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Abstract

A previous spin 1/2 preon model for the substructure of the the standard
model quarks and leptons is complemented to provide particle classi�cation
group, preon interactions and a tentative model of black holes. The goal of
this study is to analyze a phenomenological theory of all interactions. A mini-
mal amount of physical assumptions are made and only experimentally veri�ed
global and gauge groups are employed: SLq(2), the three of the standard model
and the full Poincaré group. Gravity theory with torsion is introduced pro-
ducing an axial-vector �eld coupled to preons. The mass of the axial-vector
particle is estimated to be near the GUT scale. The boson can materialize
above this scale and gain further mass to become a black hole at Planck mass
while massless preons may form the horizon. A particle-black hole duality is
proposed.
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1 Introduction

The purpose of this brief note is to develop further a previous spin 1/2 preon
model [1] in order to strengthen its global and local group theoretic structure.
The model should ful�ll four requirements: (i) provide a global group structure
for preons, quarks and leptons, (ii) introduce preon properties such that they
endorse the standard model (SM) local gauge group structure SU(3)×SU2)×
U(1), (iii) provide a basis for introducing an applicable formulation of gravity
into the model, and (iv) introduce tentatively a corpuscular structure for black
holes. Brie�y, this note is a step in search for scenario of physics beyond the
standard model. In particular, the purpose of this note is to unify all interactions
into a single phenomenological theory as solidly as possible [2].

These goals are approached as follows. The preon model [1, 3, 4, 5] fermions
match exactly with those of Finkelstein [6] using the global knot algebra SLq(2)
structure for preons, quarks and leptons. Secondly, the construction of the preon
model directly suggests the gauge group structures SU(2) and SU(3) for the
weak and strong interactions, respectively. Thirdly, fermion �elds in Einstein-
Cartan [7], or Einstein-Kibble-Sciama (EKS) [8, 9] gravity have been shown
by Fabbri to yield interesting results for torsion coupling to the spin of Dirac
�elds [10]. This interaction is expressed as a massive axial-vector �eld coupling
to preons. It originates from translation symmetry of the full Poincaré gauge
group in the action. A model for Gedanken gravity phenomenology is in this
way introduceded for energy scales, say approximately 1016 Gev ≤ E ≤ 1019

GeV. At these energies the axial-vector boson may materialize due to preon-
antipreon annihilation in stellar collisions or in similar energy density thermal
environment. At E ≥ 1019 GeV the axial-vector bosons are seeds for black
hole formation. Near and above Planck scale the e�ects of torsion are taken
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to dominate over those of curvature, while at astronomical scales the e�ects of
curvature are known to dominate.

The model is constructed with minimum of basic ingredients. Only two ba-
sic fermions are asumed instead of two quarks and two leptons. All interactions
are taken from the experimentally tested standard model and from the EKS
general relativity with torsion. Torsion in Einstein-Hilbert gravity is zero, and
in the literature this is the majority opinion. However, there is no reason not
to consider the full Poincaré symmetry for gravity (see last paragraph of sub-
section 3.1). Duality between standard model matter particles and black holes
is proposed. In principle, one is calculable from the other.

The organization of this note is the following. The preon model is described
in section 2. The particle classi�cation global group SLq(2) is discussed in
appendix A. Torsional interaction of preons in EKS gravity is summarized in
section 3. A tentative model for black hole structure using the torsion �eld is
described in section 4. Finally, conclusions are made in section 5. The appendix
is included to make the presentation self-contained.

2 Preons, Quarks and Leptons

The constituents of quarks and leptons must include an odd number of spin 1/2
particles. In [1] the case of three constituents, preons, is consider. Requiring
charge quantization {0, 1/3, 2/3, 1} and fermionic permutation antisymmetry
for same charge preons, four bound states of three preons were de�ned. These
form the �rst generation quarks and leptons

uk = εijkm
+
i m

+
j m

0

d̄k = εijkm
+m0

im
0
j

e = εijkm
−
i m
−
j m
−
k

ν̄ = εijkm̄
0
i m̄

0
jm̄

0
k

(2.1)

In (2.1), the u-quark charge is divided by 2 to make a preon m+ while the
electron charge -1 is fractioned by 3 yielding the antiparticle of m+.1 The preon
masses are assumed zero, or ≈ 0.

