
Fourier (or trigonometric) interpolation based on summation of

Fourier series F δ
i with data-related delta-function property

F δ
i (xj) = yjδij

(analogy to Lagrange form of interpolation polynomial)

and use of F δ
i functions to extend existing trigonometric

interpolation.

Andrej Liptaj∗

April 19, 2017

Abstract

Full analogy to the Lagrange form of the interpolation polynomial is constructed for Fourier series.
As a straightforward consequence one gets the ability to extend an existing trigonometric interpolation
to additional data point(s).

1 Introduction

A function expressed in a form of a series with multiplicative coe�cients

f (x) =
∑
i

cifi (x)

can be easily used to interpolate data points
(xi, yi)

if �one-point describing, other points vanishing� functions fδ
i can be found

fδ
i (x) =

∑
j

cδijfj (x) ,

fδ
i (xj) = yjδij .

I call such functions as having �data-related delta-function property�. The interpolation over all data points
can be then written as

f (x) =
∑
i

fδ
i (x) .

The well know example is the Lagrange form of the interpolation polynomial [1], where

fδ
i (x) = yi

∏
j,j ̸=i

x− xj

xi − xj
.

This text aims to generalize this method also to the trigonometric interpolation.

∗Institute of Physics, Bratislava, Slovak Academy of Sciences, andrej.liptaj@savba.sk
I am willing to publish any of my ideas presented here in a journal, if someone (an editor) judges them interesting enough.
Journals in the �Current Contents� database are strongly preferred.

1



For that purpose let me use the terminology introduced in [2]: I will use the term �degree� to refer to the
highest non-zero n (frequency) in a Fourier series expression

f (x) =

N∑
n=0

[an cos (nx) + bn sin (nx)] .

The degree is directly related to the number of data points to be interpolated. Because b0 is arbitrary, a
Fourier series of degree M is supposed to describe 2M + 1 or 2M data points. In the latter case one has
a �cuto� freedom�: di�erent combinations of the highest-frequency coe�cients aN and bN can be used to
provide an interpolation (i.e. di�erent valid interpolations exist).

2 Fourier series with data-related delta-function property

The method has two steps. If the number of data points is N then, in the �rst step, one needs to construct a
Fourier series F̃ δ

i which vanishes for N−1 data points xj,j ̸=i. In the second step one normalizes the (non-zero)
value of the function at xi

F δ
i (x) = yi

F̃ δ
i (x)

F̃ δ
i (xi)

.

The �rst step can be understood as an interpolation task for points with zero y coordinates (xj,j ̸=i, 0).
Usually, the number of parameters (to be tuned) is the same as the number of points to be described.
However our situation is a non-standard one: a straightforward application of an interpolation method to
describe (xj,j ̸=i, 0) would lead to all coe�cients vanishing an = bn = 0, thus preventing us to perform the

second, normalization step. Therefore, to construct the Fourier series F̃ δ
i , one needs one more parameter in

the series than what corresponds to the number of data points.
The �rst of the following subsections describes a useful technique of Fourier series multiplication by an

�atomic� term. Next follows the description of the method which is split into two subsections corresponding
to a di�erent data points parity. This separation is convenient because of a possible cuto� freedom which
occurs only for an even number of data points.

2.1 Multiplying Fourier series with A cos (x) +B sin (x) +K

This is a preparatory section for further calculations, where terms of the structure cos (x+ φ) +K will play
an important role. Any of these terms can be expanded

cos (x+ φ) +K = A cos (x) +B sin (x) +K

with
A = cos (φ)

and
B = − sin (φ) .

