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Abstract 
 

All of the models for the hydrogen atom which have been developed as part of quantum theory are 

based on the assumption that angular momentum is quantized in units of Planck’s constant. It is 

asserted that this assumption is incorrect since it leads directly to the physically impossible quantum 

leap and that the Bohr model and other subsequent models which adhere to this assumption must 

therefore be incorrect and that furthermore the assumption itself must be incorrect.  

Because all of the existing quantum theory is based on this assumption it is not possible to verify the 

existing theory based on any manipulation of quantum theory itself. From this it follows that it is not 

possible to derive an alternative theory capable of validation by altering or adjusting this theory 

without altering our understanding of  classical mechanics. 

A novel model for the hydrogen atom is developed based on the consideration of a combination of a 

sampling process and special relativity. It is postulated that certain velocity terms are themselves 

affected by relativity, in particular those relating to orbital motion. This leads to a planetary model for 

the hydrogen atom in which the electron orbits at near light speed in an orbit whose radius does not 

change between the various energy states. 

The model does not require there to be a quantum leap or any equivalent and provides plausible 

explanations for many of the incomprehensible phenomena currently associated with quantum theory.  

Phenomena such as the Fine Structure constant, zero point energy, the absence of synchrotron 

radiation, superposition, the measurement problem and uncertainty all emerge having simple rational 

explanations. 

The dynamics involved are recognizably those of Newton and Einstein and provide a simple 

mechanical explanation as to why the energy levels of the atom are discrete and exactly what is and is 

not quantized.  In doing so the model effectively unites quantum mechanics with classical mechanics. 

 

 

  



 
 

 

Introduction 

The Hydrogen Atom 

 
First named by Antoine Lavoisier (1743 – 1794), hydrogen is the most abundant of all the atoms in 
the universe; it is the very stuff that stars are made of. It is estimated that hydrogen accounts for over 
90% of all the atoms in the universe, comprising 75% of all the mass in the universe. Hydrogen is 
significant in other ways too. Hydrogen forms the basis of all other types of atom in the universe. It is 
structurally the simplest of all the atoms, consisting of a single proton acting as a nucleus and orbited 
by a single electron. All other atoms have a so called hydrogenic form where they are stripped of all 
but one orbiting electron. A comprehensive and detailed understanding of the workings of the 
hydrogen atom is therefore an essential step to an understanding of all other, more complicated, 
atoms. 
 
In 1900 at the age of 42 Max Planck (1858-1947) was Professor of Physics at the University of Berlin. 
Germany had been united since 1870 and was trying to establish its position as a major world power 
and beginning to flex its industrial muscles. One of the emerging technologies at the time was that of 
the incandescent electric light and the major German electrical companies, anxious to establish a 
world lead, commissioned Planck to investigate how they might maximise the efficiency of their 
incandescent light bulbs. The problem to which Planck turned his attention was to understand the 
relationship between the frequency at which a hot black body1 radiated energy and its temperature.  
 
All materials emit radiation when they are heated. At higher temperatures this is seen as first a dull 
red glow which gets brighter as the object gets hotter, passing first through red heat then white and 
finally blue. Interestingly the colour or frequency of the radiation is independent of the material 
involved so for example, iron gets red hot at exactly the same temperature as ceramic or indeed as any 
other material.  
 
A physical law relating the temperature to the colour had been proposed in 1893 by the German 
physicist Wilhelm Wien (1864 – 1928) which worked well for higher frequencies but which failed at 
lower ones. A few years later another attempt was made in the form of the Rayleigh-Jeans law, first 
proposed in 1900 and later modified in 1905, while this worked at lower temperatures, it failed at 
higher ones. Planck himself had published what is referred to as the Planck-Wien law in 1899, but this 
too failed to match the experimental evidence. 
 
Finally in December 1900, Planck presented a paper to the German Physics Society (Deutsche 
Physikalische Gesellschaft) in which he made the assumption that energy could only be released in 
discrete multiples of some elementary unit. The size of this unit of energy or quantum was 
proportional to the frequency and related by what is now known as Planck’s constant. Light it would 
appear could only exist in discrete lumps or quanta the energy of which was proportional to their 
frequency. The new model fitted the data perfectly at both low and high temperatures.  
 
Mathematically the energy in each such quantum is proportional to the frequency and the constant of 
proportionality is Planck’s constant. So the energy of an individual quantum is given by the equation: 
 
� = ℎ� Equation 1 

Where E represents the energy of the quantum of radiation, f the frequency and h is the constant of 
proportionality, now known as Planck’s constant.  
 
Energy and frequency have different units or dimensions, which means that Planck’s constant must 
itself have units or dimension. The units of Plank’s constant are the product of a length, a velocity and 
a mass and match those of angular momentum. Planck’s constant can have different values depending 
                                                      
1 The term black body is used to describe a theoretically ideal emitter of energy. 



 
 

 

on the units being used. In SI units the value of Planck’s constant is 6.62606896×10−34 m2kg/s or J s. 
However it is often represented as what is known as the Reduced Planck’s constant or Dirac Constant, 
which is simply this value divided by 2π. It has the value 1.054571628×10−34 m2kg/s or J s and is 
given the symbol ħ. The use of the reduced Planck’s constant, ħ, is consistent with representing the 
frequency as an angular frequency in radians per second rather than Hz or cycles per second. In this 
form Planck’s equation can be written as: 
 
� = ℏ� Equation 2 

If it was Planck who introduced the idea, it was Albert Einstein (1879-1955) who was responsible for 
establishing the quantum as an integral part of modern physics. 1905 was a seminal year for Einstein 
and for physics. The first of the three landmark papers concerned the photoelectric effect and was 
published in March 1905.Einstein’s second paper, published in May 1905, concerned the motion of 
tiny particles in suspension in a fluid; its English title is “On the Motion Required by the Molecular 
Kinetic Theory of Heat of Small Particles Suspended in a Stationary Liquid”. This phenomenon had 
been observed some time before when grains of pollen are in suspension in water. It was documented 
in 1828 by the Scottish botanist Robert Brown (1773-1858) and hence was given the name Brownian 
motion. Einstein’s third paper was submitted in June 1905 was entitled "Zur Elektrodynamik bewegter 
Körper" ("On the Electrodynamics of Moving Bodies"),and introduced the idea of what was later 
called Special Relativity. A later supplement added the now famous equation E=mc2.  

Atoms 

 
By now it was becoming evident that significant aspects of the structure of matters were quantised. 
Planck had shown that energy came in discrete quanta, Einstein had shown that light too was 
quantized, it was clear that electricity was carried in discrete packets called electrons and Einstein had 
confirmed what many suspected, that matter was itself discrete and made up of atoms. It was also 
evident from work on ionisation and with the discovery of the electron, that atoms were not entirely 
indivisible. In the early part of the 20th century physicists began to turn their attention to the atom and 
to work on gaining an understanding of its structure. 
 
J J Thomson (1856-1940) had put forward his idea of the “plum pudding” model of the atom, but this 
was just wild speculation. There were several other such dead ends; models that turned out not to be 
viable. Meanwhile Ernest Rutherford (1871-1937) began using radiation to probe the structure of the 
atom. In Canada Rutherford had noticed that Alpha particles were sometimes scattered as they passed 
through a thin sheet of mica. Rutherford, now back in Manchester, and assisted by Hans Geiger 
(1882-1945), started a series of experiments to examine this scattering in more detail. He used thin 
sheets of gold foil, bombarding them with Alpha particles and detecting the particles as they were 
scattered by the gold. Rutherford found that, as with the mica, while most Alpha particles passed 
straight through, a small proportion of the Alpha particles were deflected. 
 
A young undergraduate, Ernest Marsden (1889-1970), joined the team and was given the job of 
investigating the extent to which the Alpha particles were deflected. Much to their surprise, they 
found that particles were sometimes deflected by very large angles, and indeed that some were 
reflected back directly towards the source. Rutherford described it as “… like firing a fifteen inch shell 
at a piece of tissue paper and it came back and hit you”. He spent the next 18 months trying to 
understand what was happening. 
 
Rutherford knew that Alpha particles carried a positive electric charge and he also knew that this 
would cause them to be deflected as they passed close to charged particles within the gold atom. He 
knew that some of these were negatively charged electrons, which were relatively light and would 
have very little influence on the much heavier alpha particles. But he also knew that the atom was 
electrically neutral and therefore had to contain something which was positively charged to balance 
out the negative charge of the electrons now known to form a part of the atom. He reasoned that the 
behaviour of the alpha particles could be explained if all of the positive charge in the atom was 



 
 

 

concentrated at a single point at the centre of the atom. He called this point the nucleus. In 
Rutherford’s model the nucleus was positively charged and contained most of the mass of the atom, 
the negatively charged electrons spread around at a distance, resembling a mini solar system. 
 
Rutherford’s planetary model of the atom still presented some difficulties. An atom with positive 
charge concentrated at the centre and stationary electrons disposed around it would be unstable. The 
negatively charged electrons would be attracted inexorably towards the positively charged nucleus. If 
on the other hand the electrons were in orbit around the nucleus the centrifugal force could balance 
the electrical force, however in order to complete their orbits the electrons would be undergoing a 
continuous acceleration towards the central nucleus, and when an electron is accelerated it radiates 
energy. This so called “synchrotron radiation” would sap the orbiting electron of its energy causing it 
to spiral in towards the nucleus. Despite these evident complications Rutherford chose to publish his 
results in 1911. 
 
Coincidentally in the process of refining their measurements, Rutherford, Geiger and Marsden 
discovered the relationship between atomic weight and the number of orbiting electrons. Except in the 
case of hydrogen which has one orbiting electron and unit atomic weight, all other atoms had an 
atomic mass of double the number of electrons. This in itself was an important step in understanding 
the composition of atoms. 
 
Rutherford’s experiments bombarding gold foil with alpha particles showed that the atomic nucleus 
contained centres of positive charge. The idea eventually emerged that these were themselves 
particles and were given the name protons. It was also evident that protons on their own did not 
account for all of the mass of the nucleus and that there must be other particles involved. In 1920 
Rutherford proposed what he called his neutral doublet, a particle with roughly the same mass as the 
proton but electrically neutral.  
 
In 1928 the German physicist Walter Boethe (1891-1957) and is student Herbert Becker (1887-1955) 
created an experiment in which they bombarded beryllium with alpha particles and found that it gave 
off a very penetrating, electrically neutral radiation. At first they believed this to be high energy 
gamma radiation. In 1932 Irene Joliot-Curie (1897-1956), one of Madam Curie’s daughters and her 
husband Frederic Joloit-Curie (1900-1958), decided to investigate Boethe’s radiation. They 
bombarded a paraffin target with Boethe’s radiation and found that it caused protons to be emitted. It 
was unlikely that this could be caused by gamma radiation, which lacks mass and would have 
insufficient momentum to dislodge protons. 
 
James Chadwick (1891-1974), who was working for Rutherford in Manchester at the time, reported 
these results to Rutherford. He set about re-creating the experiment, but went much further, 
bombarding other targets including helium and nitrogen. By comparing the recoil energies of the 
protons that were being emitted from the targets, Chadwick was able to calculate that the beryllium 
emissions contained a neutral particle with approximately the same mass as the proton. In 1932 James 
Chadwick published his results in Nature in a letter entitled “Possible Existence of a Neutron”. In 
1935 James Chadwick received the Nobel Prize for his discovery. 

Atomic Spectra 

 
In the early 1800s the English chemist William Hyde Wollaston (1766-1828) and independently the 
German physicist Joseph von Fraunhofer (1787-1826) discovered that the spectrum of the sun 
contained a series of dark lines. Fraunhofer mapped the frequencies of these lines which are now 
named after him. 
 
It was subsequently discovered by Robert Bunsen (1811-1899) and Gustav Kirchhoff (1824-1887) 
that each chemical element can be associated with a set of these spectral lines. The lines are caused by 



 
 

 

absorption of light by the atoms of the element at very specific frequencies. The presence and 
frequencies of these lines is a characteristic of the type of atom, rather like a fingerprint or a barcode.  
 

 
Figure 1 Absorption Spectra 

A similar set of lines exists, and at the same frequencies, at which an atom emits light. It appeared that 
under certain circumstances atoms could absorb energy, but only at very specific frequencies, while 
under slightly different circumstances those same atoms would emit energy at those exact same 
frequencies. 
 
Joseph Jakob Balmer (1825-1898) was a Swiss mathematician and numerologist who, after his studies 
in Germany, took up a post teaching mathematics at a girls’ school in Basel. A colleague in Basel 
suggested that he take a look at the spectral lines of hydrogen to see if he could find a mathematical 
relationship between them. Eventually Balmer did find a common factor (h = 3.6456*10-7 - h here is 
not to be confused with Planck’s constant) which led him to a formula linking the lines to one another. 
 

� =
ℎ��

�� − 4
 

Equation 3 

 
Where m is an integer with values of 3 or higher 
 
Balmer originally matched his formula for m = 3,4,5,6 and based on this he predicted an absorption 
line for m = 7 which was subsequently found to match a new line that had been discovered by 
Ângström. 
 
Balmer’s formula was later shown to be a special case of a more general result which was formulated 
in 1888 by the Swedish physicist Johannes Rydberg (1854-1937).  
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Equation 4 

 
Where λ is the wavelength of the spectral line 
RH is called the Rydberg constant for hydrogen  
n1 and n2 are integers and n1<n2  
 
By setting n1 to 1 and allowing n2 to take on values of 2, 3, 4 … ∞ the lines take in a series of values 
known as the Lyman series. Balmer’s series is obtained by setting n1=2 and allowing n2 to take on 
values of 3, 4, 5... .Similarly for other values of n1 series of spectral lines have been named according 
to the person who first discovered them and so: 
 
n1  n2  Series 
 
1 2 … ∞  Lyman series 
2 3 … ∞  Balmer series 
3 4 … ∞  Paschen series 
4 5 … ∞  Brackett series 
5 6 … ∞  Pfund series 
6 7 … ∞  Humphreys series 
 
Other series beyond these do exist, but they are not named.  
 
By substituting different values for R, it was found that Rydberg’s formula worked for all so called 
hydrogenic atoms. Such atoms consist of a nucleus with just one orbiting electron. These represent a 
special case, a class of problems where there are just two bodies involved, the atomic nucleus and the 
orbiting electron. Other atoms, for example where two electrons and a nucleus are involved, form a 
class of problem called a three body problem which have proved much more difficult to solve. 

The Bohr Model 

 
Niels Bohr (1885-1962) was born into a wealthy family in Copenhagen. It was in Copenhagen 
University where he undertook his doctoral thesis in Mathematics, receiving his PhD in 1911. Bohr 
won a Carlsberg scholarship to work under J J Thomson at Cambridge but Bohr and Thomson never 
quite hit it off, and so eight months into his one year scholarship, Bohr moved to Manchester to work 
under Rutherford’s tutelage. 
 
Bohr began his work at Manchester studying the position of atoms in the periodic table. His work led 
him to conclude that the position of an element in the periodic table was due to the number of positive 
charges in the nucleus, its atomic number, and not its atomic weight. He failed to persuade Rutherford 
to let him publish his results and so it was Fredrick Soddy(1877-1956) who got the credit for atomic 
number when he worked out a similar theory. Undaunted, Bohr moved on and began to work on the 
structure of the atom, having been inspired by a flaw that he had found in the work of another of 
Rutherford’s accomplices, Charles Galton Darwin (1887-1962), grandson of Charles Darwin.  
 
Bohr knew that Rutherford’s planetary model of the atom was unstable. The electrons could not be 
stationary or they would collapse into the nucleus, they could not be in motion because they would 
spiral towards the nucleus as they radiated energy. Bohr chose to ignore the problem of stability and 
instead to concentrate on the dynamics of the atom. Only after he had solved this problem did he 
intend to look at the problem of stability.  
 
Bohr was convinced that certain laws of physics broke down on the atomic scale and things were no 
longer smooth or continuous, so he “quantised” the orbits of the electron.  
 



 
 

 

Taking hydrogen, the simplest of the atoms, as an example; it is now known that the nucleus of the 
hydrogen atom comprises a single proton. In order for the hydrogen atom to remain electrically 
neutral this proton must be balanced by a single electron which Bohr assumed was in orbit around the 
nuclear proton in line with Rutherford’s model of the atom. 
 
The electrical force between these two particles is given by the inverse square law for electric charge: 
 

�� =
���

��
 

Equation 5 

 
Where K is the electrostatic force constant, q is the charge on the electron and on the proton and d is 
the distance between them. For the case of an orbiting electron the distance is the orbital radius which 
can be written as r. 
 
Bohr simply assumed that the electron orbit was circular and balanced the electrostatic force with the 
centrifugal force: 
 
���

��
=

���

�
 

Equation 6 

 
Bohr found the inspiration for his next assumption in the work of a former colleague at Cambridge, 
John W Nicholson (1881-1955). Nicholson had been working on his own model of the atom and in 
doing so had made an important assumption.  
 
An object moving in a straight line has a propensity to continue to do so. This propensity is termed the 
momentum of the object and is calculated as the product of its mass and its velocity. For an object that 
is rotating there is a similar quantity called its angular momentum and for a point object or a particle 
in a circular orbit the angular momentum is given by the product of its mass, its velocity and its 
orbital radius.  
 
What Nicholson had understood was that Planck’s constant, the factor relating the quantisation of 
energy to its frequency, has the units of angular momentum. He reasoned therefore that the angular 
momentum of the orbiting electron was equal to Planck’s constant. But he went one step further and 
assumed that this was just one value for the angular momentum, and that it could only take on a series 
of values which were each integer multiples of Planck’s constant. 
 
From the classical equation 
 
� = ℏ = ��� Equation 7 

Nicholson developed the modified version 
 
� = �ℏ = ���� Equation 8 

 
Where ħ is Planck’s constant, m is the mass of the electron, v is the velocity of the electron and n is an 
integer with values 1, 2, 3, 4, 5 …. 
 
Bohr now had two equations with two unknowns, r and v. He could solve these to calculate the orbital 
radius and the velocity of the orbiting electron for each of the different energy levels, n. 
 
For n = 1 which is referred to as the ground state, base state or lowest energy state. 
 
��� = ���� = ℏ� Equation 9 



 
 

 

 

� =
���

ℏ
= 2187803.961 m/s 

 

Equation 10 

This is frequently referred to as the Bohr Velocity and is just under 1% of the velocity of light. 
 
