get t' =  ݐ /ඥ1 −  ଶ as the relation(ܿ/ݒ)

between t and t', (also giving ݔᇱ = ඥ1/ ݐݒ−  − ଶ(ܿ/ݒ) =  I think this duality provides a key to .(′ݐݒ− 
better understand time dilation, and is central for instance in order to explain the travelling twin paradox; 
cf. Chapter 4 below.  

Actually, these symmetric results, (4), (5) could be presented in a compact form. Let A be the reference 
frame where there are used two clocks for the time comparisons, and xA and tA be the position and time 
for measurements on this system. Thus, there two clocks on A, located at xA = 0 and xA = vtA, respectively. 
The reference frame, B has time, tB, and we utilizes just one clock on its system, located at xB = 0. Then, 
the clock readings (at same location and same time), will be related by the formula: 

ݐ                                                                = ඥ1ݐ −  ଶ                                                               (6)(ܿ/ݒ)

a result which combines eq. (4) and (5). Two comments are relevant here. 

First we stress that observers on both reference frames agree on this result (6). Thus, I find it rather 
misleading here to apply the phrase 'as seen', regarding the clock reading on ‘the other’ system; which 
is a formulation used by several authors. The time readings are objective, and all observers 
(observational equipment) on the location in question will 'see' the same thing. The point is rather that 
observers at different locations will not agree regarding simultaneity of events and the time on ‘other’ 
reference frames. (We note that when it comes to length contraction, the situation seems different: The 
observers at the two reference frames will actually observe different lengths.) 

Secondly, we have the formulation ‘moving clock goes slower’. It is true that an observer on a reference 
frame (here A), observing a specific clock passing by (on B), will see this clock going slower, when it 
is compared to his own clocks. So in a certain sense one might say that this confirms the standard phrase 
‘moving clock goes slower’. However, we could equally well take the perspective of the single clock 
(here B), considering this to be at rest, implying that the clocks on A are moving. The point is definitely 
not that clocks on B are moving and clocks on A are not. Rather: We start out with two clocks at xA = 
xB = 0 (at origin) moving relative to each other; and the decision to either compare the clock at xA = 0 or 
the clock at xB = 0 with clocks on the other system, (a decision that can be interchanged at random!), 
will decide which of the two clocks comes out as the fast one, and which is the slow! So, first of all none 
of the clocks are more moving than the other, and, secondly, it is definitely the observational principle 
that decides which of the two clocks initially at the origin is seen to move faster. Thus, I find the talk 
about the ‘moving clock’ rather misleading. 

3.2 Unidirectional flashes. A third observational principle based on light rays 

Now consider the situation that at time t = t' =0 there is emitted a flash of light at location x = 0 (and/or 
x' = 0') along the positive x-axis. At a later time, t on K we know that position, x = ct coincides with 
position, x' = ct' (due to constancy of speed of light). Inserting these values of x and x' in the Lorentz 
transformation we directly get: 
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ᇱݐ                                                    =
ଵି௩/

ටଵି(ೡ


)మ
= ݐ ඥଵି௩/

ඥଵା௩/
;ݐ    (for ݔ =  (7)                                           (ݐܿ

So here we apply (at least) two clocks on both system: one at x = 0 and one at x = ct on K; and similarly, 
one at x' = 0' and one at x' = ct' on K'. We may refer to this approach for time comparison as observational 
principle C. This utilizes the constancy of speed of light to give the relation between time, t' on K' and 
time, t on K at a specific position along the positive x-axis, (i.e. at locations, x = ct).  

So eq. (7) is valid when the light ray is emitted in the positive direction (x > 0); i.e. c having the same 
direction as the velocity v, as seen from K. In the negative direction, (choosing x = - ct) we similarly get 
another well-known result 

ᇱݐ                                                  =
ଵା௩/

ටଵି(ೡ


)మ
= ݐ  ඥଵା௩/

ඥଵି௩/
;ݐ     (for ݔ =  (8)                                        (ݐܿ−

We refer to this result as being obtained using observational principle C*. So the difference between the 
observational principles C and C* is not so much the different use of clocks, but rather the direction of 
the light flash. We note that eqs. (7)-(8) give quite other time dilation formulas than those obtained  by 
observational principles A and B discussed above. - Use of bidirectional rays is also relevant, but does 
not give essential new insight and is not discussed here, see [1]. 