The multiplication of a Fourier series by cos (x+ φ) +K = A cos (x) +B sin (x) +K can be written as{
N∑

n=0

[an cos (nx) + bn sin (nx)]

}
× [A cos (x) +B sin (x) +K] =

N+1∑
n=0

[anewn cos (nx) + bnewn sin (nx)] ,

where

anewn =
A

2
(an−1 + an+1) +

B

2
(−bn−1 + bn+1) +Kan,

bnewn =
B

2
(an−1 − an+1) +

A

2
(bn−1 + bn+1) +Kbn (1)

for 1 < n

2



and (for n = 1)

anew1 =
A

2
(a0 + a2) +

B

2
(−b0 + b2) +Ka1 +

A

2
a0 +

B

2
b0,

bnew1 =
B

2
(a0 − a2) +

A

2
(b0 + b2) +Kb1 +

B

2
a0 −

A

2
b0. (2)

The justi�cation can be found in Sec. 2.4 of [2].

2.2 Odd number of data points

If the total number of data points is odd, 2N + 1, then the set (xj,j ̸=i, 0) contains 2N points. The function

F̃ δ
i can be written directly as

F̃ δ
i (x) =

N∏
j=1

[cos (x+ φj) +Kj ]

where

φj = −x2j−1 + x2j

2
(3)

and
Kj = − cos (x2j + φj) . (4)

Clearly, each term in the product is constructed such as to vanish at two points, x2j−1 and x2j . The Fourier
series F δ

i (x) can then be written as

F δ
i (x) = yi

F̃ δ
i (x)

F̃ δ
i (xi)

.

In order to perform the �nal summation

F (x) =
∑
i

F δ
i (x)

it is convenient to expand the product form of the F δ
i (x) functions into the standard series form and add

them term-by-term. Since the product form is just successive multiplication of the cos (x+ φj) +Kj terms,
one can use the prescription from the Sec. 2.1 repeatedly. Formulas (1) and (2) show that each term in the
product increases the degree of the Fourier series by one, thus leading to F δ

i which has the degree N . The
summation F (x) =

∑
i F

δ
i (x) does not increase the degree and therefore the �nal trigonometric interpolation

has the correct degree N , which corresponds to 2N + 1 parameters in the Fourier series and 2N + 1 data
points (without any freedom).

2.3 Even number of data points

Let me now assume that the total number of data points is even 2N . The set (xj,j ̸=i, 0) then contains 2N −1
points. We arbitrarily separate one of them, so we have N−1 pairs, and one single point to describe. Without
loss of generality let the separated point be the one with the index N (the last one). The interpolation is
then written

F̃ δ
i (x) = [cos (x+ φN ) +KN ]×

N−1∏
j=1

[cos (x+ φj) +Kj ] , (5)

where the quantities indexed by the letter j are de�ned by the expressions (3) and (4) from the previous
section. The interesting numbers are φN and KN . One needs to chose them so, as to ful�ll the two following
constraints:

• describe the point (xN , 0) and

• provide a desired cuto�.

3



The �nal summation F (x) =
∑

i F
δ
i (x) inherits the cuto� from the F δ

i functions (if done consistently),
therefore one needs to focus on the cuto� for a single F δ

i function. Here the following reasoning can be
made: the highest degree term appearing in the standard form of the Fourier series after the expansion of
the product (5) comes from the multiplication of the cosine terms

cos (x+ φN )

N−1∏
j=1

cos (x+ φj) , (6)

as seen from the formula (1): the multiplication by K (clearly) does not increase the series degree, the
degree is increased when trigonometric terms are mutually multiplied. The expression (6) itself represents a
complete Fourier series, I am however interested only in the highest frequency term, the one given uniquely
by this expression. The following is true1

cos (x+ φN )

N−1∏
j=1

cos (x+ φj) =
1

2N−1
cos

Nx+ φN +
∑
j

φj

+ terms of lower degree.

The highest frequency term will therefore look like

cos

Nx+ φN +
∑
j

φj

 = cos

φN +
∑
j

φj

 cos (Nx)− sin

φN +
∑
j

φj

 sin (Nx) .

So, clearly, if one desires to make a high-frequency sine cuto� (keep the cosine function) then one needs to
make vanish the sine numerical pre-factor

− sin

φN +
∑
j

φj

 = 0

⇐

φN = −
∑
j

φj .

If one desires to make a high-frequency cosine cuto� (keep the sine function) then one asks for

cos

φN +
∑
j

φj

 = 0

⇐

φN =
π

2
−

∑
j

φj .