And 
 

�� =
ℏ�

���� = 5.29149 ∗ 10��� m Equation 11 

 
Commonly referred to as the Bohr Radius 
 
And for the general case of the nth energy state: 
 

�� =
���

�ℏ
 

 

Equation 12 

In the Bohr model the velocity of the orbiting electron varies as the inverse of the energy level. In 
other words, somewhat paradoxically, the velocity gets less as the energy level increases. 
 
And  
 

�� =
��ℏ�

����
 

Equation 13 

 

The radius for each energy state increases as the square of n over the Bohr Radius meaning that the 

atom gets bigger as the energy level increases. 

 
At first sight it would appear that the energy of the electron in the Bohr model gets less with 
increasing energy state and the kinetic energy certainly does. However this is not the case, since in 
moving from a low energy state the electron loses kinetic energy, but gains potential energy. The 
exact amount is given by the Virial theorem and is equal to double the kinetic energy in each state.  
 
Bohr’s model appeared to accurately describe the behaviour of the hydrogen atom but in doing so 
Bohr had to introduce Nicholson’s idea that the angular momentum of the orbiting electron could only 
take on these very specific values which were integer multiples of Planck’s constant. Bohr failed to 
explain just why this should be the case, and there was another problem which defied explanation. To 
satisfy the requirements of the Bohr model, when the energy of the atom changes from one energy 
state to another the electron has to jump between two energy states, in effect jumping between two 
orbits of different radii. The electron has to make the transition from one orbit to another 
instantaneously and without ever occupy any position in between the two orbits. Such transitions 
between orbits represent discontinuities of position and appeared to defy rational explanation. They 
were given the name ‘Quantum Leap’ and the term has since come to mean any seemingly 
improbable change of position. 
 
When a charged particle is subject to acceleration it normally emits a type of radiation called 
synchrotron radiation. The electron in the Bohr atom is subject to centripetal acceleration and so 
should emit such radiation. If the Bohr atom were to emit such synchrotron radiation the energy of the 
electron would be sapped resulting in the orbit decaying over time. Bohr had chosen to ignore the 
question of stability and that of synchrotron radiation, preferring to come back to this at a later date. 
In fact he never did so and so these questions remain open to this day. Bohr also ignored the effects of 
relativity on the mass of the electron, which for hydrogen is very small, but the Bohr model works for 



 
 

 

all so called hydrogenic atoms, that is; atoms which are ionised such that they have a single orbiting 
electron. For more massive atoms, the effects of relativity become increasingly significant.  

The Fine Structure Constant 

 
The Fine Structure Constant was first described and introduced into physics in 1916 by Sommerfeld. 
It was while he was looking into the absorption spectra of hydrogen and noticed that the orbital 
frequencies of the Bohr model were related to the corresponding frequencies of emitted or absorbed 
radiation. They matched perfectly if he introduced a correction factor. That correction factor is now 
known as the Sommerfeld Fine Structure Constant and is again found as the ratio between the orbital 
velocity of the electron and the speed of light in the base energy state of the Bohr model for the 
hydrogen atom. Numerically it has a value of 0.0072973525693 , but is often referred to by its 
reciprocal, which is 137.036.  
 
Since 1916 it has been found to exist elsewhere in numerous other areas, and especially in Quantum 
Electro Dynamics (QED), but no-one knows exactly what it signifies or why it should have this 
particular value. Various attempts have been made to explain it in terms of numerology or to relate it 
to other physical constants without success 

Wave Particle Duality 

 
Bohr’s model appeared to describe the energy levels of the atom, but something was missing. His 
model failed to explain why this quantisation should occur. Next to enter onto the scene was a French 
aristocrat called Louis de Broglie. 
 
Louis de Broglie (1892 – 1987) was born into an aristocratic French family in August 1892 in Dieppe. 
Louis first studied history, but developed an interest in physics as a result of working with his older 
brother Maurice. Maurice had been a naval officer where he worked on early radio systems for ship to 
ship and ship to shore communication. In 1904 he left the navy to study physics. Maurice pursued his 
interest in physics by setting up a private laboratory to study X-Rays. He attended the first Solvay 
conference, held in Brussels in 1911, in the capacity of scientific secretary. It was after reading the 
proceedings of this conference, largely written by his brother Maurice, that Louis decided to abandon 
his studies of history and to focus instead on physics. After graduating in 1913, Louis was called up 
for military service. Events in Europe meant that before his military service was completed, France 
was at war and Louis was to remain in the army for another 4 years. His time spent in the army was 
not altogether wasted; he spent most of his military service as a radio engineer working at the base of 
the Eiffel tower in Paris. 
 
In 1905 Einstein had shown that the hitherto wavelike nature of light concealed an underlying 
particle-like behaviour. In 1923 de Broglie was struck with the idea that maybe this situation could be 
reversed, that perhaps what had hitherto been thought of as a particle could be described in terms of a 
wave. De Broglie discovered that if he assigned a wavelength and a frequency to an electron he could 
explain the location of the atoms in the Bohr model of the atom. He found that the orbiting electrons 
could only occupy orbits which contained a whole number of such wavelengths. De Broglie published 
his theory in 1924. 
 
De Broglie’s idea hinges around the notion of standing waves. A standing wave occurs for example in 
a taught string, anchored at both ends, that is plucked. The fundamental frequency occurs when the 
whole length of the string vibrates. Other modes of vibration are also possible, for example where the 
centre of the string remains stationary and the two halves of the string each vibrate at what is referred 
to as a second harmonic frequency. This can also happen at the third, fourth and other higher 
harmonics. Here then was a possible explanation as to why the electron orbits could only take on 
whole number multiples of a base value. 
 



 
 

 

 
Figure 2 Standing Waves 

In the base energy state the electron is oscillating at the fundamental frequency that is there is one 
whole cycle of the electron as a wave during one complete orbit. In the second energy state the 
electron is oscillating at exactly twice the frequency of the orbit of the electron, forming a standing 
wave where two wavelengths are required to describe one complete orbit. This carries on in the third 
and higher orbits.  
 
In 1929 Louis de Broglie received the Nobel Prize for Physics. 

The Heisenberg Uncertainty Principle 

 
Werner Heisenberg (1901 – 1976) was a German physicist who studied physics and mathematics in 
Munich. He studied under Arnold Sommerfeld alongside Wolfgang Pauli(1900-1958), but it was 
when he first met Niels Bohr that his interest in quantum physics and his career took off. 
 
In 1926 he was working on a way to explain the relative intensities of the emission and absorption 
lines of hydrogen when he stumbled onto an idea which was to have far greater importance. He chose 
to represent the frequencies and intensities of the various absorption and emission lines as a table of 
values. It was while trying to manipulate this table that he discovered that the normal rules of 
multiplication did not seem to apply. What Heisenberg has unwittingly discovered was matrix 
manipulation. Matrix manipulation is now commonplace in mathematics and was known in 
mathematical circles in the 1920’s, but Heisenberg was a physicist and not a mathematician, so he 
struggled for some time to come to terms with his discovery. Multiplication of matrices is not 
commutative, that is [A][B]≠[B][A], the result of multiplying two matrices together is different 
depending upon the order in which the multiplication is written. 
 
When Heisenberg applied this to the momentum and position of a particle he found the relationship: 
 
[�][�] − [�][�] = ℏ[�] Equation 14 

Where [ I ] is known as the identity matrix and is the equivalent of unity in matrix multiplication, so 
ħ[ I ] is the equivalent of a constant in matrix multiplication. 
 



 
 

 

Heisenberg realized that the non-commutative nature of this matrix multiplication implied that it was 
not possible to know both the position and the momentum (velocity) of a particle to an arbitrary 
degree of accuracy. There was an uncertainty inherent in the system which was related through the 
constant term to Planck’s constant, which appears in the right hand side of the equation. This 
subsequently became known as the Heisenberg Uncertainty Principle.  
 
Heisenberg first sought to explain the uncertainty principle by looking at the way in which things are 
measured. To determine the momentum of a small particle such as an electron it is necessary to 
measure both its mass and its velocity. All electrons have the same rest mass, so to measure the 
momentum it is sufficient to measure just the velocity. Velocity can be determined by measuring 
position at two points separated by a small interval of time. On the scale of the electron however, the 
only tools available to measure the position are other sub atomic particles such as electrons or 
photons, which are of comparable size and have comparable energies. 
 
The situation can be likened to that of trying to measure the position and velocity of a golf ball when 
the only tools available to make the measurements are other golf balls. By firing a stream of golf balls 
at the subject golf ball, eventually one will hit. The position of the subject golf ball can then be 
determined by detecting the fact that one of the incident balls scored a hit and deviated from its 
trajectory. Unfortunately the very fact that there was such a collision means that the velocity of the 
subject golf ball has changed. Furthermore the extent of such a change is indeterminate and so it is 
now impossible to perform a meaningful second measurement to discover the velocity of the subject 
golf ball. 
 
The position of an electron can be measured by bombarding it with photons. The accuracy of such a 
measurement is proportional to the wavelength of the incident light. The lower the energy of the 
incident light, the less the disturbance when it interacts with the subject electron, but at the same time 
the accuracy of the measurement is reduced. Using light of a longer wavelength and hence a lower 
frequency means less accuracy when measuring position. Using light of a shorter wavelength and 
higher frequency while it improves the accuracy of the measurement of position has a secondary 
effect in that it presents more of a disturbance to the electron which is the subject of the measurement, 
making the measurement of the electron’s velocity less accurate. 
 
If the incident light has a wavelength of λ then the photons each carry momentum of h/λ. This means 
that the higher the frequency of the incident light the greater its momentum and the more the effect it 
has on the momentum and position of the electron which is the subject of the measurement. If ∆p and 
∆x are the standard deviations in the measurement of momentum and position respectively then it can 
be shown that: 
 

∆�∆� ≥
ℏ

2
 

Equation 15 

 
In this case position and momentum form what is termed a conjugate pair of measurements. The 
uncertainty principle applies to any such conjugate pair. Another example of such a pairing is time 
and energy. In this case the uncertainty principle can be restated as: 
 

∆�∆� ≥
ℏ

2
 

Equation 16 

The Schrödinger Wave Equation 

 
Independently of Heisenberg the Austrian physicist Erwin Schrödinger (1887 – 1961) took a different 
approach but arrived at much the same conclusion. Schrödinger had been made aware of de Broglie’s 
ideas that particles could be regarded as waves as a result of correspondence with Einstein. He was 
asked to give a presentation on de Broglie’s waves by Peter Debye(1884-1966). When Schrödinger 
gave his talk, Debye dismissed it as being childish because it did not contain an equation to describe 



 
 

 

the said waves. Schrödinger took up the challenge and set about discovering a wave equation to 
describe de Broglie’s matter waves. 
 
The equation whose solution is a wave is an undamped second order differential equation. 
Schrödinger’s equation describes the waves as travelling waves and so involves both time and 
distance. It is further complicated by the need to allow for changes in potential energy between energy 
states, which is in reality a tacit acceptance of the quantum leap, and this leads to the general solutions 
being complex. There are solutions which are real and these correspond to the energy levels of the 
hydrogen atom. 
 
Schrödinger’s wave amplitudes have no direct physical interpretation they are the self-same waves as 
proposed by de Broglie. Max Born (1882 – 1970) went on to show that the square of the amplitude 
represented the probability distribution of the position of the particle.  
 
The Schrödinger wave equation only has meaningful solutions only for certain discrete values of the 
total system energy. In the case of the hydrogen atom these are found to correspond to the discrete 
energy levels of the atom. The solution shows the probability that the electron will be found at a 
particular radius from the nucleus. In the case of the hydrogen atom the peaks in these functions for 
the various energy levels correspond to the orbital radii predicted by the Bohr model. 
 
Just as with the Bohr model, the equation can only be solved analytically for hydrogen itself and for 
other so called hydrogenic atoms, which are atoms which are ionized so as to have a single orbiting 
electron.  
 
Eventually Schrödinger, Carl Ekhart (1902-1973) and Paul Dirac (1902-1984) each independently 
showed that Heisenberg’s matrix mechanics and Schrödinger’s wave equations were mathematically 
equivalent and were in fact just different manifestations of the same phenomenon. 
 
Schrödinger believed that he had eliminated Bohr’s awkward quantum leaps. Energy changes in the 
Schrödinger model were represented by changes in the probability that the electron occupied one 
particular orbit or another in a way that is analogous to the way in which the frequency of a violin 
changes from one note to another. But this is where quantum theory really started to take on a surreal 
quality. 

The Copenhagen Interpretation 

 
Bohr thought that Heisenberg’s explanation of uncertainty was flawed. Heisenberg’s original idea, 
that uncertainty was a practical problem of measurement, did not sit with Bohr’s idea that the laws of 
physics were different on the atomic scale. Bohr took a holistic view in which the observer and the 
observed could not be separated and argued that light, for example, exists as both a wave and as a 
particle at the same time. It only manifests itself as one or the other form when it is measured or 
observed. It is at the point where an observer chooses how to measure the particle that its nature 
becomes fixed. Instead of being capable of description as either a wave or a particle, objects can be 
described in terms of a wave function. Bohr described the process of observation as the collapsing of 
the wave function into either a particle or into a wave.  
 
According to Bohr the original wave function contains all of the possibilities within it. It manifests 
itself as one form or another, not because it changes in nature from one form to another, but because 
the observer is looking for that particular form. 
 
In essence what Bohr was arguing was that Heisenberg’s uncertainty was an inherent property of the 
individual particles themselves, not a phenomenon associated with their measurement. Schrödinger’s 
probabilities were not a property associated with a population of particles in the way that probability 
normally occurs, but were somehow integral to the very nature of the individual particle. 



 
 

 

 
This idea that uncertainty is an integral property of matter is central to modern quantum theory. It 
implied that reality could not be separated from the process of observation, in other words that reality 
was somehow subjective. The idea was to result in a schism in the world of nuclear physics between 
those who accepted such a subjective reality and those who did not. The principle protagonists in this 
debate were Einstein and Bohr, with Bohr an advocate of subjective reality and Einstein an advocate 
of an alternative objective reality.  

 
The idea of a wave function which collapses into a particle presents us with a conundrum. When it is 
observed the electron supposedly is transformed from a nebulous cloud of something into a point 
particle in the classical sense. The so called Measurement Problem is all about how and when this 
transformation takes place, but there is also the problem of how and when the electron reverts from 
being a particle to back to being a wave function.  

Schrödinger’s Cat 

 
Scientists were understandably sceptical about Bohr’s ideas and about the Copenhagen interpretation. 
Einstein in particular was never reconciled to it and spent the rest of his life trying to disprove it.  
 
Erwin Schrödinger sought to explain just how ridiculous the Copenhagen interpretation was by using 
an example based on everyday objects rather than objects on an atomic scale. Schrödinger imagined a 
cat sealed in a box. Also in the box was a device, inaccessible to the cat, which contains a vial of 
poisonous gas and a triggering mechanism. The trigger contains a small amount of radioactive 
material, sufficient that there is a 50% probability that the device will trigger in a one hour period. 
Thus the outcome of the experiment is that the cat stands a 50:50 chance of being killed during the 
one hour it is locked inside the box. 
 
Schrödinger argued that, following the logic of the Copenhagen interpretation, that during its one hour 
spent in the box the cat exists in a fuzzy state of being neither dead nor alive while simultaneously 
being both dead and alive. It is only when the box is opened that the fate of the cat becomes evident, 
to coin the terminology of the Copenhagen interpretation its status collapses when the box is opened 
revealing the cat to be either alive or dead. Even more radical is the idea that the history of the cat 
over the previous hour also collapses when the box is opened to either be that of a living cat or that of 
a cat that died during it hour long ordeal. 
 
Although Schrödinger is now lauded as one of the pioneers of quantum theory, he never quite came to 
terms with it or its implications, siding with Einstein in the ensuing debate. 
 

Problems with Quantum Theory 

Anselm of Aosta 

 
Anselm of Aosta (1033 – 1109) was a monk of the Benedictine order in the 11th Century. He rose 
through the ranks of the church to become Archbishop of Canterbury and was eventually canonized. 
He is remembered for establishing Canterbury as the principal seat of the English church.  
 
Anselm was of the opinion that belief in God was more than just an article of faith but was also 
rational. He sought to show this by proving the existence of God using logic. His logic was 
convoluted, but the essence of his argument was that if we postulate that God exists then we can, 
through a series of logical steps, prove that God exists. Such a circular argument is of course invalid. 
It is a self-fulfilling prophesy and so it is simply not the case that by assuming something to be true 
you can prove that therefore it must be true. The upshot is that belief in God remains an article of 
faith. What Anselm’s failed proof illustrates is that it is not possible to depend on the truth of an 
assumption in order to prove the assumption to be true.  



 
 

 

 
Anselm’s ‘proof’ or rather its failure to prove the existence of God can provide us with some 
important clues as to how we might go about validating Nicholson’s assumption and so validating 
quantum theory, or disproving it and so seek an alternative theory. 
 
The fact that quantum theory rests on the assumption that angular momentum is quantized means that 
it is not possible validate quantum theory and prove that angular momentum is quantized by 
consideration of anything from within the quantum realm, since everything that comes after is 
dependent on the said assumption. This means that there is no way to obtain such a proof by relying 
on Bohr’s model of the atom, on de Broglie’s wave particle duality or Schrödinger’s wave equation or 
anything that depends on any of these.  
 
If we cannot prove the validity of the assumption from the perspective of quantum theory then the 
only alternative is to base such a proof on classical mechanics. As we have seen, Newtonian 
mechanics is insufficient to explain the fact that the atom has an infinite number of energy states. In 
order to prove quantum theory, or indeed develop a valid alternative theory, it is necessary that we 
somehow modify Newtonian mechanics in such a way as to present us with an infinite number of 
energy levels and in such a way that the differences between energy levels matches those of the 
empirically derived Rydberg formula. In simple terms the equations of motion of the orbiting electron 
must somehow incorporate an integer multiplier which represents the energy level of the atom.  
 