A feature in (2.1) with two same charge preons is that the construction pro-
vides a three-valued index for quark SU(3) color, as it was originally discovered
[11]. The corresponding gauge bosons are in the adjoint representation. The
weak SU(2) left handed doublets can be read from the �rst two and last two
lines in (2.1). The standard model gauge structure SU(N), N = 1, 2 is emer-
gent in this sense from the present preon model. In the same way quark-lepton
transitions between lines 1↔3 and 2↔4 in (2.1) are possible. The preon and

1In (2.1) there is a catch since preons of the same charge only have two degrees of freedom while
three are implied in (2.1). Therefore one more quantum number may be needed, two preons may
make a scalar �eld, or the leptons are bound states of their chiral components as discussed in [10].
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SM fermion group structure is better illuminated using the representations of
the SLq(2) group in appendix A.

The preon spinor ψ �eld equation is

iγµ∇µψ−XWσγ
σπψ−Mψ=0 (2.2)

where Wσ is the axial-vector �eld of torsion, X the axial-vector�preon coupling
and π is the projection operator πHψ=ψH , H = L,R. This equation will be
derived in subsection 3.2. Estimates for the preon mass m and the axial-vector
mass M are given in section 3.

The above gauge picture is supposed to hold in the present scheme up to the
energy of about 1016 GeV. The electroweak interaction is in the spontaneously
broken symmetry phase below energies of the order of 100 GeV and in the
symmetric phase above it. The electromagnetic and weak forces take separate
ways at higher energies (100 GeV� E � 1016 GeV). The weak interaction
restores its symmetry but melts away due to ionization of quarks and leptons
into preons. The electromagnetic interaction, in turn, stays strong towards
Planck scale, MPl ∼ 1.22× 1019 GeV. Likewise, the quark color and leptoquark
interactions su�er the same destiny as the weak force. One is left with the
electromagnetic and gravitational forces only at Planck scale.

3 Preon Interactions

3.1 Preliminaries

To build a full Poincaré group gauge theory for gravity one has to consider
boosts, rotations and translations: the rotations lead to curvature and the
translations to torsion in spacetime. From a di�erent point of view, curva-
ture arises in the form of metric from energy and torsion in the form of a con-
nection from spin. Torsion is therefore de�ned on microscopic scales. Torsion
requires extension of the Riemann geometry to Riemann-Cartan (RC) geometry
[7]. RC gravity, or Einstein-Kibble�Sciama (EKS) [8, 9] gravity can be reduced
to Einstein gravity plus torsional contributions. A theory has been developed
by Fabbri [10] for gravity with torsion and spinor matter �elds, which yields
a massive axial-vector coupled to spinors. His goal is to explain most of the
open problems in the standard model of particles (and cosmology) as well as
to analyze the nature of spinor �elds. Here I apply the axial-vector coupling of
[10] to preon interactions.

The �eld equations of the EKS theory of gravity are

Gµν− 1
2g
µνG−gµνΛ= 1

2kT
µν (3.1)

Qρµν =−kSρµν (3.2)

where k = 8πGN , Q
ρµν is the torsion tensor and Sρµν is the spin density tensor,

the source of torsion [10].
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In general relativity, metric is used to measure distances and angles. Con-
nections are used to de�ne covariant derivatives. A suitable connection must
be found. In general form, a covariant derivative of a vector is de�ned by

DαV
µ = ∂αV

µ + V ρΓµρα (3.3)

The connection Γµρα has three indices: µ and ρ shu�e, or transform, the compo-
nents of the vector V ρ and α indicates the coordinate in the partial derivative.

Metric and connection should be unrelated. This is implemented by de-
manding that the covariant derivative of the metric vanishes. In this case the
connection is metric-compatible. Metric-compatible connections can be divided
into antisymmetric part, given by the torsion tensor, and symmetric part which
includes a combination of torsion tensors plus a symmetric, metric dependent
connection called the Levi-Civita connection.

In a general Riemannian spacetime R, at each point p with coordinates xµ,
there is a Minkowski tangent space M = TpR, the �ber, on which the local
gauge transformation of the TxµR coordinates xa takes place

x′a = xa + εa(xµ) (3.4)

where εa are the transformation parameters, µ is a spacetime index and a a
�ber frame index.