3.3 A generalization 

We have seen that the observational principles, A, B and C give different relations between t and t'. At 
an instant when the time all over K is found to equal t, one will at different locations on K observe 
different times, t' on K'.  

Now consider a generalization of the principles A, B and C. Taking the perspective of K, we may at 
time t choose an ‘observational position’ equal to x = wt, (for an arbitrarily chosen w). By inserting x = 
wt in (3) we directly get that time on K' at this position equals: 

′ݐ                                                                          =
ଵି ೡೢ

మ

ටଵି(ೡ


)మ
 (9)                                                                 ݐ

Further, we specify a w' so that position x' = w't', at this time corresponds to (has the same location as) 
x = wt. Now, also inserting x' = w't' in (2), we will after some manipulations obtain 

ᇱݓ                                                                          =
௪ି௩

ଵିೢ


∙ೡ


                                                                   (10) 

So equations (9), (10) represent the version of Lorentz transformation, expressed by (t, w) rather than (t, 
x). Here we see that the results for the observational principles A, B and C directly follows from (9) by 
choosing w = 0, w = v and w = c, respectively.  Actually, (see (9), we could consider 

௩,௪ߛ                                                             = (1 −  
௩௪

మ ) /ට1 − (
௩


)ଶ                                                    (11) 

to be the generalized time dilation factor, valid for any observational principle, (any w=x/t). Note that 
we should not think of w as a velocity, rather a way to specify a position x=wt, representing the fixed 
location of the clock applied at time t. 

In addition, now having these general expressions, (9), (10), we could ask which value of w and w' would 
results in t = t'. It is easily derived that this equality is obtained by choosing 

ݓ                                                  = ݓ =
మ

௩
ቆ1 − ට1 − ቀ

௩


ቁ

ଶ
ቇ =  

௩

ଵାටଵି(ೡ


)మ
                                    (12) 
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also w' =−ݓ. This means that if we consistently consider the positions where simultaneously x = w0t 
and x' = -w0t' =-w0t, then no time dilation will be observed in these positions. Since x' = -x, we consider 
it to be the midpoint between the origins of the two reference frames; in total providing a nice symmetry.  

We refer to this choice, x = w0t, as observational principle D. Observe that when we choose this 
observational principle - which is symmetric with respect to the two reference frames - then absolutely 
everything is symmetric, and so t' = t. Thus, it is tempting to state that in cases when we get t' ≠ t this is 
caused by applying a non-symmetric observational principle, everything, except the observational 
principle being symmetric.  

Figure 1 below illustrates eq. (3), (or equivalently (9)), giving t' as a linear, decreasing function of x, 
when t is fixed. It presents a total picture of the relation between t and t', as obtained by the Lorentz 
transformation. Thus, time, t' is given by the position, x on K where it is observed, and we might thus 
refer to positional (i.e. location specific) time.  

 

B

t’(x) 

x

C
A

D

C*

t(x) = t

eq. (7)

eq. (4)

eq. (5)

eq. (8)

Time t on K and t’ on K’, 
as observed at various   
locations, x on K

0 w0t vt ct- ct
 

Figure 1 Time, t' = t'(x), (blue) on K' at different locations, x = wt, on K, when the time on K 
equals t, (red); i.e. perspective of K. Various observational principles specified along the blue 
line, t'(x). The dotted green line gives values of, t' = t'(x), when v is replaced by –v. 