This is exactly what Niels Bohr tried to do when he derived his eponymous model for the hydrogen 
atom He modified the equation for angular momentum by adding an integer multiplier. He argued that 
the model presented by Newtonian mechanics was incorrect because it did not take account of the 
idea that angular momentum was quantized into units of Planck’s constant. By modifying classical 
Newtonian mechanics in this way Bohr was able to derive a model which matched the energy levels 
of the Rydberg formula. In effect Bohr took the simplest possible approach and attached an integer 
multiplier to the angular momentum term, transforming Equation 7 into Equation 8. 
 
Bohr’s approach of associating ‘n’ with Planck’s constant can at best be described as naïve or 
simplistic. Bohr appears to have looked at Newton’s equations of motion for a planetary atom and 
asked himself which of the six variables the number ‘n’ could be bound to. If we attach it to the radius 
we don’t get the right answers, if we attach it to the mass term then n would cancel between the two 
equations, if we associated it with charge or velocity there is the problem of the exponent which is 
two for both variables and would mean some sort of square root in the solution and so would not 
deliver the right result which just leaves K and ħ. We can contrive for each of these to give us results 
which match the energy levels of the atom, but Bohr chose ħ. 

Reductio ad Absurdum 

 
While it is not possible to prove that a postulate is true based on the truth of the assumption which 
underlies it, the obverse is not the case. It is possible to disprove postulate by first assuming that it is 
true and then showing that this leads to a contradiction, a paradox or an absurdity. Such proofs are 
referred to as Reductio ad Absurdum and are commonplace throughout mathematics and date back to 
ancient times. A good example is Euclid’s proof that the square root of two is irrational. Euclid first 
postulates that the square root of two is rational and then shows that this leads to a contradiction and 
hence that it cannot be true. Indeed the so called ‘scientific method’ is itself based on the underlying 
logic of reductio ad absurdum. This requires that we first put forward an assumption or postulate and 
based on this develop a model. The model is then tested against experimental or empirical data and if 
it fails, then not only the model, but also the postulate underpinning the model is deemed to be 
incorrect. In this case the absurdity is the failure of the experiment used to test the model, but 
otherwise the logic is essentially the same.  
 



 
 

 

The assumption that angular momentum is quantized is just such a case where we can apply the logic 
of reductio ad absurdum. Using this assumption we can derive Bohr’s model for the hydrogen atom, 
however the model leads to the “quantum leap” which is clearly a physical impossibility. It was 
recognized that this was sufficient to render the Bohr model invalid, but what was not recognized at 
the time, nor indeed since, is that it means that not only the model, but the assumption that lies behind 
it, must also be invalid. That is; angular momentum cannot be quantized, at least not in the way that 
Nicholson and Bohr describe.  
 
To get around this slight inconvenience, physicists will often say that the Bohr model is obsolete and 
that our view of the world has moved on, that reality is not what it seems, that particles do not exist 
until they are observed etc. However it is a false premise to proceed along these lines when the 
underlying assumption has already been shown to be false. What all of these circumlocutions amount 
to is simply another way of trying to describe the quantum leap but without using the words 
“quantum” or “leap”. The electron, for example, is described as a wave function which “collapses” 
when it is observed to reveal the position or the velocity of the electron itself, which is now viewed as 
being in its particle form rather that its wave-like form. The process of collapsing is just another way 
of describing the instantaneous transformation of the electron into a particle which then exists at some 
point in space by denying that it existed as a particle prior to this transformation. In reality all such 
descriptions are simply euphemisms for the quantum leap.  
 
The fact that the Bohr model leads to the absurdity of the quantum leap clearly demonstrates that the 
assumption that angular momentum is quantized is false. To then argue that it is correct to assume that 
angular momentum is quantized if we change to viewing the electron as a wave rather than as a 
particle is equally invalid. It is akin to telling Euclid that the square root of two is a rational number if 
we change the context in which we view it. It is logically inconsistent to accept that the quantum leap 
is a physical impossibility and to still assert that angular momentum is quantized. Once a postulate is 
shown to be invalid it remains irredeemably invalid whatever the context.  

Waves and Particles 

 
While Einstein had proposed that the photon, which had been regarded as a wave, could be regarded 
as a particle, de Broglie sought to suggest that the opposite; that what had hitherto been regarded as a 
particle could also be regarded as a wave. However de Broglie based his idea of a wave on the 
assumption that angular momentum is quantized.  
 
When we look at an object in orbit, its wavelength can be regarded as the orbital circumference, its 
peak to peak amplitude is the orbital diameter and the orbital frequency is the reciprocal of the orbital 
period. If we know the orbital angular momentum of the object together with its linear momentum we 
can calculate the orbital radius by simply dividing orbital angular momentum by linear momentum. 
From this the wavelength is obtained simply by multiplying the result buy 2π. However de Broglie’s 
waves do not conform to this model. Instead de Broglie identifies a novel type of wave with a 
wavelength equal to Planck’s constant divided by the linear momentum while at the same time 
asserting that the total angular momentum is an integer multiple of Planck’s constant. The result is a 
foregone conclusion; that a whole number of de Broglie’s waves will fit into the orbital circumference 
of Bohr’s model for each and every energy state. De Broglie’s waves have no physical interpretation. 
There is nothing physically waving at the frequency and with the wavelengths that they describe. 
They exist only as mathematical entities.  
 
Although they have no physical interpretation, de Broglie’s standing waves are frequently illustrated 
as shown in Figure 3 for n=3 and 4 respectively. This diagrammatic representation clearly shows the 
relationship between de Broglie’s standing wave model and the Bohr model where the circular orbit 
around which de Broglie’s waves are disposed is in fact the Bohr orbit for the corresponding energy 
level. 
 



 
 

 

 

  
Figure 3 de Broglie’s Standing Waves for n=3 and n=4 

Broglie’s results were hailed as providing a great insight into the workings of the atom, but in reality 
they do no such thing. Rather than supersede the Bohr model, de Broglie’s model augments it. 
 
Nevertheless Bohr argued that this could address his problems with the quantum leap. Instead of 
moving from one orbit to another, the electron simply had to change the mode in which it vibrated 
from that of one harmonic frequency to that of a higher or lower harmonic frequency. However 
simply changing the mode of vibration is insufficient since the orbital path around which the waves 
travel must also change together with both kinetic and potential energy and that is a manifestation of 
the quantum leap. 
 
In the Copenhagen interpretation the electron exists as either a wave or a particle while 
simultaneously existing as both a wave and a particle in what is referred to as ‘the wave particle 
duality’. This ‘wave particle duality’ is said to exist between the electron being regarded as a wave 
and it being regarded as a particle and is to a large extent based on the ideas set forth in Louis de 
Broglie’s PhD theses which was published in 1924.  
 
As a consequence the conventional relationships between the particle like properties and the wavelike 
properties of the electron break down and so the wavelength can no longer be said to be the orbital 
velocity divided by the orbital period. The particulate form is the Bohr model of an electron in 
circular orbit but there is no circular motion which could act as a generating circle for the de Broglie’s 
waves and so there is no concept of an orbital radius or orbital diameter related to the de Broglie 
waves.  
 
It therefore becomes necessary to create a new set of physical laws which operate on this scale. And it 
is not just a new set of laws, but the very idea of what constitutes a material particle is called into 
question. It is said to exist in some sort of nebulous state as neither particle nor wave, but to exist as 
both at the same time. When it is observed, it undergoes some sort of metamorphosis, transforming 
into either a wave or a particle depending upon what the observer is looking for.  
 
Despite having received the Nobel Prize in 1929 de Broglie had misgivings about his own idea and 
from around 1948 was to spend almost 40 years trying to establish a ‘causal relationship’ between his 
wave mechanics and classical mechanicsi. He never managed to do so, developing instead what he 
called Pilot Wave Theory. Pilot wave theory does recognize that there are two types of wave 
associated with each stable state of the atomii. One is the de Broglie waves and the second is the wave 
associated with the corresponding state in the Bohr model.  
 
In Pilot Wave Theory, particles are considered to have both a physical particle-like form and a "pilot 
wave." The pilot wave guides the motion of the particles determining their trajectories through space 

Bohr orbit 
n=3 

Bohr orbit 
n=4 



 
 

 

and time. While Pilot Wave Theory provides an alternative to the Copenhagen interpretation it fails to 
provide the causal relationship that de Broglie was looking for. 

Schrödinger's wave equation 

 
Schrödinger was challenged to develop a wave equation to describe de Broglie’s waves. To do so he 
was forced to describe de Broglie’s waves as travelling waves that travel around the Bohr orbit. His 
wave equation therefore had to be couched in terms of two variables, time and distance. He was 
further constrained by the need to account for changes in potential energy between the various energy 
states; a tacit acknowledgement of the quantum leap. This meant that the proposed solutions were 
complex, which, not surprisingly, took on real values when the wavelength of the de Broglie waves 
was an integer fraction of the Bohr orbital circumference. Once again the result is a foregone 
conclusion since the assumption that angular momentum is quantized is built in to the equations from 
the outset. 
 
The argument that first Bohr, then de Broglie and finally Schrödinger had somehow validated 
quantum theory bears a striking resemblance to St Anselm’s proof of the existence of God. First we 
postulate that angular momentum is quantized then through a series of circumlocutions we conclude 
that angular momentum is quantized. 

Experimental Evidence 

 
What we are left with as evidence for the validity of quantum theory is the results of experiments. It is 
argued that quantum theory produces results of extraordinary accuracy and is often cited as proof that 
it is correct but somehow incomplete; that what is necessary is just some little addendum which will 
make everything slot into place. Such a justification is however completely unfounded. There are 
many examples where theories which lasted for centuries were eventually discredited. A case in point 
concerns planetary motion. For something like two thousand years the most accurate model of the 
motion of the planets was based on epicycles, no other theory could match it for accuracy. Over time 
it got more and more complicated as minor perturbations were discovered and required the addition of 
yet more cycles. And then along came Kepler and Newton who showed that all of this complication 
was completely unnecessary and that the planets followed elliptical orbits based on the inverse square 
law. In fact the epicyclical model continued to be more accurate than Kepler’s model until Einstein 
developed his theory of general relativity in so far as it was capable of modeling the perihelion of 
Mercury, which Kepler could not. 
 
The seemingly accurate results of quantum mechanics cannot be considered as a means of validating 
the theory. The results from quantum mechanics may be extremely accurate, but this is not to say that 
these exact same results could not be obtained from another more rational model.  
 
The specious assumption that angular momentum is quantized underpins not only the quantum leap 
but everything that is incomprehensible and wrong with quantum theory. That assumption is 
demonstrably false since it violates the very tenets of the scientific method. So it begs the question as 
to how we might proceed to modify or replace the theory with one which does not rely on the 
assumption that angular momentum is quantized. Clearly there is nothing within the domain of 
quantum theory which will solve the problem, since the theory depends on the aforementioned 
assumption. This means that we must look for a deficiency in classical mechanics which yields the 
necessary result. It is highly unlikely that there are two deficiencies in Newtonian mechanics and we 
already know that Newtonian mechanics fails to take into account the effects of relativity. A good 
starting point therefore is to look to see if it is our current understanding of relativity where the said 
deficiency lies. 
 
The problem is fundamentally the same as that faced by Niels Bohr and that is how to introduce an 
integer multiplier into the Newtonian equations so as to be able to describe the various energy levels 



 
 

 

of the atom. However rather than simply assert that such a multiplier is associated with this or that 
variable the solution has to be to find a mechanism that could cause some variable to take on discrete 
values in the context of the dynamics of the atom. 
 

Special Relativity  
 
The foundations for Einstein’s Special Relativity were laid by Henrik Lorentz in the latter years of the 
19th Century. In 1895 Lorentz published a paper entitled (in English) “An Attempt at a Theory of 
Electrical and Optical Phenomena in Moving Bodies”iii.  In it he developed the concept of length 
contraction and time dilation which lies at the heart of the theory of special relativity. He also 
developed the transformation which now bears his name. 
  
In two later papers: “Simplified Theory of Electrical and Optical Phenomena in Moving Systems" iv 
he provides more detailed explanations of how electromagnetic phenomena, such as the Coulomb 
force and magnetism, are affected by the motion of charged particles and in "Theory of Electrons" v 
he expands on his electron theory and discussed how the electron's motion leads to the phenomenon 
of magnetism. He described how the Coulomb force experienced by an electron is modified when the 
electron is in motion, leading to the appearance of a magnetic field, in effect unifying electrical and 
magnetic forces into a single force. 
 
However it was Albert Einstein who gave us our present understanding of how relativity affects 
distance, time and mass. He did so initially for objects travelling at constant speed in what is now 
called Special Relativity. Later on he was to deal with objects that are accelerating or decelerating in 
what has come to be known as General Relativity. Here we need only concern ourselves with the 
special case since the electron is assumed to be travelling at constant speed whenever the atom is in a 
stable state. 
 
Einstein based his theory on two postulates. The first of these asserted that the laws of physics appear 
the same to any observer in any inertial reference frame. Einstein’s second postulate concerned the 
speed of light and in a sense is merely an extension of his first postulate. Einstein postulated that the 
speed of light in free space is the same for any observer in any reference frame. 
 
In adopting this second postulate Einstein had to give up on the notion that time was universal. Time 
according to Special Relativity ran at different rates in different reference frames, depending on how 
fast they were moving with respect to one another. 
 
Einstein developed his theory using a simple thought experiment. He imagined an observer on a train 
(at the time trains were the fastest known means of transport). On the train a pair of mirrors are 
arranged, one on the floor and one on the ceiling. The mirrors are a fixed known distance apart. A 
beam of light is made to bounce back and forth between the two mirrors. The observer can measure 
the distance between the mirrors and the time it takes for a pulse of light to travel between them. A 
second observer is located on the side of the track. He can also see the mirrors and the pulses of light 
and he too can measure the path taken by the beam of light and the time it takes to travel from one 
mirror to the other. 
 



 
 

 

 
Figure 4 Special Relativity 

 
To the observer on the train the light appears to travel vertically up and down between the two mirrors 
separated by the distance d. The train is moving at a significant fraction of the speed of light and so 
the observer on the side of the track sees the light beam trace out a longer diagonal path. The length of 
this longer path is ct in Figure 4 while the railway carriage has moved forward by a distance vt, where 
t is the time it takes for the light to travel from floor to ceiling for the observer beside the track. For 
the observer on the train the distance d must equal cT, where T is the time it takes for the light to 
travel from the floor to the ceiling of the train. Hence there are two different values of time, one, T, 
for the observer on the train and another, t, for the observer beside the track.  
 
Simple application of Pythagoras’ theorem shows that  
 
���� = ���� + ���� Equation 17 
 
Where c is the speed of light. 
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  Equation 18 

 
To the observer beside the track, the clock on the train appears to be ticking slower than his own 
stationary clock by a factor 1/γ and in fact the clock on the train is ticking slower than that of the 
stationary observer by a factor 1/γ. 
 
Gamma is a well-known factor that was first introduced by the German physicist Hendrik Lorentz and 
hence it is given the name: the Lorentz factor. The value of γ (Gamma) varies from 1 to infinity as the 
velocity goes from zero to the velocity of light. Its value remains relatively small even for velocities 
which are a significant proportion of that of light, so for example at 10% of the velocity of light 
gamma has a value of just 1.005; at 50% it has a value of 1.155 and it is not until the velocity reaches 



 
 

 

99.5% of c that gamma reaches a value of 10. Thereafter it rises rapidly towards a value of infinity at 
velocity c. 
 

 
Figure 5 Graph of Gamma versus v/c 

 
Having considered the effect of relativity on time, Einstein next considered the effects of relativity on 
length and on mass. According to the stationary observer the train moved forward a distance L = vt 
during the time it took for the pulse of light to travel between the two mirrors. According to the 
moving observer on the train however the time taken to traverse this distance was only T seconds 
equal to t/γ. Since both observers agree on their relative velocity, this must mean that to the observer 
on the moving train, the distance covered is less, distance has been foreshortened by a factor 1/γ. 
 
Einstein went on to show that mass is also affected by relativity. He did so by considering how 
momentum was affected by changes in length and velocity during a collision. An object which is not 
moving displays what is now referred to as its rest mass. Objects which are moving have a mass 
whose value is higher than the rest mass by a factor γ. It is important to understand exactly who 
perceives what under the effects of special relativity. It is the moving observer who perceives time as 
having slowed down, it is the same moving observer who perceives that distances are foreshortened 
but it is the stationary observer who perceives that the mass of a moving object has increased. 
 
For an object travelling at 99.5% of the speed of light the value of Gamma is approximately 10. Such 
an observer would therefore experience time at one tenth the rate of a stationary observer. The 
distance travelled by such an observer moving at 99.5% of the speed of light appears shorter by a 
factor of 10 than it would for an observer travelling at what we regard as normal non relativistic 
speeds. To an external observer the mass of an object moving at 99.5% of the speed of light appears to 
have increased by a factor of 10. 
 
Take as a simple example the case of an astronaut travelling from the earth to the moon. When 
traversed at normal, non-relativistic speed, the distance from the earth to the moon is approximately 
400,000km. If the astronaut had a super spaceship which could cover the distance at 99.5% of the 
speed of light then he would measure the distance between the earth and the moon, not as 400,000 
km, but as 40,000 km. For the astronaut the distance to the moon would be compressed or 
foreshortened by Gamma whose value in this case is 10. 
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Not only would the moon seem much nearer to our intrepid astronaut, but the time it takes to get there 
would be shorter. The clocks on the astronaut’s spaceship would run slower than those on the 
stationary earth. So the number of seconds which ticked by during his journey would be less than that 
if he were travelling at lower speed. At 99.5% of the speed of light, Gamma has a value 10 and this is 
the factor by which his clock would slow down.  
 
A speedometer fitted to his spaceship would however still show the speed as being 99.5% of the speed 
of light. This is because speed is calculated as distance divided by time and both distance and time are 
affected equally by relativity. 
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Equation 19 

 
Distance and time are equally affected by the same factor Gamma which therefore cancels to give the 
same value for the speed no matter whether it is measured by the astronaut or by a stationary observer. 
Speed is said to be invariant with relativity. Indeed this invariance property of velocity is one of the 
axioms on which special relativity is based. 
 
It can be difficult to visualize the effect of relativity, particularly the way in which it affects distance, 
since it involves a distortion of space. So a slightly different way to view the effect of relativity on 
distance, rather than imagine that the distance between points changes, is to imagine instead that the 
scale on which distance is measured changes.  
 