The dynamics of the theory is based on vierbeins (tetrads) eaµ, not on the
metric tensor gµν . The Cartan connection has a primary role and it is

Γµλν = eaµ∂λeaν (3.5)

The tensor associated with this connection is torsion tensor

Tµλν = e µ
a (∂λe

a
ν − ∂νeaλ) (3.6)

In [10] it is shown that the connection

Λραβ = 1
2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (3.7)

is symmetric and written entirely in terms of the partial derivatives of the metric
tensor, and it is called metric connection, while the torsion tensor with all lower
indices is taken to be completely antisymmetric and therefore it is possible to
write it according to the following form

Qασν = 1
6W

µεµασν (3.8)

in terms of the Wµ pseudo-vector, therefore called torsion pseudo-vector.

Unfortunate for the development of gravitation theory, spin was not discov-
ered in the laboratory before 1916. Spinors were introduced in mathematics by
Cartan in the 1920's and spinor wave equation was found by Dirac in 1928.
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3.2 Torsion as Axial-Vector Massive Field

The system of �eld equations can be derived by the variational method from a
dynamical action, whose Lagrangian function is [10]

L =−1
4(∂W )2+ 1

2M
2W 2− 1

kR−
2
kΛ− 1

4F
2 +

+iψγµ∇µψ−XψγµπψWµ−mψψ (3.9)

where M is the axial-vector mass, X the preon�axial-vector coupling and ψ the
preon wave function. F is the electromagnetic tensor

Fαβ = ∂αAβ − ∂βAα (3.10)

Let us start from the metric connection

Λραβ = 1
2g
ρµ (∂βgαµ + ∂αgµβ − ∂µgαβ) (3.11)

The torsion tensor is completely antisymmetric only if some restrictions are
imposed, called the metric-hypercompatibility conditions [15, 16, 17, 18, 19].
Then it can be written in the form

Qασν = 1
6W

µεµασν (3.12)

where Wµ is torsion pseudo-vector, obtained from the torsion tensor after a
Hodge dual. With the metric connection and the torsion pseudo-vector the
most general connection can be written as a sum of Λραβ and Qασν as follows

Γραβ= 1
2g
ρµ
[
(∂βgαµ+∂αgµβ−∂µgαβ)+ 1

6W
νενµαβ

]
(3.13)

Functions Ωa
bµ that transform under a general coordinate transformation like

a lower Greek index vector and under a Lorentz transformation as

Ω′a
′

b′ν = Λa
′
a

[
Ωa
bν − (Λ−1)ak(∂νΛ)kb

]
(Λ−1)bb′ (3.14)

are called a spin connection. The torsion in coordinate formalism is de�ned as
follows

Qaµν =−(∂µe
a
ν−∂νeaµ+ebνΩa

bµ−ebµΩa
bν) (3.15)

and the spin connection is given by

Ωa
bµ = eνb e

a
ρ

(
Γρνµ − eρk∂µe

k
ν

)
(3.16)

which is antisymmetric in the two Lorentz indices after both of them are brought
in the same upper or lower position.

The most general spinorial connection is

Ωµ = 1
2Ωabµσ

ab+iqAµI (3.17)
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where Aµ is the gauge potential. The spinorial curvature is using the spinorial
connection

F αβ = ∂αΩβ − ∂βΩα + [Ωα,Ωβ] (3.18)

Let us de�ne the decomposition of the spinor �eld in its left and right parts

πLψ=ψL ψπR=ψL (3.19)

πRψ=ψR ψπL=ψR (3.20)

so that

ψL+ψR=ψ ψL+ψR=ψ (3.21)

The linearly independent bi-linear spinorial quantities are the following

2ψσabπψ=Σab (3.22)

2iψσabψ=Sab (3.23)

ψγaπψ=V a (3.24)

ψγaψ=Ua (3.25)

iψπψ=Θ (3.26)

ψψ=Φ (3.27)

To have the most general connection decomposed into the simplest sym-
metric connection plus torsion terms we substitute (3.13) in (3.16) and this in
(3.17). The �eld equations reduce to the following

∇ρ(∂W )ρµ+M2Wµ=Xψγµπψ (3.28)

for torsion axial-vector and

Rρσ− 1
2Rg

ρσ−Λgρσ=

= k
2 [14F

2gρσ−F ραF σα +

+1
4(∂W )2gρσ−(∂W )σα(∂W )ρα +

+M2(W ρW σ− 1
2W

2gρσ) +

+ i
4(ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)−

−1
2X(W σψγρπψ+W ρψγσπψ)] (3.29)

for the torsion-spin and curvature-energy coupling, and

∇σF σµ=qψγµψ (3.30)

for the gauge-current coupling; and �nally

iγµ∇µψ−XWσγ
σπψ−mψ=0 (3.31)
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for the spinor �eld equations.