As a further illustration we have in the figure included a dotted green line, representing time, t' - as 
measured from position x on K - on a system moving at speed, –v. We see that the blue and green lines 
corresponding to v and –v, respectively, form a 'bow tie' with a knot in observational principle B. This 

midpoint of the ‘bow tie’ is shifted upwards relative to the red line, t, with a factor 1/ට1 − ቀ
௩


ቁ

ଶ
, cf. eq 

(5). Actually, if we from this figure should suggest an ‘overall’ (average) time dilation factor for the 
'moving system', then this factor could seem quite appropriate; but this would rather tell that on the 
average 'time on the moving system goes faster'. As previously noted we would actually choose not to 
use the term ‘moving system’, but rather the term ‘secondary system’, (as opposed to the ‘primary 
system’ having t(x) ≡ t). 

In summary the relations presented in Figure 1 seem rather fundamental for the interpretation of relative 
time. Being a direct consequence of the Lorentz transformation. This is of course well-known. In spite 
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of this, many authors focus on the time dilation as given by equation (4); representing a rather narrow 
description of the phenomenon of time dilation.  

4 An example: The travelling twin revisited. 

We follow up our discussions on (time, space) relations by taking a look at the so-called travelling twin 
paradox. As stated for instance in [4] this paradox illustrates that two identical clocks, initially in the 
same place and reading the same time, can end up with different readings if they move apart from each 
other and then back together.  

Reference [4] also gives the following numerical example, (Chapter 10): “If one twin goes to a star 3 
light years away in a super rocket that travels at 3/5 the speed of light, the journeys out and back each 

takes 5 years in the frame of the earth. But since the slowing-down factor is ඥ1 − (3/5)ଶ = 4/5 the 
twin on the rocket will age only 4 years on the outward journey, and another 4 years on the return 
journey. When she gets back home, she will be 2 years younger than her stay-at-home sister, who has 
aged the full 10 years.”  So the claim is that the referred difference in ageing occurs during the periods 
of the journey with a constant speed; i.e. under the conditions of the STR, (ignoring the 
acceleration/deceleration periods). To investigate this situation further we focus on the periods of 
constant velocity. 

The distance between earth and the star equals x = 3 light years, and the rocket has speed, v = (3/5)c, 

giving ඥ1 − ଶ(ܿ/ݒ) = 4/5. It easily follows that in the reference frame of the earth/star, the rocket 
reaches the star after time, t = x/v = 5 years. This would be verified if the twin on the earth had located 
a clock on this star, being synchronized with his own clock on the earth. In the reference frame of the 
rocket, the clock on the rocket is located at ݔᇱ = 0, and the Lorentz transformation gives that this clock 

at the arrival reads ݐᇱ = ݐ ∙ ඥ1 − ଶ(ܿ/ݒ) = 4 years. Repeating this argument for the journey back, we 
have that the clock on the rocket then shows 8 years, while the clock on the earth shows 10 years; so 
obviously, ݐᇱ/ݐ = 0,8. (This can be ascribed to the length contraction: Seen from the perspective of the 
travelling twin, the distance between earth and star equals 3∙0.8 = 2.4 light years.) 

Actually, this is a rather convincing argument. From the Lorentz transformation it follows that the 
returning clock shows 8 years when the earthbound shows 10 years. However, recalling the discussion 
of Chapter 3 the case is perhaps not that straightforward. And as we have made no assumption of 
asymmetry for these periods of constant velocity, we seem to have a true paradox here.  

We should start by discussing the observational principle. The above description has taken the 
perspective of the earth, and then we apply observational principle A, cf. Ch. 3. This may seem the only 
feasible principle here, but as we know, there are other possibilities of clock comparisons to explore.  

Now we simply assume that there is also another reference frame, i.e. that of the travelling twin; he 
being equipped with rockets at appropriate and fixed distances from his own rocket, all moving with 
constant speed in the same direction as himself, and all equipped with a synchronized clock showing the 
same time,  ݐᇱ. Whether this is practically feasible is not relevant here. We are referring to the model of 
the STR, and point out what this theory tells about clock readings, if such an arrangement is provided.  

So what happens if we make this assumption, and apply observational principle B (in the perspective of 
the earth). As seen in Chapter 3, we then get the ‘opposite’ result, that is, ݐᇱ/ݐ = 1/0,8 = 1.25, whatever 
instant we consider.  