1From cos (a) cos (b) = 1
2
[cos (a+ b) + cos (a− b)] one has cos (x+ φi) cos (Mx+ φj) = 1

2
cos [(M + 1)x+ φi + φj ] +

1
2
cos [(M − 1)x+ φj − φi]. The later equality used repeatedly leads to an accumulation (summation) of phases in the highest

frequency term.

4



If one desires a symmetric cuto� (aN = bN ) then the following applies

cos

φN +
∑
j

φj

 = − sin

φN +
∑
j

φj


sin

φN +
∑
j

φj

+ cos

φN +
∑
j

φj

 = 0

tan

φN +
∑
j

φj

+ 1 = 0

tan

φN +
∑
j

φj

 = −1

⇐

φN +
∑
j

φj =
3

4
π

φN =
3

4
π −

∑
j

φj .

Now that we have settled the angle φN we can determine the value of KN . To make cos (xN + φN ) +KN

equal to zero, one needs
KN = − cos (xN + φN ) .

With φN and KN determined, one can proceed further (expand the product (5)) to get the full interpolating
Fourier series as described in previous sections 2.1 and 2.2.

3 Extending existing trigonometric interpolation

3.1 Existing interpolation describes even number of points 2N

If the existing Fourier interpolation F ex (x)

F ex(xi) = yi, 1 ≤ i ≤ 2N

describes an even number of data points, then the extension to an additional point is straightforward. One
constructs the appropriate F̃ δ

2N+1 (x) function exactly as presented in Sec. 2.2

F̃ δ
2N+1 (x) =

N∏
j=1

[cos (x+ φj) +Kj ] , φj = −x2j−1 + x2j

2
, Kj = − cos (x2j + φj) ,

and, after expanding the product in F̃ δ
2N+1, sums both Fourier series (term-by-term)

F (x) = F ex(x) + αF̃ δ
2N+1 (x) ,

where

α =
y2N+1 − F ex(x2N+1)

F̃ δ
2N+1 (x2N+1)

.

Function F̃ δ
2N+1 (x) does not spoil the existing description and enables us to describe also the point (x2N+1, y2N+1).

The original interpolation F ex (x) has an arbitrary high-frequency cuto� (because describing an even number
of points), the cuto� liberty after our procedure disappears.

5



a) b)

Figure 1: a) The non-expanded product form of the trigonometric interpolation seems to be less a�ected by
numerical errors then b) the (same) trigonometric interpolation fully expanded and summed (i.e. having the
standard Fourier series form).

3.2 Existing interpolation describes odd number of points 2N − 1

In this paragraph I assume that the existing interpolation F ex (x) describes an odd number of points 2N − 1

F ex(xi) = yi, 1 ≤ i ≤ 2N − 1.

The �delta� Fourier series takes form as in Sec. 2.3

F̃ δ
2N (x) = [cos (x+ φN ) +KN ]×

N−1∏
j=1

[cos (x+ φj) +Kj ] , φj = −x2j−1 + x2j

2
, Kj = − cos (x2j + φj) .

The degree of F̃ δ
2N (x) is greater then the one of F ex (x): the degree of F ex (x) is N −1, the degree of F̃ δ

2N (x)

is N . Therefore the highest frequency coe�cients of their sum are dictated by the F̃ δ
2N (x) series, and once

more therefore, the cuto� procedure (determination of φN and KN ) from Sec. 2.3 applies. The result is
written as

F (x) = F ex(x) + αF̃ δ
2N (x) ,

where

α =
y2N − F ex(x2N )

F̃ δ
2N (x2N )

.

4 Discussion and summary

The presented method should be seen as an alternative method to perform a trigonometric interpolation.
What is Lagrange construction to polynomials, that is this construction to Fourier series. One may ask about
possible advantages of the proposed method. There is one I can mention as observation: if the non-expanded
(product) form is used for F̃ δ

i (x) functions at given x̃ (i.e. each function is evaluated at x̃ and the resulting
numbers are summed) then the result is less sensitive to numerical errors than what one gets when expanding
and summing (i.e. transforming the interpolation into the standard series form and evaluating only after). I
tested it in the SciLab software, the (identical) data points and the results are shown in Fig. 1.