 

 
Figure 6 The Elastic Tape Measure 

We can think of this as if the measurements are made with a tape measure made of elastic, the faster 
one travels; the more the tape measure is stretched, but only when making measurements in the 
direction of travel. So for the astronaut travelling at 99.5% of the speed of light, any measurements 
made in the direction of travel are done so with a tape measure which has been stretched by a factor of 
10 and so distances will appear to be less by the factor 10. 
 
The orbital path length is foreshortened by the Lorentz factor, Gamma, but this is simply another way 
of saying that it is scaled by the factor 1/Gamma. Taking the reciprocal for Gamma from Equation 18 
it is evident that this is the equation of a circle, more specifically a quadrant of a unit circle since v is 
constrained to lie between 0 and c. 
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Equation 20 

 

Figure 7 
Reciprocal of Gamma 

By superimposing this quadrant on the circular orbital path we can explore the effects of relativity on 
a circular orbital path. 
 
 

 

Figure 8 Spherical representation of a circular orbital path under relativity 

Objects orbiting at non-relativistic speeds see the path length around the orbit as being equal in length 
to the equator, while objects orbiting at higher speeds follow a path length described by a line of 
latitude on the hemisphere. An object orbiting at the theoretical maximum speed of light would then 
be pirouetting at the pole. We can consider the length of the orbital path as being represented by the 
line of latitude formed by a slicing plane which cuts through the hemisphere parallel to the equatorial 
plane. In Figure 8 this is at approximately 15% of the speed of light c and so the orbital path length is 
just a little less than the equatorial path length, around 99%. 
 



 
 

 

In Figure 9 the orbital velocity is approximately 80% of the speed of light corresponding to a line of 
latitude of roughly 53 degrees and so the orbital path length as seen by the moving object is 
approximately 60% that for an object moving at non-relativistic speed. 
 

 
Figure 9 Effect of relativity at approx. 80% c 

 
In Figure 10 the orbital velocity is around 98% of the speed of light and the corresponding orbital path 
length is approximately 20% of that for non-relativistic motion. 
 

 

Figure 10 Effect of Relativity at Approximately 90% of c 

This hemispheric model of the motion of an orbiting object is useful because it allows us to visualize 
the orbital path length as being foreshortened by relativity while at the same time the radius of the 
orbit is unaffected by relativity, being the distance to the center of the sphere. The orbital geometry is 
non-Euclidian and in reality all takes place in just one plane. The introduction of this third dimension 
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is just a device to allow us to visualize what is going on. The orbiting object sees the distance it 
travels around one orbit as being reduced by a factor Gamma, but nevertheless sees the orbital radius 
as being unaffected by relativity since this is at right angles to the direction of travel.  
 
The elastic tape measure analogy can be extended to include such a circular orbital path if we do this 
for all of the possible lines of latitude on the hemisphere we get a projection of the sphere onto a 
cylinder. As before this allows us to visualize the effect of relativity without distorting the geometry 
of space. 
 
Instead of regarding distance as being compressed, the distance scale that is regarded as being 
stretched then the hemisphere of Figure 11 is transformed into a cylinder. This cylindrical 
representation can then be unwrapped to create a flat two dimensional mapping in much the same way 
that a map projection can be used to draw the surface of a spherical earth onto a flat piece of paper. 
This is exactly analogous to the elastic tape measure described above. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 11 Lambert Cylindrical Equal Area Projection 

The distance around the equatorial orbit is referred to here as the Actual Distance travelled by the 
astronaut. The distance as it is perceived by the astronaut, compressed by the factor Gamma is 
referred to as the Relativistic Distance. 
 
This seeming contradiction that an object, in this case our astronaut, could travel a path which had two 
different lengths was once thought to be a contradiction. The Dutch physicist Paul Ehrenfest (1880 – 
1933) even went so far as to suggest that this was sufficient to invalidate Einstein’s Special Theory of 
Relativity in what is known as the Ehrenfest Paradox. 
 
There is a great deal of experimental evidence to support Einstein’s Special Theory. One of the more 
convincing experiments was carried out at CERN in 1977 and involved measuring the lifetimes of 



 
 

 

particles called muons in an apparatus called the muon storage ringvi. The muon is an atomic particle 
which carries a charge, much like an electron, only more massive. It has a short lifetime of around 2.2 
microseconds before it decays into an electron and two neutrinos. 
 
In the experiment muons are injected into a 14m diameter ring at a speed at 99.94% of the speed of 
light. At this speed the value of Gamma is around 29.33. The muons, which should normally live for 
2.2 microseconds, were seen to have an average lifetime of 64.5 microseconds; that is the lifetime of 
the muon was increased by a factor Gamma. This comes about because the processes which take place 
inside the muon and which eventually lead to its decay are taking place in an environment which is 
moving relative to us at 99.94% of the speed of light and where the time, relative to us is running 
29.33 times slower. Hence the muon, in its own domain still has a lifetime of 2.2 microseconds, it’s 
just that to us, who are not moving, this appears as 64.5 microseconds.  
 
Travelling at almost the speed of light a muon would normally be expected to cover a distance of 660 
meters or roughly 7.5 times around the CERN ring during its 2.2 microsecond lifetime, but in fact the 
muons travelled almost 20,000 meters or 220 times around the ring. This is because distance in the 
domain of the muon is compressed so what we stationary observers see as being 20,000 meters, the 
muon sees as being just 660 meters. 
 
Relativity therefore affects all three types of fundamental measurement, length, mass and time. The 
term Special Relativity was adopted later, after Einstein had gone on to develop the General Theory of 
Relativity, and was used to indicate the fact that Einstein had only considered the special case of 
objects moving at constant velocity. The General theory would consider the effects of acceleration. 
 
This was a radical departure from the dynamics of Newton. Newton had supposed that there was a 
universal reference frame, a background against which everything moved and to which all motions 
could be referred. Einstein shattered that idea, now the only reference was that of the observer or the 
observed and the behaviour, indeed the basic measurements, depended on how these reference frames 
related to one another. 
 
Almost as an afterthought to this his third paper Einstein calculated that as a consequence of his ideas 
energy and mass were equivalent. This led him to add his famous equation e=mc2 to a later edition of 
the paper. 
 
The Muon Ring experiment emphasizes two more, often overlooked aspects of special relativity and 
that concerns frequency and angular displacement. During its lifetime the muon completes some 220 
turns around the ring and both parties are agreed on that. We stationary observers see this as having 
taken place in some 64.5 microseconds, corresponding to a frequency of 3.58 MHz, while the muon 
sees these 220 turns as having been completed in just 2.2 microseconds or a frequency of just over 
100MHz.. Hence for the muon and indeed all objects moving at close to light speed frequency is 
multiplied by a factor Gamma relative to that of a stationary observer.  
 
Closely related to the frequency is angular displacement. The orbital radius is the same for both 
parties, in this case 7m. It is unaffected by relativity because it is at all times is normal to the direction 
of travel. As stationary observers we see the total angle subtended by the muon as being 20,000/7 = 
2860 radians. For the muon things are slightly different. The distance travelled around the 
circumference as experienced by the muon is however just 660m. Hence the total angle subtended is 
660/7 = 94.3 radians. In other words the angle subtended at the orbital center is reduced by a factor 
Gamma from the perspective of moving object, relative to that of the stationary observer. 

 
Sampling 
 
In the 1930’s and 40’s telecommunications engineers were concerned to increase the capacity of the 
telephone network without having to bury more cables. One of the ideas that surfaced was called 



 
 

 

Time Division Multiplexing. In this each of a number of incoming telephone lines is sampled by 
means of a switch, the resulting samples are sent over a trunk line and are decoded by a similar switch 
at the receiving end before being sent on their way. This allowed the trunk line to carry more 
telephone traffic without the expense of increasing the number of cables or individual lines. The 
question facing the engineers at the time was to determine the minimum frequency at which the 
incoming lines needed to be sampled in order that the telephone signal can be correctly reconstructed 
at the receiving end. 
 
The solution to this problem was arrived at independently by a number of investigators, but is now 
largely credited to two engineers. The so called Nyquist-Shannon sampling theorem is named after 
Harry Nyquistvii (1889-1976) and Claude Shannonviii (1916 – 2001) who were both working at Bell 
Labs at the time. The theorem states that in order to reproduce a signal with no loss of information 
then the sampling frequency must be at least twice the highest frequency of interest in the signal itself. 
The theorem forms the basis of modern information theory and its range of applications extends well 
beyond transmission of analog telephone calls, it underpins much of the digital revolution that has 
taken place in recent years. 
 
What concerned Shannon and Nyquist was to sample a signal and then to be able to reproduce that 
signal at some remote location without any distortion, but a corollary to their work is to ask what 
happens if the frequency of interest extends beyond this Shannon limit? In this condition, sometimes 
called under sampling, there are frequency components in the sampled signal that extend beyond the 
Shannon limit and maybe even beyond the sampling frequency itself. 
 
A simple example can be used to illustrate the phenomenon. Suppose there is a cannon on top of a 
hill, some distance away is an observer equipped with a stopwatch. The job of the observer is to 
calculate the distance from his current location to the cannon. Sound travels in air at roughly 340 m/s. 
So it is simply a matter of the observer looking for the flash as the cannon fires and timing the interval 
until he hears the bang. Multiplying the result by 340 will give the distance to the cannon in meters, 
let’s call this distance D. 
 

 
Figure 12 Measuring Distance 

 
This is fine if the cannon just fires a single shot, but suppose the cannon is rigged to fire at regular 
intervals, say T seconds apart. For the sake of argument and to simplify things, let’s make T equal to 
one. If the observer knows he is less than 340 m from the cannon there is no problem. He just makes 
the measurement as before and calculates the distance D. If on the other hand he is free to move 
anywhere and there is no restriction placed on his distance to the cannon then there is a problem. 
There is no way that the observer knows which bang is associated with which flash, so he might be 
located at any one of a number of different distances from the cannon. Not just any old distance will 
do however. The observer must be at a distance of D or D + 340 or D + 680 and so on, in general D + 
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340n. The distance calculated as a result of measuring the time interval between bang and flash is 
ambiguous. In fact there are an infinite number of discrete distances which could be the result of any 
particular measured value.  
 
Restricting the observer to be within 340 m of the cannon is a way of imposing Shannon’s sampling 
limit and by removing this restriction we open up the possibility of ambiguity in determining the 
position of the observer due to aliasing. 
 
Let’s turn the problem around a little. If instead of measuring the distance to the cannon the position 
of the observer is fixed. Once again to make things simpler, let’s choose a distance of 340m. This time 
however we are able to adjust the rate of fire of the cannon until the observer hears the bang and sees 
the flash as occurring simultaneously. If the rate of fire is one shot per second then the time taken for 
the slower bang to reach the observer exactly matches the interval between shots and so the two 
events, the bang and the flash are seen as being synchronous.  
 
If the rate of fire is increased then at first, for a small increment, the bang and the flash are no longer 
in sync. They come back into sync however when the rate of fire is exactly two shots per second, and 
again when the rate is three shots per second. If we had a fast enough machine gun this sequence 
would extend to infinity for a rate of fire which is an integer number of shots per second. Notice that 
now the bang no longer relates to the previous flash, but to a previous flash. It is interesting to note 
also that if the rate of fire is reduced from once per second then the observer will never hear and see 
the bang and the flash in sync with one another and so once per second represents the minimum rate 
of fire which will lead to a synchronous bang and flash. In fact what we have here is a system that has 
as its solutions a base frequency and an infinite set of harmonic frequencies. 
 
This phenomenon is called aliasing because each such occurrence where the bang and the flash 
coincide is an alias for the first or base solution. In the former case the variable is the distance 
between the observer and the cannon, while in the latter case it is the interval between the bang and 
the flash that is ambiguous. However in both cases all of the possible values are valid at any one time, 
but only one is true. The distance or the time can be said to be determinate, but not determinable. 

Harmonic Series 

 
In this latter example where we are altering the period and by implication the frequency of the events 
the aliases form a harmonic sequence. If we encounter a sampled signal whose samples are all the 
same value then we have no way to know whether the signal is at the sample frequency or at an 
integer multiple of the sample frequency. This can be seen in Figure 13 which shows how a 
fundamental frequency and its harmonics all return the same sampled signal, note that the sample 
values are all the same and depend only on the phase relationship between the signal being sampled 
and the sampling frequency. 
 



 
 

 

 
Figure 13 Sampling and Harmonics 

 
Wherever we see a harmonic series in nature there must always be a corresponding sampling process. 
This becomes evident if we consider the Fourier representation of a harmonic series. Such a Fourier 
representation comprises a series of spikes equally spaced along the frequency axis. For a real 
function these are disposed equally on both the positive and negative frequency axes. These spikes are 
referred to as Dirac or Delta functions and such a collection of equally spaced and equally weighted 
Dirac functions is referred to as a Dirac comb.  

 
Figure 14 Fourier transform of a single Dirac function 
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Figure 15 Fourier transform of a Dirac comb 
 

 
Figure 16 Fourier transform of a higher frequency Dirac comb 

 
The Fourier transform of a Dirac comb in the frequency domain is a function in the time domain that 
is itself another Dirac combix. Such a Dirac comb in the time domain can be regarded as a sampling 
function, since if it is multiplied by any other signal it effectively takes a sample at regular intervals in 
time. The sampling frequency corresponds to the lowest frequency in the harmonic series, which in 
the case of the atom is the orbital frequency of the base energy state of the atom. The orbital 
frequencies of the higher energy states are signals of interest and so can be regarded as aliases of this 
base band signal. 

Proof of Aliasing 

 
The proof of aliasing was first carried out by Claude Shannon in 1949x. Versions of this proof can be 
found in most standard texts on digital signal processing.  
 
Aliasing is the name given to the phenomenon where two distinct signals x1(t) and x2(t) give the same 
set of values x[n] when sampled at a fixed rate Fs. We shall consider the case where x1 and x2 are both 
sinusoids. 
 
Two signals will be aliases of one another if they meet the condition 
 
�� =  �� + ��� Equation 21 

Where Fs is the sampling frequency and k is an integer. 
 
Sampling the two sinusoidal waves, x1 and x2, at a rate of Fs will produce the following sequences 
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The signals will be aliases of one another if ��[�] = ��[�] for all � = 1,2,3, … 
 
To prove the equation we rely on the identity cos(� + 2��) = cos(�) for all integer m. 
 
Substituting for F2 in Equation 23 
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Here we are dealing with the special case where �� = �� and so 
 
��[�] = ��[�] = � cos (�)  Equation 27 

and  
 
�� = ��� Equation 28 

In other words the orbital frequencies form a harmonic series with base frequency F1. 

How far is it around the world? 
 
We can see how aliasing affects measurements of objects in orbit by first considering things on a large 
scale and asking how far is it around the world and then move on to consider how relativity might 
affect such a measurement.  
 
The circumference of the earth is some 40,000 km, so at first glance it would seem that the answer to 
the question is 40,000 km, but this is only a partial answer. Nobody said that the measurement was 
restricted to a single orbit and so 80,000 km would be an equally valid answer as would 120,000 km 
and so on. In general we could write a simple formula to describe all of the possible such distances: 
 
� = 40000�  Equation 29 

Where � = −∞ … − 5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, … ∞ 
 
It is important to understand that all of these solutions are valid at any one time. Every time we pass 
over the departure point it is correct to say that we have travelled 40,000 km, 80,000 km, 120,000 km 
etc. since we were here before. Furthermore since the starting point and endpoint could be chosen 
arbitrarily anywhere along the great circle route, it is true for any starting point along the chosen path. 
So no matter where we are on the great circle it is correct to say that we have travelled 40,000 Km, 
80,000 Km, 120,000 Km etc. since we were here before. Notice however that the start and end points 
must coincide. 
 
However even this falls short of a complete answer to our question because in our imaginary orbiter 
we can travel as fast or as slow as we like. The distances we have measured so far are measured at a 
low speed where the effects of relativity are negligible. But if we were to travel much faster, at close 
to the speed of light, then the distance we perceive travelling in the orbiter is reduced or 
foreshortened.  

The Effect of Relativity 

 
Earlier we saw how relativity affects the perception of distance travelled. Einstein showed that 
distances measured in the direction of travel are foreshortened or compressed, those at right angles to 
the direction of travel are unaffected. The extent of this foreshortening is governed by the Lorentz 
factor. The Lorentz factor is usually referred to as Gamma (γ) given by the simple formula in 
Equation 18 and tells us the extent of foreshortening for a given speed.  
 



 
 

 

We saw also that, rather than imagine that the distance between points changes, it is sometimes easier 
to imagine instead that the scale on which distance is measured is stretched. It is as if the 
measurements are made with a tape measure made of elastic, the faster one travels; the more the 
elastic tape measure is stretched, but only when making measurements in the direction of travel. So 
for the astronaut travelling at 99.5% of the speed of light, any measurements made in the direction of 
travel are done so with a tape measure which has been stretched by a factor of 10 and so distances will 
appear to be less by the factor 10. 
 
The dynamic range of Gamma extends from 1, at very low speeds, all the way to infinity at the speed 
of light. In effect this means that, by suitable choice of the orbital velocity and the number of orbits, 
we can contrive the distance around the earth from point A to point A to be anything we care to make 
it. 
 
So the correct answer to the question: How far is it around the world? Is:  
 
How far do you want it to be? 

How far do you want it to be? 

 
Suppose we want to choose a particular distance around the world and then to explore all of the 
possible strategies for achieving it. If, for example, we want to find all the possible ways of travelling 
from A to A while covering a distance of 400 Km. One possible strategy would be to complete one 
orbit of the earth at speed where Gamma has a value of 100. That would be at a speed of 99.995% of 
the speed of light. The next viable solution would be to complete two orbits at a speed where Gamma 
equals 200, that is at 99.99875% of the speed of light. The next would be three orbits at Gamma = 300 
and so on. In general we can summarize this as  
 
� = 100�  
 

Equation 30 

For � = 1,2,3, … ∞ 
 
There are thus an infinite number of ways in which we could contrive to go around the world while 
covering a distance of 400 Km. Once again for each successive value of Gamma the distances around 
the world are aliased. For example when � = 1 the distances are 400, 800, 1200… km, when � = 2 
they are 200, 400, 600… km and when � = 3 they are 133, 266, 400, 533…km. For each value of n 
all of the respective values are valid, it is just that we are choosing the particular alias where the 
distance equals 400 km. In fact the distances we are choosing represent a harmonic series. The 
situation is summarized in Table 1 which shows the possible distances for values of Gamma which 
are an integer multiplier of 100 and for n orbits. The principle diagonal is always equal to 400 km, our 
chosen distance.  
 