To be more specific, let us consider the moment when the travelling twin arrives to the star. First, from 
the perspective of the travelling twin, all the clocks on his reference frame show the same time, ݐᇱ = 4 
years. This is also the case for the clock which as this moment is positioned exactly at the earth, i.e. at x 
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= 0. The Lorentz transformation then directly gives that at this location (i.e. on the earth), ݐ = ᇱݐ  ∙ 0,8 =
3.2 years; (and further, ݔᇱ =  .(ᇱ = -2.4 light yearsݐݒ− 

Next, taking again the perspective of the earth/star system, at the moment of arrival at the star, clocks 
show time t = 5 years all over this system. Performing a clock comparison at x = 0 at this moment, the 
Lorentz transformation gives ݐᇱ = ᇱݔ ,years, (and further 6.25 = 0,8/ݐ =  .(ᇱ = -3.75 light yearsݐݒ− 
Finally, we could assume that it is decided to return when the clock on the earth shows time t = 4 years, 
and the clock of the travelling twin, at the same moment passing the earth, shows ݐᇱ = 5 years. In all 
cases ݐᇱ/ݐ = 1.25 

Actually, the point is: If the clock comparison at the decision to return is carried out on/at the earth, 
rather than on/at the star, then we observe ݐ = 0,8 ∙  ᇱ, that is the clock on the earth goes slower than theݐ
clocks on the travelling frame with a factor 0.8. So the outcome of the comparison is given by the choice 
of the ‘third clock’: The two first clocks being the clock bound on earth and the clock on the rocket of 
the travelling twin. The ‘third clock’ is either the clock located on the star (part of the earth reference 
frame), or it is the clock located on a rocket as it passes the earth (considered part of the reference frame 
of the travelling twin).   

So the choice of the ‘third’ clock decides whether the earthbound twin or the travelling twin is seen as 
the ‘younger’ one at the reunion. This of course is a true paradox. We should accept that the Lorentz 
transformation allows both these clock observations to occur, and being equally valid. But to conclude 
that these differences in clock readings represent an actual difference in ageing seems a contradiction. 

Thus, in my opinion, the above argument casts doubt on the claim that the travelling twin is actually 
aging more slowly. An argument is provided, explaining the differences of the clock readings. Further, 
in a fully symmetric situation, as we treated it above, it should be meaningless to claim that one ages 
faster than the other; (actually we could consider both twins travelling in rockets at speed, v relative to 
each other, and we recall that it is claimed the travelling twin had gained one year, already before the 
acceleration/deceleration of the return started). So, I find no convincing argument that there is any 
asymmetry that could cause a ‘true’ age difference during the travel, in particular when the symmetric 
Lorentz transformation is used to derive the result.  

5 Transformations of the state variables 

The above discussion demonstrates the problem we have in describing time by the single parameter, t 
(the ‘clock time’). All clocks on both reference frames are synchronized to give this time. But when we 
compare clocks across reference frames, there is just one location where the clock readings are equal. 
We consider this a paradox, and will now investigate whether the introduction of an additional time 
dimension could alleviate this problem. Or rather, we investigate transformations of the (time, space) 
vector, but have a focus on time. 

5.1 The Lorentz transformation expressed by time variables 

First introduce  
                                                                          tc = x/c,                                                                     (13) 

(and similarly ݐ
ᇱ=ݔᇱ/ܿ). This is the time required for a light flash to go from position 0 to x on K. We 

now will formulate the Lorentz transformation in terms of t and tc (rather than t and x). At the same time 
we replace v with an angle, θ, given by sin                                                                       v/c; implying that also = ߠ

cos ߠ = ඥ1 −                                                                 ଶ(ܿ/ݒ)

Now the Lorentz transformation (2), (3), can be formulated as follows: 

ݐ                                                             
ᇱ ∙ cos ߠ = ݐ − ݐ ∙ sin  (14)                                                       ߠ

ᇱݐ                                                              ∙ cos ߠ = ݐ − ݐ ∙ sin  (15)                                                       ߠ
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A first observation is that this relation is completely symmetric in the two variables, t, tc. And this version 
of the Lorentz transformation formulates relations between two aspects or two dimensions of what we 
can refer to as ‘time’. An argument for investigating this concept of a multidimensional time is that 
when reference frames are moving relative to each other, we find it hard to give a consistent description 
of time by a single parameter.  