From (3.28) one sees that torsion behaves like a massive axial-vector �eld
satisfying Proca �eld equations. Torsion has the important property that it
can be separated from gauge and metric factors. Torsion and gravitation seem
to have the same coupling constant. However, in [10] it is shown that using
the Einstein-Kibble-Sciama �eld equations these two independent �elds with
independent sources can have independent coupling constants. It is remarkable
that the equations for torsion (3.28) and curvature (3.29) are so di�erent.

The preons interact by coupling to the axial-vector boson W arising in
Einstein-Kibble-Sciama theory of gravity. The interaction includes two free
parameters, the coupling constant X and the mass M of the axial-vector. The
coupling X must be larger than the electromagnetic coupling α to keep the
charged preons bound. The preon-preon interaction is attractive [10] providing
the binding for three preon states. The mass of the axial-vector boson is esti-
mated to be of the order of the grand uni�ed theory (GUT) scale 1016 GeV.
This makes the torsion interaction range very short. At all scales theW couples
to preons relatively strongly but to the standard model particles always weakly.

Couplings in GUT theory are of the order 0.02 at the GUT scale. With
a Yukawa potential in the Schrödinger equation V (r) = −V0 exp(−ar)/r [20],
or in our notation −Xexp(r/M)/r with the physicality condition n + l + 1 ≤√
XmM , one may estimate that large M correlates with small preon mass

m� mproton. These matters deserve naturally quantitative attention.

4 Black Hole Toy Model

Black holes are at present under intensive study. I wish to �nish with a few
words of a speculative black hole scheme. The axial-vector �eld should appear as
a physical particle whenever its production is energetically possible. At Planck
scale energy the axial-vector boson serves as a seed for black hole formation
causing a black hole to appear. With the growing black hole mass the fermion
spins average out towards zero and torsion vanishes but the physical boson
remains.

The horizon is a shell of massless preon-antipreon pairs. The number of
pairs is correlated with the mass of the black hole, and they may form Cooper
pairs. A prototype for the lightest black hole is a preon-antipreon-W excited
bound state. It is a physical state which couples to quark-antiquark and lepton-
antilepton pairs. This state was called gravon in [12].

One may think of a particle-black hole duality in this model. On the particle
side the fermions - i.e. preons, quarks and leptons - dominate and the axial-
vector is hidden with graviton being weakly coupled. On the black hole side
the axial-vector is the physical particle and the preons are 'hidden' forming the
horizon. In principle, one is calculable from the other.

8



5 Conclusions

The preon model with spin 1/2, charge 0 and 1/3 and mass m ≈ 0 constituents
discussed above has a sound group theoretical basis. Both the preons and the
quarks and leptons belong to two lowest representations of the global SLq(2)
group, shown in the tables 1 and 2 of the appendix. With two preons and
their antiparticles the standard model local gauge groups SU(3)×SU2)×U(1)
become visible. Preons, as Dirac spinors, are the fundamental building blocks
of matter which interact above GUT scale with gravity predominantly by axial-
vector boson coupling. Above the Planck energy the formation of black holes
becomes possible with the axial-vector boson forming a seed for it and the
chiral phase preon-antipreon pairs form the horizon. The preons coupled to the
axial-vector may make the singularity of the hole softer or fade away. All the
basic equations, the standard model and the torsion �eld equation 3.28, are
relativistic quantum equations.

Gravity and electromagnetism are the 'original' long range interactions in
the big bang of cyclic cosmology. The axial-vector particle is expected to have
a large mass, M ∼ 1016 GeV. At accelerator energies axial-vector couplings to
standard model particles are very small. The strong and weak forces have a
short interaction range within nuclei making atoms, molecules and chemistry
possible. The role of curvature needs to be quantitatively evaluated. It is
assumed here to be a small correction in this torsional model near the Planck
scale.

In summary, the present model is by construction identical to SM below
GUT scale. Between GUT and Planck scales this model and the SM are not
expected to di�er much numerically because of asymptotic freedom of QCD.
Above Planck scale the present black hole scenario is a �rst step, still subject to
mathematical de�nition, and consistency tests. More work is needed to clarify
the issues and gain consensus in gravitation with torsion above GUT scale.
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Appendices

A Knot Theory Representations

Early work on knots in physics goes back in time to 19th and 20th century
[13, 14]. On the 21st century Finkelstein has proposed a model based on the
group SLq(2) [6]. This group actualizes the needs of the model of the previous
section 2.