 

 n  
 
 Gamma 1 2 3 4 5 6 7 

100 400.00 800.00 1200.00 1600.00 2000.00 2400.00 2800.00 

200 200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00 

300 133.33 266.67 400.00 533.33 666.67 800.00 933.33 

400 100.00 200.00 300.00 400.00 500.00 600.00 700.00 

500 80.00 160.00 240.00 320.00 400.00 480.00 560.00 

600 66.67 133.33 200.00 266.67 333.33 400.00 466.67 

700 57.14 114.29 171.43 228.57 285.71 342.86 400 

Table 1 Distances Under Relativity 

 



 
 

 

It is left to the reader to work out the various strategies for circumnavigating the earth while covering 
a distance of 291.9 km.  

Relativistic Velocity and Sampling 

 
The conventional wisdom holds that both the stationary observer and the moving observer agree on 
their relative velocity, that velocity is invariant with respect to relativity. Such invariance is axiomatic 
to the derivation of Special Relativity. 
 
To measure the speed of an object moving at close to the speed of light in real time it is necessary for 
a stationary observer to use two clocks, at least conceptually. One clock must be set up at the point of 
departure and another at the point of arrival. The two clocks must then be synchronized before the 
measurement can begin2. The time that the moving object leaves the point of departure is noted on the 
departure clock and the time of its arrival is noted on the arrival clock. At least one of these 
measurements must then be transmitted to the other location before the difference can be taken and 
the speed calculated. Any attempt to measure such a velocity in real time is thwarted by the fact that 
the clock would have to move with the moving object and so would itself be slowed down due to the 
effects of relativity. 
 
There is however one circumstance where this is not the case, where it is possible to measure velocity 
using just a single clock; that is when the moving object is in orbit. Under such circumstances the 
object returns to its point of origin once per orbit and so it is possible, conceptually at least, to 
measure its orbital velocity in real time using a single clock provided the measurement is made over 
one or more complete orbits. Any attempt to measure the speed between two separate points on the 
circumference is thwarted by the same two clock problem outlined above. The restriction that orbital 
period can only be measured or experienced over a whole number of complete orbits amounts to a 
sampling process and, as we have seen, sampling processes lead to aliasing.  
 
Using this as a starting point and combining it with the effects of relativity on orbital motion, it is 
possible to define a hybrid velocity term which straddles the two reference frames; that of the 
stationary observer and that of the moving electron. Such a velocity is calculated as the measured by 
the moving observer, and foreshortened by relativity, divided by the time as measured or experienced 
by the stationary observer. Hence this ‘Relativistic Velocity’ term is also reduced by a factor of 
Gamma compared to the Actual Velocity as measured within the two respective reference frames. 
 
Within the reference frame of the stationary user the normal conditions apply and the orbital velocity 
is seen as being close to the speed of light. The same is true for the electron within its frame of 
reference. Hence relativistic velocity only applies when considering phenomena which act between 
the two reference frames. Therefore it is postulated that this type of relativistic velocity is what 
applies when calculating momentum, angular momentum, centripetal and centrifugal force and 
acceleration. 
 
When orbital velocity is measured over a complete orbit, the distance value which contributes to the 
measurement of velocity is subject to aliasing in exactly the same way as the measurement of the 
distance around the earth was earlier. The orbital period however is measured in the reference frame 
of the stationary observer and so is not subject to aliasing. The orbiting electron has no inbuilt counter 
and cannot count the orbits, it is only capable of relating the distance travelled to the time taken once 
per orbit and since the distance travelled is subject to aliasing then so is the effective orbital velocity. 
This means that the distance travelled during the orbital period can be regarded as having multiple 
values but this also means that so does the Relativistic Velocity which is distance divided by time and 
just as when orbiting the earth, all of these aliased values can be considered as being valid at the same 
time. 

                                                      
2 Since the two clocks are stationary with respect to one another they will run at the same rate and therefore it is possible to synchronize 
them. 



 
 

 

 

The Hydrogen Atom 

The Rydberg Formula and Series 

The Rydberg formula describes the relationships between the various energy levels of the hydrogen 
atom. It is important to understand that Rydberg’s formula is based on the results of experiment and 
observation. It does not seek to explain the spectral lines, rather it seeks to describe them and it is 
complete, that is it describes objectively all of the spectral lines for hydrogen. The formula deals only 
with the differences in energy between the various energy states. It has nothing to say about the 
absolute value of energy carried by the orbiting electron. The Rydberg formula forms a sort of gold 
standard against which any successful model for the hydrogen atom may be tested. 
 
The Rydberg formula was given in Equation 4. In this form it uses the somewhat obscure wave 
number (1/�). It can be expressed more usefully in terms of the energy emitted or absorbed when a 
transition takes place. This is achieved by multiplying both sides of Equation 4 first by c, the velocity 
of light and then by h, Planck’s constant3. Gathering terms and substituting the analytical value for RH 
gives: 
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Equation 31 

Where m is the rest mass of the electron and α is the Sommerfeld Fine Structure Constant (Alpha) 
 
The Rydberg formula tells us the amount of energy released when the electron orbiting the hydrogen 
nucleus makes a transition from the n2

th energy state to the n1
th energy state, or conversely the amount 

of energy absorbed if the transition is in the other direction. By letting n2 = ꝏ we obtain the energy 
associated with a transition to or from the maximum possible energy state of the electron and its 
energy in the nth energy state, that is we obtain the energy potential4 of the atom in the nth energy state.  
 
Doing so leads to the Rydberg Series 
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Equation 32 

 
The Rydberg Series is particularly useful because it allows us to easily calculate the energy associated 
with any transition simply by taking the difference between two values in the series. 
 
En is the energy potential of the nth energy state and represents the difference between the energy of 
the electron in the nth energy state and the most energetic energy state possible, the ꝏ energy state or 
energy ceiling of the atom. The energy ceiling of the atom represents the maximum energy that an 
orbiting electron could ever possibly have. It is reasoned here that, since nothing can ever travel faster 
than the speed of light, the energy ceiling is limited by the speed of light to be 
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1

2
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Equation 33 

 
It is also reasoned here that the electron orbiting the atomic nucleus must do so at the constant radius, 
that is to say at the same orbital radius for every energy state. Anything other than this would imply 
the existence of the physically impossible ‘quantum leap’, the ability to move from A to B without 
occupying anywhere in between. This in turn means that there can be no change in potential energy 
when the electron transitions from one energy state to another energy state. All changes in energy 
must therefore be kinetic in nature. Hence the energy of the electron in the nth energy state must be 

                                                      
3 Note that this is the long form of Planck’s constant 
4 Note that energy potential is not the same as potential energy. 
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Equation 34 

Where vn is the orbital velocity in the nth energy state 
 
It is the difference between the energy ceiling and the energy in the nth energy state that is expressed 
in the Rydberg series, so by definition 
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 Equation 35 

Therefore 
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Equation 36 

 
Equation 36 can be simplified to give 
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Equation 37 

 
And further simplified to give 
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Equation 38 

 

 
The term on the left hand side of Equation 38 will be recognized from Equation 18 as the Lorentz 
factor Gamma (γ) and hence 
 

�� =
�

�
 Equation 39 

 
The Lorentz factor, Gamma, is not inherently quantized. There are many examples where Gamma is 
known to take on values which are not related to the fine structure constant in any way. What this 
means is that there is something about the dynamics of the hydrogen atom which causes Gamma to 
only take on these discrete values.  

Force balance 

 
For the atom to be stable the forces acting on the electron must be in balance. The electrical force 
acting to pull the electron towards the nucleus must equal the centrifugal force tending to push it 
away. The electrical force obeys the inverse square law and is proportional to the product of the 
charge on the electron and that on the nucleus divided by the inverse of the square of the distance 
between them. The constant of proportionality is the Coulomb constant K. The centrifugal force is the 
product of the mass and the velocity squared divided by the orbital radius and so 
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Equation 40 

 
However it is necessary to take into account the effects of relativity and it is postulated that the orbital 
velocity is close to the speed of light and so is affected by relativity. Under such circumstances the 
mass of the electron would be increased by a factor Gamma. The velocity term however is reduced by 
the same factor Gamma and so  
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Equation 41 

 
Which simplifies to  
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Equation 42 

 
John W Nicholson argued that the orbital angular momentum of the electron was equal to Planck’s 
constant. He based this idea on the fact that Planck’s constant has units which are the same as those 
for angular momentum. He further assumed that the orbital angular momentum of the electron could 
take on values which were an integer multiple of this. However it is this latter assumption which leads 
directly to the idea of the quantum leap. Here it is argued that the quantum leap is a physical 
impossibility and so the idea of quantizing angular momentum is rejected in favour of Gamma being 
the variable of quantization. However the idea that the orbital angular momentum is equal to Planck’s 
constant remains valid and so we can develop an expression for the orbital radius directly from this 
definition of Planck’s constant. Again the mass term is affected by relativity and the velocity term by 
the inverse: 
 

ℏ = ���
�

�
 Equation 43 

 
From which  
 
ℏ = ��� Equation 44 

From which the orbital radius can be derived  
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Equation 45 

 
And since ħ,m and c are all constants, it follows that the orbital radius is constant and is numerically 
3.86159*10-13 m. This value is not unknown, it is sometimes referred to as the Reduced Compton 
Wavelength; the Compton Wavelength is then the orbital circumference. 
 
Substituting for R in Equation 42 and simplifying gives 
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Equation 46 

 
Alpha can be calculated analytically based on the value of other well-known constants and is given by 
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���
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Equation 47 

Where K is the Coulomb force constant and q is the charge on the electron and the proton. 
 
So 
 

� =
1

�
 

Equation 48 

 
From this we can calculate both the Actual Velocity and the relativistic velocity in the base energy 
state. The actual orbital velocity is 99.9973372% of c. The Actual Velocity for the infinite energy 
state is c itself and so the dynamic range of the Actual Velocity is extremely narrow.  



 
 

 

 
The relativistic velocity is the Actual Velocity multiplied by Alpha, the Fine Structure Constant, and 
is therefore 2���/�. Numerically it is 2187309.8 m/s a value that is known as the Bohr velocity as it 
is the same velocity as the electron in the base energy state of the Bohr model.  
 

But from Equation 39 �� =
�

�
 so it is necessary to consider why, if � =

�

�
 is a solution � =

�

�
 should 

also be a solution? 

Wave Equation 

 
When Erwin Schrödinger developed his wave equation he was forced to base it around a travelling 
wave. This is because the notion of de Broglie’s waves is that they travel around the orbit of the 
electron and that it is only at certain frequencies that the wavelengths of these waves add up to the 
orbital circumference and become standing waves. These standing waves correspond to the stable 
energy states of the atom. Schrödinger is thus forced to adopt a canonical form for his equation which 
includes two partial derivatives, one for time and one for distance, rather than the one derivative term 
needed here. This necessarily complicates the Schrödinger equation, whereas here we are dealing with 
the simple case of a harmonic oscillator in which the distance is the displacement with respect to some 
mean value. 
 
Schrödinger faced a second constraint and that is that he assumed that changes in the energy level of 
the atom were accompanied by a change in potential energy of the electron, in effect acknowledging 
the existence of the quantum leap. This forced Schrödinger to postulate a solution to his equation 
which can only be described in the complex plane. The measurement problem then arises as physicists 
try to coerce this complex equation to have real solutions. The electron is said to exist in a state of 
superposition, where its exact position and momentum not only cannot be determined, but does not 
even exist. When observed however the electron ‘collapses’ from this indeterminate state as a wave 
front to exist as a real particle. The so called Measurement Problem is a question of how and whether 
the wave front collapse occurs. The question defies rational explanation and has confounded both 
physicists and philosophers alike.  
 
With the introduction of Relativistic Velocity, the need for a quantum leap disappears. The electron is 
seen as a point particle having deterministic properties. The electron orbits at a constant radius, 
irrespective of the energy level and as a consequence there is no change in potential energy between 
the various energy states, only the kinetic energy of the electron changes. The result is a simple 
planetary model for the electron, albeit one which involves relativity. This greatly simplifies any wave 
equation we might develop to describe the position of the electron as a function of time. There is no 
need to introduce the idea of a travelling wave and no change in orbital radius. The equation is that of 
a simple undamped second order system. 
 
This is readily solved by first postulating a solution of the form � = � cos (��) from which 
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Equation 49 

And 
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Equation 50 

 
Hence 
 
� = � cos (��) Equation 51 



 
 

 

And the resulting equation is 
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Equation 52 

 
From the force balance equation  
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Equation 53 

 
We can develop an expression for �� 
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Equation 54 

 
Multiplying both sides by 1/�� 
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Equation 55 

 

Recognizing that ℏ = ��� and that � =
���

ℏ�
we can substitute into the Lorentz formula so as to 

eliminate the �� term and simplify 
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Equation 56 

 
From which  
 
��� − �� + 1 = 0 Equation 57 

The numerical value5 for α is 7.2973525698x10-3. Substituting this and calculating the three roots 
gives: 
 
 γ = 137.028700944403 
 γ = -0.996384222264 
 γ =1.0036823521665 
 
Only the first of these three values is significant, the second implies orbital rotation in the opposite 
sense, while the third implies a velocity greater than that of light. This cubic equation gives a more 
precise value for gamma than the first approximation used earlier. By recognizing that v is very close 
to c in the force balance equation the value of Gamma can be calculated as: 
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Equation 58 

 
Substituting in the equation for γ gives a value for v: 
 

�

�
= �

�� − 1

��
= 0.999973371 

Equation 59 

 

                                                      
5 CODATA - http://physics.nist.gov/cgi-bin/cuu/Value?alph 



 
 

 

v is the Actual Velocity of the electron around its orbit and as can be seen it is very close to c, the 
velocity of light, being some 99.9973371% of c, which is in agreement with the method of first 
approximation to the first 7 significant figures. 

Why n/Alpha is a solution if 1/Alpha is a solution 

 
The orbit of the electron is stable if the relativistic velocity is such that the effective orbital velocity is 
scaled by Gamma to be equal to 2πRα, the Bohr velocity. but the effective orbital velocity can only be 
measured over one or more complete cycles and is subject to aliasing. 
 
Imagine that you are an observer located on the atomic nucleus of a hydrogen atom. At some time 
� = 0 you look up and the electron is directly overhead. Then some time later when � = � you look up 
again if you see the electron directly overhead then the atom is in a stable state. Its effective orbital 
velocity, it Relativistic Velocity, will be the distance that it has traveled around the orbit divided by 
the time � and one of the aliases for this velocity will be equal to the Bohr velocity. If you do not see 
the electron after time �, then the position of the electron is undefined, the effective orbital velocity 
will not be equal to the Bohr velocity and the atom will not be in a stable state. 
 
The situation for the base energy state is shown in Figure 17 
 

 
Figure 17 The Base Energy State 

 
The electron completes one orbit between observations. The orbital period is � and is measured in the 
reference frame of the stationary observer located on the nucleus. Gamma has a value of 137.036 and 
the orbital path length is foreshortened by relativity to be 2��� and so the orbital velocity is equal to 
the Bohr velocity such that the atom is stable and the electron is seen to lie on the positive x axis, 
corresponding to it being directly overhead when observed at both � = 0 and � = �. 
 
If we increase the actual orbital velocity by some small amount then Gamma will increase and the 
orbital path length, the wavelength, will be foreshortened so when the observer looks for the electron 
at time � = � it is not there. The actual orbital velocity is very close to the speed of light and so a 
relatively small change in Actual Velocity will produce a large change in Gamma. As far as the 
observer is concerned the position of the electron is undefined and the atom will not be in a stable 
state. The situation is shown in Figure 18 6. The green trace shows the position of an electron orbiting 
in the base energy state. The red trace shows the position of an electron orbiting at a higher speed in 
this case where Gamma has a value of 164. The position of the electrons coincides at time � = 0, but 
after an interval of time �, their positions no longer coincide. For an observer located at nucleus, if the 

                                                      
6 I have deliberately chosen to represent the situation using real values for both x and y in order to emphasise the 
fact that the electron is a real object and the x,y co-ordinates are real values. I could equally have chosen to 
represent the position of the electron in the complex plane simply by asserting that the y dimension is imaginary. 
The results would be the same with the stable atom corresponding to the positive real axis. 
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electron was directly overhead at time � = 0, it is not overhead � seconds later and so the both the 
position and the velocity are undefined and so the electron will not be in a stable state. 
 

 
Figure 18 An Unstable State 

The situation persists as we increase the actual orbital velocity and corresponding value of Gamma 
until Gamma reaches a value of 274.072 at which point the observer located on the nucleus will see 
the electron directly overhead at both � = 0 and � = � where once again the electron is seen to lie on 
the positive x axis in Figure 19. The wavelength has been foreshortened by relativity to the extent that 
two cycles now fit in the space of the wavelength of the base energy state. The electron is incapable of 
counting and in any event the observer is not able to look for the electron at any time other than 
� = �� and so is not able to discriminate between the situation where the atom is in the base energy 
state or the second energy state.  
 

 
Figure 19 The Second Energy State 

As Gamma increases beyond 274.072, the pattern will repeat such that the atom will not be stable 
until Gamma reaches 3 ∗ 137.036. The situation for this third energy state is shown in Figure 20, 
where � = 411.108.  
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Figure 20 The Third Energy State 

Figure 18 to Figure 20 illustrate how relativity has the effect of multiplying frequency by Gamma and 
the extent to which such multiplication takes place in each energy state. From this it is evident that the 
orbital frequency in the nth energy state is that of the base state multiplied by the value of Gamma in 
the nth state.  
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And so for any higher energy state 
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But also  
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Because the sampling takes place at the same frequency as the base energy state the sample values are 
the same at every sample interval. This is consistent with the electron being directly overhead at the 
time the samples are taken. The effect of introducing a phase change is shown in Figure 21. The 
sample values have altered, but remain the same as each other at every sample instant. Such a phase 
change does not affect the outcome, but merely represents a change in which direction is regarded as 
being overhead by an observer at the nucleus. 
 