How could we interpret these two dimensions of time? Here t represents the ‘clock time’ of a specific 
reference frame (K). In this sense it is a ‘local’ time. All clocks on K are synchronized, and locally on K 
show this time in a consistent way. To achieve this synchronization - and internal simultaneity on K - 
one utilizes two-ways beams of light. 

The time dimension, tc, however, is based on one-way beams of light. This dimension seems essential 
in order to relate the time on different reference frames. It will secures the features that one way beams 
of light have speed, c, seen from all reference frames. 

So now we suggest – in order to give a richer description of time – that one could utilize a time vector, 
(t, tc). This will give precise conditions for defining simultaneity, as this will correspond to having 
equality of both clock time, t and time tc, where tc corresponds to location, x. The dependence of time 
on location was discussed in depth in Chapter 3.  

In this two-dimensional time space, we could draw any ‘trace of time’, corresponding to a specific event. 
Both dimensions, (t, tc) will increase as the event evolves. However, such a multidimensional time will 
not give a strict ordering of time. For two different time vectors it is no always possible to state that one 
is strictly ‘greater’ than the other.  

In the version (14), (15) of the Lorentz transformation it is quite easy to realize that this includes a 
rotation of the (t, tc)-plane with the angle, θ around the origin, in addition to some stretching and 
compression. We do not follow up on this aspect here. 

5.2 A transformation of the time vector 

Now observe that the above version, (14), (15) of the Lorentz transformation is simplified by performing 
a transformation. We introduce the time parameters, t1, t2,  

ଵݐ                                                              = ݐ − ݐ = 1)ݐ −  (16)                                                       (ܿ/ݓ

ଶݐ                                                              = ݐ + ݐ = 1)ݐ +  (17)                                                       (ܿ/ݓ

Here we have also provided alternative expressions by utilizing the identities x = wt, x’=w’t’ (as defined 
in Chapter 3). The times ݐଵ

ᇱ  and ݐଶ
ᇱ  are defined analogously. The Lorentz transformation (14), (15) with 

respect to these variables now takes the simple form 

ଵݐ                                                              
ᇱ ∙ cos θ = ଵ(1ݐ + sin θ)                                                       (18)  

ଶݐ                                                              
ᇱ ∙ cos θ = ଶ(1ݐ − sin θ)                                                      (19) 

We easily see that a key feature of the transformed variables is that ݐଵ
ᇱ ଶݐ

ᇱ =  ,ଶ, and also using (16)ݐଵݐ
(17) we further have: 

ଶݐଵݐ                                     ଶ(1ݐ  = − (ଶ(ܿ/ݓ) = ଵݐ
ᇱ ଶݐ

ᇱ = ᇱଶ(1ݐ −  ଶ)                                   (20)(ܿ/ᇱݓ)

That is, the geometric mean of these time coordinates, √ݐଵݐଶ, is invariant under the Lorentz 
transformation, and is given as a very simple expression of clock time, t and ‘location’, w = x/t. So the 
time vector itself is of course not invariant, but the product of its coordinates is. We try to utilize this 
further in the next section. 

We comment that (20) can also be written: 

ଶݐ − ଶ(ܿ/ݔ) = ᇱଶݐ  −  ଶ(ܿ/ᇱݔ)
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We can further write this as (ܿݐ)ଶ − ଶݔ = ଶ(ᇱݐܿ) −  ᇱଶ, which actually gives the well-known invarianceݔ
of the Minkowski metric (with just one dimension of space), e.g. [3].  