Let us consider the simple case of two dimensional representation of the
group SLq(2) which is de�ned by the matrix

T = D
1/2
mm′ =

(
a b
c d

)
(A.1)

where (a, b, c, d) satisfy the knot algebra

ab = qba bd = qdb ad− qbc = 1 bc = cb

ac = qca cd = qdc da− q1cb = 1 q1 ≡ q−1 (A.2)

where q is de�ned as follows from the matrix ε

ε =

(
0 α2

−α1 0

)
(A.3)

The matrix ε is invariant under the transformation

TεT t = T tεT = ε (A.4)

where T t is T transposed and q = α1/α2.
Higher representations of SLq(2) are obtained by transforming the (2j + 1)

monomials
Ψj
m = N j

mx
n+

1 x
n−
2 ,−j ≤ m ≤ j (A.5)

by

x
′
1 = ax1 + bx2 (A.6)

x
′
2 = cx1 + dx2 (A.7)
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Table 1: The D1/2 representation of the four preons.

m m' preon
1/2 1/2 a
1/2 -1/2 b
-1/2 1/2 c
-1/2 -1/2 d

where (a, b, c, d) satisfy the knot algebra (A.2) but x1 and x2 commute and
n± = j ±m, and

N j
m =

[
〈n+〉q1 !〈n−〉q1 !

]−1/2
(A.8)

and 〈n〉q = qn−1

q−1 . It is found that(
Ψj
m

)′
=
∑

Dj
mm′Ψ

j
m′ (A.9)

where

Dj
mm′(q|a, b, c, d) =

∑
δ(na+nb,n+)
δ(nc+nd,n−)

Ajmm′(q, na, nc)δ(na + nb, n
′
+)anabnbcncdnd

(A.10)
where n

′
± = j ±m′ , Dj

mm′ is a 2j+1 dimensional representation of the SLq(2)

algebra and the Ajmm′ is

Ajmm′(q, na, nc) =

[
〈n′+〉1〈n

′
−〉1

〈n+〉1〈n−〉1

]1/2 〈n+〉1!
〈na〉1!〈nb〉1!

〈n−〉1!
〈nc〉1!〈nd〉1!

(A.11)

The oriented 2-dimensional projection of a 3-dimensional knot can be as-
signed three coordinates (N,w, r) where N is the number of crossings, w is the
writhe and r the rotation. One can transform to new coordinates (j,m,m′).
These indices label the irreducible representations of Dj

mm′ of the symmetry
algebra of the knot, SLq(2) by setting

j = N/2, m = w/2, m′ = (r + o)/2 (A.12)

This linear transformations makes half-integer representations possible. The
knot constraints require w and r to be of opposite parity, therefore o is an odd

integer. The knot (N,w, r) may be labeled by D
N/2
w/2,(r+o)/2(a, b, c, d).

One assigns physical meaning to the Dj
mm′ in (A.10) by interpreting the a, b,

c, and d as creation operators for spin 1/2 preons. These are the four elements

of the fundamental j = 1/2 representation D
1/2
mm′ as indicated in Table 1. For

notational clarity, I use in Tables 1. and 2. the preon names of [6]. The preon
dictionary from the notation of [1] is the following:

m+ 7→ a, m0 7→ c

m− 7→ d, m̄0 7→ b
(A.13)

12



Table 2: The D3/2 representation of the standard model particles

m m' particle preons
3/2 3/2 electron aaa
3/2 3/2 neutrino ccc
3/2 -1/2 d-quark abb
-3/2 -1/2 u-quark cdd

The standard model particles are the following elements of the D
3/2
mm′ repre-

sentation as indicated in Table 2.
All details of the SLq(2) extended standard model are discussed in the re-

view article [6], including the gauge and Higgs bosons and a candidate for dark
matter. I do not, however, see much advantage for introducing composite gauge
bosons in the model. Introduction of color from preons is done slightly di�er-
ently in [6]. In the early universe developments there is similarity between the
knot model and the present preon model. Therefore, apart from the di�erences
in color interpretation, the model of [1] and the knot algebra of [6] are equivalent
in the fermion sector.

In summary, knots having odd number of crossings are fermions and knots
with even number of crossings are correspondingly bosons. The leptons and
quarks are the simplest quantum knots, the quantum trefoils with three cross-
ings and j = 3/2. At each crossing there is a preon. The free preons are twisted
loops with one crossing and j = 1/2. The j = 0 states are simple loops with
zero crossings.
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