 
Figure 21 The Effect of a Phase Shift  
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The interval T is a common factor when describing relativistic velocity and so we can conduct similar 
analysis in terms of the wavelengths of the waves in Figure 17 to Figure 21 rather than frequency to 
construct a time independent solution to the wave equation simply by dividing each velocity term by 
T. In this case it is evident that the atom is stable when a whole number of the wavelengths of the 
waves foreshortened by Gamma equals that of the wave foreshortened by 1/� in the base energy 
state. The relativistic velocity is always equal to the foreshortened orbital path length divided by the 
same orbital period and so this time independent solution is in fact the same as the time dependent 
solution.  
 
There are striking similarities between this and the solution of Schrödinger’s wave equation. In both 
cases the solution lies in finding the value of a parameter which results in a whole number of waves 
fitting within another wave. In Schrödinger’s case the waves to be fitted are those of de Broglie and 
the wave they fit into is the circumference of the Bohr orbit for that particular energy state. Here the 
corresponding waves are those whose wavelength is foreshortened by relativity in the nth state must fit 
within the wavelength of the base energy state.  

Balance of Forces 

As the Actual Velocity increases, in a very small dynamic range close to the speed of light, the 
relativistic velocity decreases. This causes the centrifugal force to decrease the result is that the 
centrifugal force varies as the inverse of Gamma. In addition to this reduction in force with Gamma, 
the centrifugal force is subject to aliasing caused by sampling. Figure 22 shows a plot the family of 
curves of force against Gamma together with a line representing the electrical force, which is not 
affected by Gamma. Each point where the curves intersect the line represents a stable state of the 
atom. 
 

 
Figure 22 Family of Curves of Force vs Gamma 

Table 2 shows the value of Gamma for each of the stable states of the atom and the corresponding 
valid values for v/c and Relativistic Velocity. Each row represents a stable state of the atom and the 
columns show all of the aliases for the relativistic velocity in that state. It can be seen that one value is 
highlighted in each row and that it is equal to the Bohr velocity. Hence in each stable state there is an 



 
 

 

alias for the Bohr velocity which results in a value for the centrifugal force which exactly balances the 
electrostatic force. 

 v/c = 

√(1-α2/n2) 

 n  

Gamma 1 2 3 4 5 6 7 

0.999973371 137.036 2187309.8 4374619.5 6561929.3 8749239.1 10936548.8 13123858.6 15311168.4 

0.999993343 274.720 1093654.9 2187309.8 3280964.7 4374619.5 5468274.4 6561929.3 7655584.2 

0.999997041 411.108 729103.3 1458206.5 2187309.8 2916413.0 3645516.3 4374619.5 5103722.8 

0.999998336 548.144 546827.4 1093654.9 1640482.3 2187309.8 2734137.2 3280964.7 3827792.1 

0.999998935 685.180 437462.0 874923.9 1312385.9 1749847.8 2187309.8 2624771.7 3062233.7 

0.99999926 822.216 364551.6 729103.3 1093654.9 1458206.5 1822758.1 2187309.8 2551861.4 

0.999999457 959.252 312472.8 624945.6 937418.5 1249891.3 1562364.1 1874836.9 2187309.8 

Table 2 Relativistic Velocities for the Stable States of the Atom 

In other words it is precisely because Gamma increases with increasing orbital velocity causing the 
centrifugal force to decrease with increasing velocity that these various states each become stable for 
some value of orbital velocity. 
 

 
From Equation 38 we can calculate the orbital velocity in each energy state and from this we can 
calculate the orbital frequency, the energy and the energy potential in each state as shown in Table 3. 
 
The orbital velocity for � = 1 is 99.9973372% of c and that for the infinite energy state is c which 
means the dynamic range of orbital velocity is extremely small. This, together with the fact that the 
orbital radius is constant means that the morphology of the atom remains substantially the same for all 
energy states. This is important because the physical and chemical properties of the atom are 
independent of the energy state and this is not likely to be the case if the morphology of the atom was 
significantly different from state to state. 
 

n �� /� 1/γn 
 

Energy eV 
Energy 

Potential eV 

1 0.999973371 0.007297559 7.76324511E+20 255485.925 13.607 

2 0.999993343 0.003648853 7.76340016E+20 255496.130 3.402 

3 0.999997041 0.002432577 7.76342887E+20 255498.020 1.512 

4 0.999998336 0.001824435 7.76343892E+20 255498.682 0.850 

5 0.999998935 0.001459549 7.76344357E+20 255498.988 0.544 

6 0.999999260 0.001216291 7.76344610E+20 255499.154 0.378 

7 0.999999457 0.001042536 7.76344762E+20 255499.255 0.278 

8 0.999999584 0.000912219 7.76344861E+20 255499.320 0.213 

9 0.999999671 0.000810861 7.76344929E+20 255499.364 0.168 

10 0.999999734 0.000729775 7.76344977E+20 255499.396 0.136 

 
 

∞ 1.000000000 0.000000000 7.763451838E+20 255499.532 0.000 

Table 3 Orbital velocity, frequency and energy  

The Fine Structure Constant 
 
Niels Bohr was able to solve his equations to match the energy levels of the Rydberg formula and as a 
consequence was able to derive an analytic formula for the Rydberg constant. When Sommerfeld 

n



 
 

 

linked the Bohr velocity to the speed of light he opened the door to allow the Fine Structure Constant 
to be expressed in terms of other known physical values, but the reason why it should have that 
particular value remained a mystery.  
 
From the foregoing it is evident that the Fine Structure Constant (Alpha) is the value by which 
Gamma must be scaled in order to reduce the effective orbital path length and in turn the effective 
orbital velocity to a point where the forces acting on the electron are in balance. This scaling is 
brought about by relativity as the actual orbital velocity approaches the speed of light.  
 
The foreshortened orbital path length and the orbital period exist in two different reference frames and 
can only therefore be related to one another once per orbit. We can in some sense think of this as a 
third reference frame, one which exists in the hinterland between that of the electron and the nucleus, 
One in which the orbital path length is foreshortened by relativity but the time is not dilated. This 
causes the velocity term to take on a series of aliases and these each result in an effective orbital 
velocity that results in a stable atom. Each of these stable states corresponds to a value of Gamma 
which is an integer multiple of the reciprocal of the Fine Structure Constant. 
 
The Fine Structure Constant (Alpha) is a repeating theme throughout atomic and nuclear physics and 
yet it is until now one of the great unsolved mysteries of modern physics. Richard P Feynman, one of 
the gurus of quantum physics, said of the Fine Structure Constant: 
 
“It has been a mystery ever since it was discovered more than fifty years ago, and all good theoretical 
physicists put this number up on their wall and worry about it. Immediately you would like to know 
where this number for a coupling comes from: is it related to pi or perhaps to the base of natural 
logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a magic number that 
comes to us with no understanding by man. You might say the "hand of God" wrote that number, and 
"we don't know how He pushed his pencil." We know what kind of a dance to do experimentally to 
measure this number very accurately, but we don't know what kind of dance to do on the computer to 
make this number come out, without putting it in secretly!” xi 
 
It is frequently described as Coupling Constant, an appropriate epithet in the light of what we have 
discussed, since it couples a measurement of distance in the domain of the moving electron with that 
of time measured in the domain of a stationary observer.  
 
There is nothing mysterious or special about the fact that the Fine Structure Constant is a pure 
number, lacking units or dimensions. It simply means that it derives from the ratio of two values 
which have the same dimensions, in much the same way as π is dimensionless because it is the ratio 
of two lengths.  
 
The introduction of Relativistic Velocity solves the mystery and shows that it is indeed the ratio of 
two quantities. We can think of it as the ratio of two lengths, although it is equally valid to describe it 
as a ratio of two times or even two masses. In terms of length, it is the ratio of the orbital 
circumference measured by a stationary observer to that measured by the moving electron in the 
hydrogen atom in its base energy state. It also occurs in each stable energy state as one of the 
multivalued orbital circumferences that occur due to the phenomenon of aliasing.  
 
We can also think of Alpha as being the ratio of two times, the period of the orbit as seen by the 
stationary observer and the period as seen by the moving electron in the base energy state. Similarly 
we can view it as being two frequencies, the orbital frequency as seen by the stationary observer to 
that seen by the moving electron in the base energy state.  

Zero Point Energy 

The model also provides an explanation for the hitherto mysterious Zero Point Energy. Debate has 
raged about the existence and the nature of zero point energy since the concept was first introduced by 



 
 

 

Planck in 1911. With at least one interpretation showing that the atom is possessed of energy even 
when it is cooled to absolute zero. When an atom is cooled to absolute zero it ceases to have 
Brownian motion and therefore has zero kinetic energy. However the orbiting electron still has kinetic 
energy. The electron is orbiting at close to the speed of light and so has energy equal to 1/2mc2 
exactly in line with prediction. 

The Morphology of the Atom 

The model for the atom presented here has an orbital radius which is constant for all energy states. 
The orbital velocity varies between 99.9973371% of the speed of light and a theoretical upper limit of 
the speed of light which means that atoms of different energy levels have the same overall shape and 
are almost indistinguishable from one another. This is consistent with an atom whose physical and 
chemical properties are the same in all energy states, which is what we find in practice. 
 

The Absence of Synchrotron Radiation 
 
When an electrically charged particle, such as an electron or an ionized atom follows a curved path 
we expect it to emit a type of radiation called synchrotron radiation. This is the expected norm, but the 
electron orbiting the hydrogen nucleus does not, despite it following a circular path. For an isolated 
particle, such as an atomic nucleus or even an isolated electron, the curved path occurs as a result of 
interactions between the particle and the surrounding atoms. In the case of the atom however we are 
dealing with forces which act within the atom itself.  
 
The dynamics within the atom are different to those of an atom interacting with other atoms, the laws 
are the same, but the circumstances are different. The electron within the atom is orbiting at near light 
speed and so subject to the effects of relativity. We have argued that the atom is stable if the effective 
orbital velocity is seen to be affected by relativity and scaled by a factor of 1/Gamma and it is the 
presence of this Gamma term in the denominator of the term for centrifugal force which leads to the 
absence of synchrotron radiation.  
 

 
Figure 23 A small change in orbital radius 

 
The forces acting on the electron are the electrical force of attraction and the centrifugal force. These 
must be equal for the electron to be in balance.  
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From Equation 42 the total force acting on the electron is given by 
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Equation 60 

 
However Gamma is a function of both R and ω. And when we correctly insert this into the equation 
for the total force acting on the electron becomes 
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Equation 61 

 
A small change in the orbital radius R at constant angular velocity will lead to a corresponding change 
in the velocity term �� this in turn will lead to a change in the value of Gamma. Gamma is extremely 
sensitive to changes in the velocity and so this will lead to a relatively large change in the value of 
Gamma and, since Gamma is in the denominator of the term for centrifugal force, this will in turn 
lead to a large change in the centrifugal force. The change is such that if the radius is increased then 
the centrifugal force is reduced and vice versa. This change in the value of centrifugal force far 
outweighs any change in the electrical force due to the small change in radius and so the result is that 
any deviation from the orbital radius results in a strong force acting to restore the orbital radius of the 
electron to its equilibrium value. 
 
We can assess the extent of this force by calculating the partial derivative of the force in Equation 61 
with respect to R while the angular velocity remains constant. 
 
The first step is to recognize that  
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Equation 62 

 
 

To find the partial derivative of A with respect to R we must invoke the chain rule 
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Hence 
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Equation 63 



 
 

 

 
 
And for the total residual force we can combine Equation 62 and Equation 63 to give 
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Equation 64 

 
However since ���� ≈ �� we can substitute in Equation 64 to give 
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Equation 65 
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Equation 66 

 
 
We can calculate the size of this rate of change of force at the orbital radius: 
 
��

��
= −7.524 ∗ 10�� N/m 

 
The negative sign indicates that the residual force always acts so as to drive the electron back to its 
orbital equilibrium.  
 
 

 
Figure 24 Restoring force vs Change of Radius 

 
The situation is shown graphically in Figure 24 which plots the restoring force in the region of the 
orbital radius. Compared to the mass of the electron and to the electrical and centrifugal forces when 
these are in balance, this is a huge force. The change in the total restoring force is some 7000 times 
larger than the change in the electrical force alone. A change of just 80 ppm in the orbital radius 
would lead to a doubling of the centrifugal force if that change were inwards and to a complete 
elimination of the centrifugal force if it were in the other direction. To all intents and purposes the 
electron is orbiting around a solid surface, which it cannot penetrate and from which it cannot deviate. 
The above calculation is for the base energy state where Gamma has a nominal value of 137.036 since 
Gamma has a higher value at higher energy levels, the force acting on the electron becomes even 
higher. 
 



 
 

 

We can compare this to the force which would obtain if we simply treat Gamma as a numerical 
constant by differentiating Equation 60 with respect to R. 
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Equation 67 

 
 
Note that the first term of the derivative is positive, that is as the radius is increased the force tending 
to increase the radius itself increase, leading to instability. Also the magnitude of the force is γ2 times 
larger when we correctly account for Gamma as a function of R. That is some 18,000 times larger and 
in the opposite sense. 

 
The Uncertainty Principle 
 
Werner Heisenberg formulated his uncertainty principle based on analysis of the dynamics of the 
hydrogen atom. He arranged the terms for momentum and position in a grid or matrix, but when he 
came to manipulating them he discovered (or rediscovered) a quirk of matrix arithmetic: that 
multiplication is not commutative; in other words [A]*[B] ≠ [B]*[A]. The difference he ascribed to 
uncertainty; the idea that it is not possible to measure both momentum and position at the same time 
to an arbitrary degree of accuracy. There is always a tradeoff between these two measurements.  
 
Eventually Niels Bohr adopted this idea as a way to try to circumvent the problem he had encountered 
with the quantum leap, arguing that uncertainty was somehow intrinsic to the electron. That it does 
not exist as a particle in the classical sense, but somehow is spread around in multiple places at once 
and that it is only when it is observed that it is transformed into a particle having both position and 
velocity. The electron is said to exist as a wave front in a state of quantum uncertainty or 
superposition, where it is deemed not to be located at a single point, but to occupy a region in space. 
When it is subject to an observing process, the state of uncertainty or non-locality ‘collapses’ such 
that the electron manifests itself as a particle in a particular location. The measurement problem is a 
question of whether and how such a wave front collapse occurs 

The Observer Effect 

 
To gain a complete understanding of uncertainty and the measurement problem it is first necessary to 
consider the so-called ‘observer effect’. When making a measurement, it is essential for the tools 
being used to make the measurement do not affect the measurement. The normal way to get around 
this problem is to ensure that the resolution of the measuring tool is much finer than the tolerance to 
which the measurement is being made. Unfortunately on the scale of the electron there are no such 
tools available. The only tools available are other electrons and photons and these are of the same 
order of magnitude as the electron being measured. The observer effect confounds any practical 
attempt to make measurements on this scale and it is often confused with the underlying problem of 
uncertainty, which is different to the observer effect. While we cannot practically make measurements 
on this scale, we can imagine what is happening to the various particles involved as if we were able to 
do so. 

The Cauchy Schwarz Inequality 

 
Shortly before Heisenberg published his findings on uncertainty, Erwin Schrödinger had developed an 
equation which described the particle in terms of a wave. At the time there was an element of 
competition between Heisenberg and Schrödinger. The uncertainty principle gave Heisenberg a clear 
lead, however eventually Schrödinger was able to show that his wave equation could be used to derive 
the same expression for uncertainty as that of Heisenberg – and that in fact the two methods are 
equivalent.  
 



 
 

 

The uncertainty equation is an inequality. It says that the average value of the position of the electron 
multiplied by its average momentum must always be greater than or equal to Planck’s constant 
divided by two. 
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Equation 68 

 
If we expand the terms this equation can be written as 
 

Δ�Δ�� ≥
���

2
 Equation 69 

 
While the uncertainty inequality can be derived from the Schrödinger wave equation or from 
Heisenberg’s matrix mechanics, a far simpler solution can be found by recognizing that the inequality 
is based on the Cauchy Schwartz inequalityxii. This concerns the relationship between the expected 
values of the two variables and their product and is commonly written as  
 
�(�)�(�) ≥ �(��) 
 

Equation 70 

Expected value, denoted by E, is a measure of the deviation of a variable from is average value and is 
sometimes referred to as standard deviation of the variable. The expected value of x is well 
understood in the world of signal processing and electrical engineering where it is referred to as the 
Root Mean Square (RMS) of the value.  
 
The position of the electron can be described in terms of its x, y components  
 
� = �, � Equation 71 

Then the velocity of the electron can be described as  
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Equation 72 

 
 

 
Figure 25 Parametric equations for the orbiting electron 

RMS Value = 0.707R  



 
 

 

The position of the electron can be resolved into two sinusoidal waves, one in x and one in y.  
 
� = � sin (��) Equation 73 

 
� = � cos (��) Equation 74 

In general the standard deviation of a periodic variable which is a function of time is given by 
 

��(�) = �
1

2�
� �(�)���

��

�

 

Equation 75 

 
We must calculate this separately for each of the two components and then combine these results to 
obtain the overall standard deviation. 
 
And so the standard deviation of the position in the x axis is given by 
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Equation 76 

From which  
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Equation 77 
 

 
Similarly the standard deviation in the y axis  
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Equation 78 
 

 
These can be combined as a root sum square to give the overall standard deviation of position as  
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Equation 79 

 

 
Δ� = � Equation 80 

In other words the orbital radius is constant. (note here we are talking about the orbital radius within a 
stable state and not between stable states, which is also constant) 
 
The linear momentum of the orbiting electron is given by 
 
� = �� Equation 81 

 
Which we can resolve into x and y components in a manner similar to that for position. 
 
�� = −��� sin(��) Equation 82 
 
 
�� = ��� cos(��) Equation 83 

 



 
 

 

The calculation for momentum then follows a similar argument, except for the presence of the 
constant m, the mass of the electron and the ω term which occurs as a result of differentiating the 
distance to get the velocity and gives 
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Equation 84 

 

 
And so  
 
Δ� = �� Equation 85 

This is also constant. 
 
On the RHS we must find the average value of the product of the position and the momentum. Again 
we can resolve into x, y components for position and velocity and calculate the average for each 
component and then combine them into an overall average. 
 