5.3 The state expressed as a complex number 

Now we presents the final step regarding the (time, space) variable. We could have gone directly to this 
formulation, but have chosen to present the above line of arguments leading to it.  

The result just obtained in Section 5.2 is (cf. (20)) that √ݐଵݐଶ = ඥ1ݐ −  ଶ is invariant under the(ܿ/ݓ)
Lorentz transformation. There is a rather obvious alternative way to express this. Letting the angle φ be 
defined by 

sin ߮ = w/c , 

then the above identity is written 

ଶݐଵݐ√                                                                      = ݐ cos ߮                                                                 (21) 

This actually suggests that we could define a two-dimensional (time, space) vector as a complex number: 

ഥ࢚࢞                                               = ఝ݁ݐ = ඥ1)ݐ − ଶ(ܿ/ݓ) + ݅ ∙  (22)                                                               (ܿ/ݓ

So in this formulation, ࢚࢞ഥ  is a complex variable in t and φ, (or equivalently in t and x, or in t and w).The 
absolute value of this complex number equals the clock time, t, for the synchronized clocks on the 
reference frame in question: 

ഥ࢚࢞|                                                                               | =  (23)                                                                            ݐ

Further, its real part equals 

ഥ࢚࢞)ܴ݁                                                    ) = ௫ݐ = ݐ cos ߮ = ඥ1ݐ −  ଶ                                                 (24)(ܿ/ݓ)

This real part, ݐ௫ equals the clock time, t, modified by the location factor, 

௪ߛ = ඥ1 −  .ଶ(ܿ/ݓ)

As this real part,  ;’௫ depends on both position and, clock time, t, we could refer to it as ‘positional timeݐ 
cf. eq. (24). 

The concept ‘positional time’ was also used in Chapter 4, but there referring to the time observed on 
‘the other reference frame’ at a position, x on K. 

The imaginary part of ࢚࢞ഥ  equals 

ഥ࢚࢞)݉ܫ                                                               ) = ݐ sin ߮ =  (25)                                                                       ܿ/ݓݐ

By referring back to the variables of Sections 5.1, 5.2 we also have the alternative expressions 

ഥ࢚࢞)ܴ݁ ) = ௫ݐ = ටݐଶ − ݐ
ଶ = ඥݐଵݐଶ 

ഥ࢚࢞)݉ܫ ) = ܿ/ݓݐ = ܿ/ݔ =  ݐ

Now an alternative expression for the (time, space) vector for instance equals 

ഥ࢚࢞                                                                 = ඥݐଶ − ݐ
ଶ + ݅ ∙ ݐ                                                             (26) 

giving the link to time parameters of Section 5.1. Or, alternatively, we have e.g. 

ഥ࢚࢞                                                           = ඥ1ݐ − ଶ(ܿ/ݓ) + ݅ ∙  (27)                                                     ܿ/ݔ

where the real part equals positional time and the imaginary part represents position.  
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Now consider the Lorentz transformation for this (time, space) vector. Expressed by the parameters (t, 
w) we have, as already stated in eqs (9), (10) of Chapter 4 that the Lorentz transformation becomes 

ᇱݐ =
1 −

ݓ
ܿ ∙

ݒ
ܿ

ට1 − (
ݒ
ܿ)ଶ

ݐ =
1 − sin ߮ sin ߠ

cos ߠ
 ݐ

ᇱݓ =
ݓ − ݒ

1 −
ݓ
ܿ ∙

ݒ
ܿ

 

The last relation is equivalent to  

sin ߮′ =
sin ߮ − sin ߠ

1 − sin ߮ sin ߠ
 

This provides both parameters of the transformed (time, space) vector, 

࢚࢞
ᇱഥ =  ఝᇱ݁′ݐ

And quite interestingly, its real part is found to equal 

࢚࢞)ܴ݁
ᇱഥ ) = ′ݐ cos ߮′ = ݐ  cos ߮ 

Thus, cf. eq. (24): 

                                                                  ܴ݁൫࢚࢞
ᇱഥ ൯ = ഥ࢚࢞)ܴ݁ )                                                              (28)  