���� = ��� sin(��) cos(��) 
 

Equation 86 
 

And  
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Equation 87 
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Equation 88 
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We can do the same for ������ and then combine x and y components to give the overall standard 

deviation using a root sum square  
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From which  
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Equation 92 
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Equation 93 

 
Applying these to the Cauchy Schwartz inequality gives the familiar expression for uncertainty 
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Equation 94 
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Equation 95 

 
The product of the RMS value for the displacement and the RMS value for the velocity multiplied by 
the mass of the orbiting body is always greater than or equal to half of the orbital angular momentum.  
 
This is universally true for any orbiting body. For example the derivation works equally well for all of 
the energy levels in the Bohr model for the atom, so if R is the Bohr radius and V the Bohr velocity 
we see that the n’s on the LHS effectively cancel 
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Equation 96 

 
From Equation 69 it is evident that the mass term is plays no part in the uncertainty. It is a constant. It 
is present on both sides of the inequality in order that the RHS can be expressed in terms of Planck’s 
constant. Cancelling the mass term gives the more fundamental form which expresses the uncertainty 
between position and velocity for an orbiting body. 
 

Δ�Δ� ≥
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2
 Equation 97 

 
The Cauchy Schwartz inequality is familiar to electrical engineers where it forms the basis of the 
calculation of the Power Factor, the ratio of the useable power to the product of volts and current and 
it is useful to draw comparisons with Heisenberg’s inequality. The displacement, x, corresponds to the 
voltage in an AC circuit, and the velocity, v, corresponds to the current. The inequality is used to 
describe the power factor. The RMS value of the voltage In volts multiplied by the RMS value of the 
current in amps is always greater than or equal to the RMS value of the product of voltage and 
current; the power in watts. The ratio of these two quantities is termed the power factor and is given 
by  
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Equation 98 

 
Power factor is always less than or equal to one and is derived from the Cauchy Schwartz inequality 
in exactly the same way as with the uncertainty inequality. If we look at how the inequality deviates 
from being an equality it is evident that the frequency is the same for both voltage and current. The 
peak values and therefore the amplitude remains constant. The only variable which is then 
unaccounted is the phase relationship between voltage and current, and this is indeed what leads to a 
power factor of less than unity, 
 
�(�����)�(����) ≥ �(�����) Equation 997 

 
In the terms on the LHS of the inequality, the phase is integrated out separately for each of the two 
variables, whereas on the RHS the phase relationship is expressed by virtue of the multiplication of 
the two terms prior to the integration and so is affected by the phase relationship. 
 
We can express the uncertainty or rather its reciprocal, the certainty, in a similar manner as the ratio 
of the average of the product to the product of the averages. 
 

                                                      
7 Note that the absence of the factor ½ in this equation is because voltage and current are in phase with one 
another whereas velocity and position are 90 degrees out of phase. 
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Equation 100 

 
Here too the frequency is the same for both position and velocity and the amplitude is remains the 
same for both position and velocity. Here however the velocity is always going to be 90 degrees out 
of phase with the respect to the position and so we might expect the inequality to become equality and 
the uncertainty to evaporate.  
 
We first need to look at the conditions which are necessary for this inequality to be anything other 
than an equality, in particular as they relate to the position or displacement variable. The inequality 
does not depend on the form of the periodic function, only on the relationship between the velocity 
and the position of the electron.  
 
In order for the inequality to exist it is necessary that the position variable is periodic, it must be 
single valued and piecewise continuous and differentiable8 xiii. The fact that it must be single valued is 
of particular interest, since it is not consistent with the idea that the electron can be in more places 
than once at any one time. Within its orbit, the electron must be somewhere, it could be anywhere, but 
it cannot be everywhere. This means that uncertainty based directly on the Cauchy Schwarz inequality 
and non-locality are fundamentally at odds with one another. In short, if such uncertainty exists then 
the electron must be localized to a single point.  
 
Similarly for the acceleration term for the electron to exist, the velocity must also meet the same 
criteria, that of being piecewise continuous, differentiable and single valued. Acceleration is the 
second derivative of position with respect to time and it is by equating this with the position and some 
constant that we obtain the second order differential equation whose solution is a wave. Hence for the 
particle to exist as a wave, both its position and its velocity must be single valued. So not only is 
uncertainty based on phase differences between position and velocity at odds with non-locality, so is 
the existence of the wave equation and the very idea of the particle as wave depends on the position 
and velocity of the electron both being single valued functions. 
 
This raises some interesting questions about the physical nature of uncertainty and in particular as to 
how uncertainty can come about. The only way in which Equation 74 and Equation 75 could cause 
uncertainty is if we introduce an additional phase shift between the sine function and the cosine 
functions. The cosine function represents the position of the electron and the sine function represents 
its velocity and the phase relationship between the velocity and the displacement of the electron is 
always 90 degrees and so introducing such a phase shift would invalidate the relationship between 
position and velocity, which is always 90 degrees for a sinusoidal function. If this were not the case 
then we would have to call into question 350 years of calculus.  

Schrödinger’s cat 

 
In his thought experiment the eponymous cat is locked in a sealed box together with an atomic device 
that has 50% probability of releasing an alpha particle in a one hour period. If the alpha particle is 
emitted it triggers a device which releases vial of poison which kills the cat. The commonly held 
belief is that during the one hour period the cat is both alive and dead at the same time and is neither 
alive nor dead.  
 
The cat and the vial of poison are really just a form of amplifier designed to indicate the alpha particle 
emission on a human scale. A Geiger counter hooked up to some sort of recorder would work equally 
well, but Schrödinger was looking for a dramatic effect to ridicule the Copenhagen interpretation and 
so we will stick with his cat. 
 
                                                      
8 Piecewise continuous means that there can be discontinuities in the derivative function but not in the position 
function as for example if the position were a triangle wave, then the velocity function would be a square wave. 



 
 

 

The emission of the alpha particle, should it happen, is a discrete event, it either happens or it doesn’t 
during the one hour of the experiment. If it does happen then it does so at a specific time, it is just that 
we are not able to observe it for the one hour period that the box is sealed. The opening of the box to 
place the cat inside and the opening of the box to determine whether it is still alive can be viewed as 
discrete samples of the state of health of the cat, part of a potentially ongoing sampling process with a 
sampling period of one hour. During that time we are not able to observe the vital signs of the cat, 
because these are an inter-sample value in a system which is under sampled. This means that we can 
only determine the time at which the cat may have died to within an hour. 
 
We can improve on this resolution in time by sampling at a higher rate, in other words by taking a 
sneak peek at the cat more often than the one hour interval prescribed. So for example if we were to 
sample once every quarter of an hour we could resolve the time of death of the cat to within fifteen 
minutes. Or by sampling once every ten minutes the resolution would could establish the time of 
death to within ten minutes.  
 
If we used a slow acting poison, which took five minutes to take effect then sampling at five minute 
intervals or higher would allow us to determine the exact time of death. If on the other hand we used a 
fast acting poison which took effect within a minute, we would have to sample at least once per 
minute to determine the exact time of death. This is exactly in line with Shannon’s sampling theorem. 
By sampling at one minute intervals we are able to detect changes whose duration lasts more than a 
minute with absolute accuracy. 
 
Couched in these terms it is evident that Schrödinger’s cat is almost a perfect textbook example of the 
application of Shannon’s Sampling Theorem. This states that the sampling rate must be twice the 
highest frequency of interest in the sampled signal, which in this case are the vital signs of the cat. 
The uncertainty arises because as it was originally configured the signal is under sampled, that is the 
bandwidth of the signal is higher than the Shannon limit, resulting in aliasing. 
 
Here in this modified thought experiment we are able to alter the sampling rate so as to make 
allowances for this higher bandwidth, however in the case of the hydrogen atom and its orbiting 
electron we are not. The sample rate is dictated by the orbital period in our reference frame for the 
atom in the base energy state. There is nothing we can do to alter this, and in the meantime the 
distance travelled as it relates to the effective orbital velocity exist only in the reference frame of the 
moving electron, to which we have no direct access. 

Harmonics and Sampling 

 
The killing of the cat is just a single event in what might otherwise be a continuum in time and so it is 
useful to modify the experiment slightly and instead of monitoring the vital signs of the cat we can 
monitor whether or not it is asleep. Cats are prone to sleeping whenever they get the opportunity and 
so we can dispense with the poison vial and simply monitor whether the cat is asleep or awake. As 
before we are constrained to only look at the cat once per hour, but in this case the experiment can last 
as long as we like, with measurements taken every hour until the experiment concludes. We can think 
of this in signal processing terms. On the one hand there is a signal which reflects the wakefulness of 
the cat and on the other is the sampling event which occurs once per hour.  
 
Provided the cat is asleep or awake for more than one hour at a time we can get an accurate picture of 
its state of wakefulness. If however the cat takes short naps or more frequent naps then we no longer 
get an accurate picture of when it is awake or asleep. Indeed between sample intervals the cat might 
take any number of short catnaps and the results would be indistinguishable from one another. The 
situation is shown in Figure 26. Here we see that if the cat is asleep for one hour or more, then we 
obtain an accurate picture of its state of wakefulness. However if the cat takes short naps then we 
might either miss them altogether or be misled into how long the cat was asleep. 
 



 
 

 

 
Figure 26 Wakefulness of the cat 

Aliasing always exists when a signal or variable is sampled; it is an inevitable consequence of the 
sampling process. What Shannon and Nyquist sought to do was to eliminate the aliases from their 
signals. In the cat analogy the only way we could do this would be to make sure that the cat never 
slept for less than one hour at a time. However that is not possible either for the cat or in the case of 
the atom. In the atom the sampling frequency is determined by the orbital period in the lowest 
frequency of interest, not twice the highest and so aliasing is always present.  
 
�� = ��� Equation 101 

Where ω1 is the orbital frequency in the base energy state and n is the energy state of the atom.  
 
Turning again to the Cauchy Schwarz inequality 
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Equation 102 

 
The two factors on the LHS of the inequality are the same irrespective of the fact that the position of 
the electron is sampled. This is because we are sampling the position of the electron once per cycle 
and that is also the period over which we integrate to determine the average value. It therefore doesn’t 
matter how many complete cycles of the x and y components of the position are completed within the 
sample period just as long as it is a whole number. 
 
This is not the case on the RHS of the inequality. In the base state of the atom the RHS of the 
inequality is also valid and equal to ℏ/2. This is because we are sampling just one complete cycle of 
the position and velocity and so the analysis is exactly as before. The implication of this is that in the 
base energy state the inequality is in fact an equality and there is no uncertainty.  
 
Things are different in the higher energy states. Here we are not able to make a direct connection 
between the position of the electron and the orbital period. It will always be deemed to have 
completed more than one orbit during the orbital period. We can however calculate a value for the 
term based on that of the base state by noting that  
 

1.State of the cat 

2.Sampling signal 

3.Sampled signal 

4.reconstructed signal 
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And so  
 
ℏ

2
=

�

�
 

Equation 104 

 
Here we are concerned with the foreshortened distance which contributes to the relativistic velocity 
for the stable states of the atom this is a harmonic series and so 
 
� = ��� Equation 105 

And so 

∆x Δ� ≥
�

���
 

Equation 106 

 
From this we see that uncertainty is nothing to do with the phase relationship between position and 
velocity but instead is the result of aliasing due to sampling and that the degree of uncertainty is 
closely related to the energy level rising with increasing energy level. 
 
We can show how the various trajectories that the electron might be following relate to one another. 

First we define a term � =
��

�
 and then plot the position of the electron against τ for each successive 

value of n. What this does is to show us how the electron perceives the orbital paths from the in the 
reference frame of the stationary observer by scaling the time axis such that 2π represents one orbital 
period in the domain of the stationary observer. 
 
Figure 28 shows the situation in the base energy state where � = 1. In this state there is no 
uncertainty. If we know that the electron is in this state then we can glean its position from the 
sampled values. This is because at least in theory we can calculate the position of the electron based 
on knowing that only one orbit is completed between sample points and there is a single ordinate 
value for each value of the abscissa. 
 
 

 
Figure 27 Electron Trajectories for n=1- 4 

 

n=1 
n=2 
n=3 
n=4 
 



 
 

 

 
Figure 28 Uncertainty in the Base Energy State 

In the second energy state there are two ordinate values for each value of the abscissa as shown in 
figure Figure 29 except at the sample instant where the two values coincide. 
 

 
Figure 29 Uncertainty in the Second Energy State 

The pattern continues and so for the third energy state there are three values for the ordinate for each 
value of the abscissa except at the sample instant, as shown in Figure 30. In general there are n 
possible values of the ordinate for each value of the abscissa in the nth energy state. And so the higher 
the energy state the greater the degree of uncertainty. 

 
Figure 30 Uncertainty in the Third Energy State 



 
 

 

The uncertainty stems from the ambiguity associated with the sampling process and it increases with 
energy state. 
 
It would seem that Schrödinger came remarkably close to developing the ideas contained within the 
sampling theorem some 20 or so years before Shannon, but unfortunately was unable to do so because 
he stuck to the idea that angular momentum is quantized. It is something of an irony that Schrödinger 
was able to derive the Cauchy Schwartz inequality from his eponymous wave equation, which was 
not the correct solution, but in his throw away cat analogy hit upon the correct mechanism that 
underpins uncertainty.  
 
To summarize; an examination of how the Cauchy Schwartz inequality can be applied to the problem 
of the uncertainty principle reveals that the position of the electron must be a single valued function of 
time. This in turn means that there is a fundamental incompatibility between the uncertainty principle 
and non-locality. If uncertainty exists and obeys the Cauchy Schwartz inequality then the electron 
must be localized, that is as a particle at a single point in space and time.  
 
The phase relationship between the velocity of the electron and the position of the electron must be a 
constant 90 degrees, otherwise the whole concept of velocity as the first derivative with respect to 
time falls apart. This means that the root cause of uncertainty must lie elsewhere than in a phase error 
between position and velocity. 
 
The presence of a harmonic relationship between the various energy levels of the atom means that 
there has to be a sampling process and that the sample interval is related to the orbital period of the 
base energy state. However the sampling frequency itself is ambiguous and can also be regarded as 
being equal to the orbital frequency. Such a sampling process means that it is only possible to relate 
the distance travelled to the time taken once per orbit and that there is ambiguity over the distance 
travelled. The electron is seen to be following one of an infinite number of possible trajectories, each 
of which can be thought of as a wave.  
 
Between the sampling instants the value representing the distance the electron has travelled is both 
unknown and unknowable to us. Such uncertainty is systematic in nature as opposed to intrinsic. That 
is to say that the electron always has a definite position and a definite velocity, it is just that we are 
not able to observe both to an arbitrary degree of accuracy because the system of sampling prevents us 
from doing so.  
 
When Heisenberg first set out the uncertainty principle, he ascribed uncertainty entirely to the 
observer effect; in other words he felt that the process of making the one measurement necessarily 
affected the other and that was the complete story. Later he was persuaded that uncertainty was 
somehow intrinsic to the electron. That is, the electron did not exist as a discrete particle. Here we see 
that the two effects are inseparable. The state of the electron is unknown until it is involved in some 
sort of interaction. Such an interaction necessarily involves an observation process and incurs the 
observer effect and that the state of the electron must change in some way as a result of the 
interaction. But even without the observer effect the state of the electron is uncertain because of the 
ambiguity that occurs as a consequence of the position and velocity being sampled. The Wave 
Equation, Superposition and the Measurement Problem 
 

Superposition and the Measurement Problem 
 
The requirement for the position of the electron to be a single valued function of time means that it 
always has a deterministic position, but that we cannot determine exactly what that is because of the 
ambiguity associated with the sampling process. The situation is shown in Figure 27 where it can be 
seen that the electron is always following one of an infinite number of possible trajectories (of which 
only the first four are shown), sometimes referred to as aliases, appropriate to its energy level, but we 
do not know which one it is following. We cannot increase the sampling frequency because it is 



 
 

 

dictated by the way in which the orbital path length can be observed and so it is meaningless to try to 
relate the distance travelled to the time taken except over a complete orbital period of the lowest 
orbital frequency. 

 
The density of these infinite number of trajectories is such that the entire space is covered by such 
possible trajectories and it is this that has led to the idea that the electron can be everywhere at the 
same time. Here we see that it cannot, it is constrained to lie on one of an infinite number of possible 
trajectories. While there are an infinite number of such trajectories, they do not represent all of the 
space, in much the same way as the infinite number of integers does not represent all of the possible 
numbers within a space or domain. 
 
This gives us a slightly different view of the state of quantum indeterminacy or superposition. Here 
superposition is when the electron is in this state of it not being known which trajectory is being 
followed rather than it being everywhere. When subject to an observing process there are no structural 
changes to the electron; instead it is the properties of the electron, such as speed, spin etc., that are 
affected by the observing process due to the observer effect but the electron itself remains unaltered. 
The changes that take place are to the properties of the electron and to the state of knowledge of the 
observer, not to the electron itself. Hence the so called measurement problem does not really exist as 
such. 
 
The observing process is inextricably linked to uncertainty, but is not the cause of it. An observing 
process does not necessarily have to involve a sentient agent. Consider the case of an isolated 
hydrogen atom in an elevated energy state. At some time, and for whatever reason, it decays into a 
lower energy state and releases a photon. Such an interaction can be considered an observing process. 
Prior to the decay the state of the atom was indeterminable. After the decay the photon is released 
with a certain amount of energy and thus the photon is ‘aware’ of how much energy was released by 
the decay. Provided the decay is not degenerate9 we can establish the state of the atom both before and 
after the transition by measuring the energy of the photon.  
 
A consequence of the observer effect is that every measurement process must involve a change in the 
physical properties of the object being observed, it does not mean that the observed object itself 
changes, just its properties such as velocity, spin, polarization etc. Uncertainty can only be resolved 
when an interaction takes place and that necessarily causes a change in the object being observed. 
 
The idea of superposition arises because, prior to the measurement, we are not able to determine 
which trajectory is being followed, it could be any one of an infinite number of trajectories. That is 
until we make the measurement. It is our knowledge which has ‘collapsed’ or more precisely 
crystalized from a condition of not knowing which trajectory the electron is following to a condition 
of knowing which trajectory is being followed.  
 
Note however that in order to make the measurement we had to wait for (or induce) a change in the 
electron’s properties, in this case we waited for the electron orbit to decay and measured the energy of 
the emitted photon. In other words the electron was subject to the observer effect. 
 