So the real parts of these complex (time, space) vectors are identical. This means that on any reference 
frame we can start out from a ‘clock time’, t, and a location x = wt; and by postulating a (time, space) 
vector equal to ࢚࢞ഥ =  ఝ, where φ = Arcsin(w/c), then the real part of time at this location can be defined݁ݐ

to be positional time, ݐ௫ = ݐ cos ߮ = ඥ1ݐ −  ଶ. It follows that this is equal to the positional time(ܿ/ݓ)
for any reference frame; as long as we consider systems moving at constant speed, (and that time of the 
moving reference frames are synchronized at origin at time t=0).  

So the rather surprising result is that if we have clock time, t on a reference frame, and then assign the 

positional time, ݐඥ1 −  ଶ to any location x = wt, and if all reference frames apply this rule, then(ܿ/ݓ)
at a given location we assign the same positional time to all frames! 

5.4 Summary, transformed variables 

This chapter has offered a rather long journey, involving a large number of variables. However, we can 
give a rather short summary of main results.  

We start out with the two state variables, t = clock time, i.e. the time given by all synchronized clocks 
on the reference frame, and x = position, i.e. distance at time t from the ‘point of initiation’ (origin). 
Now we replace these two with the following two variables: 

w = x/t,    (a measure of the distance from origin at the time, t of observation). 

௫ݐ = ඥ1ݐ −  .ଶ,   (positional time)(ܿ/ݓ)

(An alternative could be to use w/c rather than w.) The Lorentz transformation, expressed in terms of 
these two new variables, takes the form 

ᇱݓ =
ݓ − ݒ

1 − (ܿ/ݓ) ∙ (ܿ/ݒ)
 

௫ݐ
ᇱ =  ௫ݐ
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There are two reasons for this to be an attractive result. First, we get two independent relations: one in 
w, only, and one in ݐ௫, only. Secondly, and most important, the positional time,  ௫, is invariant underݐ
this transformation. So at any position, (being common for the reference frames), both systems have the 
same positional time. 

Even if this perhaps represents the simplest expression for (time, space), one might also want to have 
the expression for ݔᇱ rather than ݓᇱ. Now eq. (2) directly gives 

ᇱݔ =
ଵି ೡ

ೢ

ටଵି(ೡ


)మ
 (w>0) ,ݔ

being valid for w>0. When w = 0, also x = wt =0, and 

ᇱݔ =
ି௩௧

ටଵି(ೡ


)మ
, (w=0) 

Alternatively, we could express ݔᇱ by the clock time, t for all t: 

ᇱݔ =
௪ି௩

ටଵି(ೡ


)మ
 ,ݐ

Or, finally, we could express ݔᇱ by the positional time, ݐ௫ 

ᇱݔ =
ݓ − ݒ

ට(1 − (
ݒ
ܿ)ଶ)(1 − (

ݓ
ܿ )ଶ )

 ௫ݐ

In conclusion, the positional time is the same for all reference frames (at the same position); and, further 
the Lorentz transformation reduces to either of the above expressions for ݔᇱ, (or ݓᇱ). 

The final comment is that all information on (time, space) could be expressed in terms of the complex 
variable, 

ഥ࢚࢞ = ௦(௪/)݁ݐ = ඥ1)ݐ − ଶ(ܿ/ݓ) + ݅ ∙ ௫ݐ = (ܿ/ݓ + ݅ ∙  ܿ/ݔ

In this formulation, time is seen as a complex variable evolving in space from the given point of initiation 
(t=x=0). So this time vector depends on position, x, locally on its own reference frame, (even before we 
start relating it to the time on other reference frames). This makes a difference from the standard 
presentation of time-space, cf. Chapters 2-3.  

The absolute value of this complex variable equals clock time, t, and its real part equals positional 
time ݐ௫. The imaginary part equals the time needed for light to reach the position in question. And if we 
have various reference frames - with the same point of initiation – moving relative to each other at 
constant speed, they will have different time vectors, but at any location they all have the same positional 
time.   