The measurement problem is associated with the ‘collapse’ of the wave front and this presents a 
number of problems which are both practical and philosophical. The collapse of the wave front 
implies a physical change to the electron itself and not just to its properties, which begs the question 
as to what happens if there are two observers? Is the electron capable of collapsing for one observer 
but not the other? What happens to the electron if one observer tells the other observer his results?  
 
The measurement problem is intimately connected uncertainty and the quantum leap which in turn are 
intimately connected to the idea that angular momentum is quantized. It is argued that the electron 

                                                      
9 A degenerate transition is one where there are other transitions which produce a photon of exactly the same 
energy and hence exactly which of the transitions occurred cannot be determined. 



 
 

 

does not exist as such, but is somehow a physical representation of uncertainty and that this 
uncertainty is resolved by making a measurement which causes a physical change to the electron from 
being a cloud of uncertainty to being a localized physical entity. There is little wonder then that 
physicists have had to call in the philosophers to try to explain this. 
 
Here the measurement problem simply does not arise because the position of the electron localized. In 
other words it always has a position which is deterministic, but not determinable. There is no such 
thing as the indescribable wave front. It exists without the need for an ether. The wavelike properties 
of electron derive directly from its orbital motion. There is not such process as ‘collapsing’. The 
electron is always localized at a single point in space, rather it is our inability to determine the 
properties of the electron, its speed, spin, position etc. which underline uncertainty. 
 

Planck’s constant 
 
Bohr’s model for the atom was based on the idea that Planck’s constant was the fundamental unit of 
angular momentum and that each energy level was associated with a integer multiple of this basic 
unit. That assumption was carried over into all subsequent models within quantum theory. The 
assumption has been shown to be false. Angular momentum is not quantized; instead we find that it is 
the Lorentz factor, Gamma, which is quantized. Here Planck’s constant is still seen as the orbital 
angular momentum of the electron, but rather than being quantized, it is constrained by the dynamics 
of the atom to have a particular value for all energy states.  
 
But why exactly is Planck’s constant; constant at all? Why is the angular momentum forced to take in 
this particular value?  
 
Planck’s constant is a measure of the orbital angular momentum of the electron orbiting the hydrogen 
nucleus. It is the product of three variables, the mass of the electron, its tangential velocity and its 
orbital radius.  
 
If angular momentum were quantized it would require a complex interplay between these three 
variables plus that of the energy level of the atom such that when the velocity changes so too does the 
orbital radius and vice versa. The velocity must somehow be cognizant of the change in the orbital 
radius so as to comply with the quantization requirement or the radius must cognizant of the change in 
the velocity. The problem with this is that there is no mechanism which could cause this to happen. 
There is no causal link between changes in orbital radius and orbital velocity. The only link is that 
they must do this to comply with the quantization requirement, which is rather like saying it is 
quantized because it is quantized. Or as St Anselm put it – God exists because God exists. 
 
The argument that the Bohr model is no longer relevant and has been superseded by a more advanced 
theory simply does not hold water. All of these subsequent models rely on the assumption that angular 
momentum is quantized and so the fact that it is discredited in the context of the Bohr model is 
sufficient to discredit it everywhere. 
 
The idea that Planck’s constant is equal to the orbital angular momentum of the electron is not 
unreasonable since it has the units of angular momentum. Only now let’s consider what happens when 
orbital velocity is seen as being affected by relativity.  
 

ℏ = �� �
�

�
 Equation 107 

 
Equation 107 is that for the orbital angular momentum as seen from the point of view of a stationary 
observer located at the atomic nucleus. For him the electron is moving at near light speed and so both 
its mass and its velocity are affected by relativity but in the opposite sense. The equation links 
Planck’s constant to the orbital radius, the mass and the velocity of the orbiting electron, but it also 
includes the factor Gamma, only here it occurs twice, once in the numerator, where it acts to modify 



 
 

 

the rest mass of the moving electron in line with relativity, and once in the denominator where it acts 
to modify the orbital speed to create the Relativistic Velocity term. 
 
A closer examination of the terms of the equation reveals that the rest mass of the electron is constant 
and the speed of light is constant. The orbital radius is measured at right angles to the direction of 
travel of the electron and is therefore unaffected by relativity and so remains constant. The result is 
that Planck’s constant, which is a measure of the angular momentum of the electron, is invariant with 
respect to orbital velocity and so must be constant.  
 
The mass term and the velocity term are both affected by relativity, but in the opposite sense to one 
another. The mass increases by the factor Gamma, while at the same time the velocity is reduced by 
the same factor Gamma. The result is that the angular momentum remains the same. The important 
point to note here is that there is no complex interaction between these two variables. Each one 
separately, independently and blindly obeys the laws of special relativity and the result combines to 
cancel out, leaving the angular momentum unchanged as the orbital velocity varies. 
 
If we now view the angular momentum from within the reference frame of the electron, the electron is 
possessed of its rest mass and its orbital velocity is near light speed, which in this context is seen as 
being invariant with respect to relativity. The radius is the same as for the stationary observer and so 
the orbital angular momentum is given by the formula 
 
ℏ = ��� Equation 108 

Hence there is a not only an invariance for Planck’s constant within the domain of the stationary 
observer but also an invariance between the value for Planck’s constant between this domain and that 
of the moving observer. 
 
Strictly speaking then Planck’s constant is not a constant at all, it is invariant with respect to velocity 
close to the speed of light and it is invariant between the reference frames of the stationary and 
moving observers.  
 
All of the three factors which make up angular momentum are continuous variables and so in general 
angular momentum is itself a continuous variable. However in the context of the atom it is coerced 
into taking on a particular discrete value by virtue of the effects of relativity. 
 
As the orbital velocity increases, so does the value of Gamma. This causes the effective mass of the 
electron to increase, but at the same time the orbital path length, and therefore the Relativistic 
Velocity decreases in the same measure. We can think of this rather like a mathematical see-saw, as 
one goes up the other goes down, with Planck’s constant at the fulcrum between these two. The two 
Gamma terms balance one another out but at the same time they force the angular momentum of the 
orbiting electron to maintain its constant value. One cannot alter without the other altering and the 
sensitivity to any such change increases with Gamma. The higher the value of Gamma, the more 
tightly the angular momentum is constrained to be a constant value. Since the rest mass and the speed 
of light are both constants, this means that the orbital radius is also constrained to have a fixed value.  
As to angular momentum itself, it is not quantized but is continuous and, in general, is capable of 
taking on any value. However the effects of relativity combined with an orbital velocity near light 
speed constrain it to have a particular value in the context of the atom. 

Duality, Waves and Particles 

Special Relativity and Duality 

 
Special relativity is unique among physical phenomena in seemingly providing two answers to the 
same question, a sort of natural duality. So for example there are two distances between points in 
space, one measured by a stationary observer and one by a moving observer, equally there are two 



 
 

 

time intervals and, where cyclic behaviour is observed there are two frequencies and two 
wavelengths. Special relativity addresses the problem of dual solutions outlined by de Broglie directly 
and would therefore seem to be a natural place to start when looking for any form of duality. 
 
In any reference frame we can imagine a set of measurements such as distance, time, mass etc. which 
are those experienced by a stationary observer. For an object which is moving with respect to that 
reference frame those same measurements have different values which are related to the first through 
relativity. Distance is foreshortened, time is dilated and mass is increased. For objects which are 
moving relatively slowly these two sets of measurements are very similar. At higher speeds these two 
sets of measurements begin to diverge quite markedly. A particularly significant point of divergence 
occurs when the speed is such that the Lorentz factor, Gamma, has a value of 137.036 or a multiple 
thereof. This particular speed is associated with the stable orbits of electrons within the hydrogen 
atom. For objects in orbit certain of these measurements take on multiple values all of which are valid 
at the same time and it is this that leads to the discrete energy levels that are found within the atom.  
 
In all of this the wave characteristics of the electron derive directly from its orbital motion. The wave 
is an attribute of the particle, brought about by its motion rather than something which is integral to 
the particle. Whether it is viewed from the perspective of the stationary observer or from that of the 
moving electron, the relationship is between the wavelength, frequency and velocity is consistent with 
classical theory within its respective reference frame. Wavelength is related to the orbital angular 
momentum divided by the linear angular momentum. For the stationary observer the orbital velocity 
is to all intents and purposes equal to the speed of light and the radius is ħ/�� and so its angular 
frequency is more or less constant at ��2/ ħ. For the moving electron the orbital velocity is its 
Relativistic Velocity in the nth stable state and the radius is the same as that of the stationary observer. 
The orbital frequency is ���2/ ħ� and thus forms a harmonic series. 
 
It is more sensible therefore to speak of a wave/particle identity in which frequency, wavelength, 
amplitude and phase are all related within their respective reference frames with orbital radius, 
circumference and period in this conventional way. The duality exists between the two reference 
frames, hence there are two frequencies, one in the reference frame of the electron and one in the 
reference frame of the stationary observer and there are two orbital path lengths, one in the reference 
frame of the electron and one in the reference frame of the stationary observer. And, it is argued here, 
there are two velocities. It is better to describe this as a wave duality and a separate but related particle 
duality.  
 

The Laws of Dynamics 
 
All of the above implies that the laws of dynamics as we currently understand them are incorrect and 
will need to be modified. We know already that this is the case because Newtonian dynamics fails to 
account for the discrete energy levels of the atom. The only question is what form that modification 
should take. The pioneers of quantum theory assumed that the necessary modification was that 
angular momentum could only take on discrete values which were an integer multiple of Planck’s 
constant. However this leads directly to the physically impossible quantum leap and indirectly to 
numerous incomprehensible phenomena and so cannot be true.  
 

The integer ‘n’ 
 
Symbols and letters are often used to denote mathematical entities; the letter ‘x’ is commonly used as 
the independent variable while ‘y’ is the dependent variable. The letter ‘t’ represents time and when 
we run out of letters in the Latin alphabet we can always resort to the Greek one for a whole new set 
of symbols for example ‘π’or ‘θ’ to represent an angle. Mathematicians use ‘i’ to represent the 
imaginary unit, while engineers prefer to use ‘i’ to represent electric current and use ‘j’ for the 
imaginary unit and the speed of light is always represented as ‘c’. All of which brings us in a 
roundabout way to the letter ‘n’. ‘n’ is used to denote an integer, a whole number. It may be one of a 



 
 

 

range of whole numbers such as the positive integers, or the range may include zero or in some cases 
both positive and negative numbers depending on the particular circumstances. When we want to 
explore the relationship between two quantities involving integers we need a second variable, 
sometime we can use ‘n’s near neighbour ‘m’, but this could be confused with ‘m’ for mass, so 
commonly we would add a suffix to ‘n’ to give us ‘n1’, ‘n2’ etc. 
 
And this is just what happens with Rydberg’s formula to describe the energy levels of the hydrogen 
atom. 
 
Rutherford had shown that the atomic nucleus was a small positively charged particle located at the 
centre of the atom and so Bohr sought to describe the atom as a planetary system in which the electron 
orbited the nucleus at some distance. In an effort to find the orbital radius and orbital velocity he 
looked to set up a pair of simultaneous equations. In the first he balanced the electrical force of 
attraction between the positively charged nucleus and the negatively charged electron. For the second 
equation he turned to a colleague, J W Nicholson, who had observed that the recently discovered 
Planck’s constant had the same units as angular momentum and so reasoned that the orbital angular 
momentum of the electron was equal to Planck’s constant.  
 
These two equations are based directly on Newtonian dynamics and are readily solved for both R and 
v and from this we can easily calculate the value of the Rydberg constant analytically. But there is a 
problem. While the equations are easily solved the solution yields a single value for R and a single 
value for v. Such an atom would only have one energy level and so would be incapable of making 
transitions between different energy levels. Bohr reasoned that there had to be something missing 
from the equations, in effect he was saying that Newton’s equations were not quite right, that they 
were incomplete. What is missing from the equations is the letter ‘n’, something to denote the current 
energy level of the atom. This would yield a set of values for R and v one for each energy level which 
we could represent as Rn and vn. This is the same ‘n’ which appears twice in the Rydberg formula and 
there denotes the two energy level between which a transition is being made.  
 
For a solution Bohr turned again to Nicholson who had suggested that angular momentum could only 
exist in quantities which are an integer of multiple of Planck’s constant. He thus “quantized” angular 
momentum. This meant that Bohr had his integer multiplier embedded in the Newtonian equations. 
 
Now when Bohr solved the force balance equation and this modified equation for angular momentum 
he obtained a set of energy levels that seemingly matched those of the Rydberg formula. The model is 
invalid because it leads to the physically impossible quantum leap. However the introduction of the 
factor ‘n’ into the equations does lead to a solution which matches the Rydberg formula and which 
yields the Bohr velocity and Bohr radius as well as the fine structure constant. 
 
Here we also introduce an integer multiplier introduced into Newton’s equations for a planetary atom, 
only this time it is bound to the fine structure constant by virtue of relativity. The result is an effective 
orbital velocity which exactly matches the Bohr velocity, an orbital radius which is exactly the 
product of the Bohr radius and the fine structure constant. In other words the same values emerge 
from the calculations based on this model as emerge from the existing models. The difference being 
that in the Bohr model such concepts as wavelength, orbital path, electron position and electron 
velocity have no physical meaning. Whereas here they all relate to real variables associated with real 
objects. In other words the numerical results that emerge from either model are basically the same and 
it is the fact that the equations of motion include the factor ‘n’ that leads to these results.  
 
In comparing the two models it is evident that the model proposed here answers a number of 
questions left open by the Bohr model and by subsequent models while at the same time matching 
those models for accuracy. 
 



 
 

 

Unification of Quantum and Classical Dynamics 
 
 
The unification of observable phenomena into one overarching law is one of the primary goals of 
physics. In the 17th century Newton unified gravity with astronomy by formulating the inverse square 
law, while in the 19th century Maxwell and Lorentz between them unified electricity and magnetism 
into a single electro-magnetic force and Clausius together with Maxwell unified heat with mechanical 
energy with the kinetic theory of gases. 
 
The lesson from St Anselm is that any attempt to validate quantum theory must begin by accepting 
that there must be an as yet undiscovered modification to classical mechanics. That is true not just for 
the existing model but must be true for any new model and it is certainly true for the model proposed 
here.  
 
The key to the unification of quantum and classical dynamics is to understand how velocity is the 
relationship between distance and time each measured in different reference frames and that distance 
can only be meaningfully established over one or more complete orbits. This leads to the idea of a 
velocity term which straddles the two domains and forces us into a situation where distance and time 
can only be related to one another at certain discrete times. The combined effects of this sampling 
process and of special relativity create a mechanism that causes the electron to only be able to orbit at 
certain discrete energy levels. 
 
Relativistic velocity asserts that certain orbital velocity terms are affected by relativity and comes 
about because these terms are composed of the orbital path length foreshortened by relativity divided 
by the orbital period which is unaffected by relativity. One constraint on the existence of such a 
velocity term is that the orbital path length can only be measured or experienced over a whole orbit or 
whole number of orbits. This in turn introduces a sampling process whereby the orbital circumference 
is sampled in time with a sampled frequency equal to the orbital period. The result of sampling is to 
create aliases, in this case for the orbital path length, but as a consequence of the orbital velocity and 
thereby the centrifugal force acting on the orbiting electron. 
 
The effect of relativity on this orbital velocity term is to cause it to reduce as the actual velocity 
increases close to the speed of light and this reduction in effective orbital velocity causes the Lorentz 
factor Gamma to only be able to take on discrete values. The atom can only be stable in those states 
where Gamma is equal to an integer multiple of the reciprocal of the Fine Structure Constant and so 
Gamma can be said to be quantized in the context of the dynamics of the atom. 
 
The quantization of Gamma causes to exist only on one of an infinite number of stable states, leading 
in turn to the discrete energy levels of the atom and to the discrete nature of the absorption and 
emission spectra of the atom.  
 
The fact that Gamma appears in the denominator of the term for the centrifugal force acting on the 
electron means that any deviation from its prescribed orbit is opposed by a massive force relative to 
any other forces acting on the electron and so relativity causes the electron to orbit the atom without 
the emission of synchrotron radiation. 
 
All of this takes place in the classical domain using a set of equations that would be recognizable to 
Newton, as modified by Einstein to take account of special relativity. There is just one simple and 
plausible extension regarding the nature of velocity and that is to assert when considering objects in 
orbit such orbital velocity is affected by relativity. The causal relationship between the realms of 
classical mechanics and quantum mechanics is thus a series of links, a chain of causality which 
effectively unifies the quantum and classical domains. 
 
  



 
 

 

 

Appendix 1 Constants and Formulae 

 
 
Constant   Symbol    Value  Units 
Gravitational constant G 6.6743 × 10-11 m3 kg-1 s-2 

Electrical constant K 8.9875517923×109  
Kg m3 s−2 
C−2 

Charge on electron q 1.60217663 × 10-19 C 
Mass of Electron m 9.1093837015 x 10-31 Kg 

Mas of the proton mp 1.67262x10-27 Kg 

Planck’s constant h 6.62607015 x 10-34  J s 
Planck’s constant ħ 1.054571817... x 10-34 J s 
Planck’s constant h 4.14E-15 eV s 
Planck’s constant ħ 6.582119569... x 10-16 eV s 

Joules to eV J-eV 6.241 509 074... x 1018 eV/J 

Speed of light c 299792458 m/s 

Reduced Compton Wavelength R 3.86159x10-13 m 

Fine Structure Constant α 0.007297728 
1/α 137.036 

Bohr velocity 2187803 m/s 

Rydberg constant RH 10973731.568160 m-1 

Linear momentum l �� Kg m s-1 
    
Angular momentum L ��� kg m2 s−1 
    
Moment of inertia of body in 
orbit 

I ��� 
 

kg m2 

    
Kinetic energy E 1

2
��� 

J 

    
Kinetic energy E  1

2
��� 

J 

    
Electrostatic force f �����

��
 

N 

    
Inertial force f �� N 
    
Lorentz factor γ ��

√�� − ��
 

 



 
 

 

    
Reduced Compton Wavelength R ℏ

��
 

m 

    
Fine Structure Constant α ���

ℏ�
 

 

    
Planck’s equation e ℏ� J 
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