We observe that its real part decreases and the imaginary part increases as the distance, x from the point 
of initiation increases. Consider now the three main special cases of the Chapter 3: 

x = w = 0:  ࢚࢞ഥ =  (real variable)  ݐ

x = vt; (w = v)  ࢚࢞ഥ = ඥ1)ݐ − ଶ(ܿ/ݒ) + ݅ ∙  (ܿ/ݒ

 x = ct; (w=c)  ࢚࢞ഥ = ݅ ∙  (imaginary variable)  ݐ

It is admitted that the relevance of this variable ࢚࢞ഥ  is unclear, but is included here as a potentially 
interesting measure of time. 
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6 Conclusions 

The Lorentz transformation is first utilized to discuss a number of standard results on time dilation 
between two reference frames moving relative to each other at constant speed v. In particular: 

 There is a complete symmetry between the two reference frames, and all clocks on the same 
reference frame are synchronized. 

 We do not utilize any definition of simultaneity across systems. The approach restricts to explore 
direct comparisons of clocks being at the same location at the same time.  

 We do not use the expression ‘as seen’ (from the other reference frame). Observers (observational 
equipment) on both reference frames agree on the time readings; as they are carried out ‘on location’. 

 We specify the applied observational principle, i.e. the location of the clocks that are used for time 
comparisons. Thus, we focus on how observed time, t', on the 'other' ‘(secondary’) system depends 
on the position, x on the ‘primary’ reference frame. It is argued that one should look at the total 
picture, taking all information into account, as provided by the Lorentz transformation 

 We do not describe the phenomenon as ‘moving clock goes slower’. It seems irrelevant which of 
the two reference frames we consider to be moving, as it is rather the observational principle that 
matters. 

Thus, we stress the fact that at a given time, t on K, the time, t' observed on K' will depend on the 

position, x on K. The usual special cases are treated, e.g. the standard result, ݐᇱ = ඥ1ݐ −  ,ଶ. Further(ܿ/ݒ)
we discuss the result that if we at a time t choose the midpoint between x = 0 and x' = 0' as the location 
for time comparison, then we will at this location observe t' = t.  This choice represents an observational 
principle being symmetric with respect to the two reference frames. So if we observe t ≠ t', in an 
otherwise symmetric situation, we could claim that this is caused by the asymmetry of the chosen 
observational principle.  

Under the conditions of strict symmetry conditions in all respects it would be rather meaningless to 
claim any ‘true’ time dilation, which could cause different ageing on the two systems. So it should be 
interesting to identify the conditions – in particular departures from symmetry - that would cause time 
dilation to represent such a physical reality. This seems relevant, not the least when we consider the 
travelling twin case. A separate discussion is included on this example. We argue that the difference of 
the clock readings (the ‘ageing’) is caused by the chosen observational principle. 

We may also infer that an observer moving relative to a reference frame where the actual event takes 
place, is a rather ‘unreliable’ observer regarding time. The various observational principles will provide 
him with different results; so one should be careful to let such an ‘outside’ observer define the 
phenomenon.  

The above considerations may further suggest that the clock readings in isolation may not be ‘rich’ 
enough to capture all aspects of time. So in the second part of the paper we investigate transformations 
of the (time, space) variable, looking for alternative presentations. One solution is obtained by defining 
the (time, space) variable as a complex number. Its absolute value is equal to the clock readings of the 
reference frame in question. Further, the real part of this complex number is interpreted as positional 
time, and this is actually invariant under the Lorentz transformation; i.e. at any position it has the same 
value on all reference frames moving at constant speed relative to each other.  

This might offer an alternative narrative, to the one commonly presented in the STR. It actually 
postulates that ‘time’ (given as positional time) evolves at different speeds, depending on the distance 
from the ‘point of initiation’ (origin). Now from the discussions of the first part of this paper, e.g. see 
Fig. 1, this may not be an unreasonable assumption.  So, hopefully it could prove fruitful also for further 
investigations. 
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