As summary I propose the summary formulas:

• Odd number of data points:

F (x) =

2N+1∑
i=1


N∏

j=1,j ̸=i

[
cos

(
x− x2j−1 + x2j

2

)
− cos

(
x2j −

x2j−1 + x2j

2

)] .

6



• Even number of data points:

F (x) =

2N∑
i=1

{
[cos (x+ φN )− cos (xN + φN )]×

×
N−1∏

j=1,j ̸=i

[
cos

(
x− x2j−1 + x2j

2

)
− cos

(
x2j −

x2j−1 + x2j

2

)]}
with cuto� options

high-sine cuto� :φN =
∑
j

x2j−1 + x2j

2

high-cosine cuto� :φN =
π

2
+

∑
j

x2j−1 + x2j

2
,

symmetric cuto� :φN =
3

4
π +

∑
j

x2j−1 + x2j

2
.

In this case one should correctly understand that j runs over 2N − 2 values, because j is di�erent
from i and from N . The angle φN contains an implicit i dependence and therefore the expression
[cos (x+ φN )− cos (xN + φN )] cannot be factorized.

References

[1] https://en.wikipedia.org/wiki/Lagrange_polynomial

[2] A. Liptaj, �Progressive Fourier (or trigonometric) interpolation�,
https://www.scribd.com/document/344970283/Progressive-Fourier-or-trigonometric-interpolation
http://vixra.org/abs/1704.0149

Appendix: SciLab code

The program serves two aims:

• Gives the reader an out-of-the-box implementation of the �delta� Fourier interpolation.

• Contains the algorithm and so, in case something is unclear or missing in the text, the algorithm can
be read-out from the program.

A di�erence one should be aware of is the indexing: in SciLab the array indices (unfortunately) start at one
and so a shift in indexing had to be done on some places with respect to what is written in the text.

The program also contains the function �tsfData� which is meant to re-scale the data (in the x and y
directions proportionally). Indeed, the whole algorithm is based on the 2π period. It could be, of course,
scaled to any (�nite) period length, but it seems to me easier to scale the data. The middle argument �f�
of the function is a �ag: when equal to 0 then the point with the maximal x coordinate will be scaled to
exactly match the upper boundary chosen by the user. This usually happens in a situation when one wishes
to scale the data to a smaller interval then [0, 2π]. If one desires to scale the data to the [0, 2π] interval, then
�f�=1 introduces a separation between the highest x point (after re-scaling) and 2π. Not implementing the
separation, one would run (after re-scaling) into a pathology for y1 ̸= yN because the Fourier interpolation
is 2π periodic.

One should also keep in mind that, for what concerns frequency analysis, an appropriate re-scaling is
needed. If one tries to interpolate (without re-scaling) points for which xmax − xmin ≪ 2π, then one usually
runs into numerical problems, because coe�cients become quickly very large. One is, of course, allowed to
ask for such an interpolation, but with �wavelengths� larger then the data spread, one can hardly interpret
the results as a �frequency analysis�.

7



The program contains two versions of the interpolation evaluation: via the �un-expanded product� form
and via the transformation into the standard series form.

Finally, let me note that the program requires as data input a text �le with two columns containing the
x (�rst column) and y (second column) coordinates. I insert the program code using a very small font: it
can be copy-pasted when needed (or zoomed on the screen), yet the document is not too long to print.

function [newX,newY]=tsfData(xmin,xmax,f,xDat,yDat)

//f=0 - xmax occupied

//f=1 - xmax empty

L = length(xDat)

oldMin = min(xDat)

oldMax = max(xDat)

if f==1 then

xmax = xmax-(xmax-xmin)/L

end

deriv = (xmax-xmin)/(oldMax-oldMin)

for i=1:L

newX(i) = xmin+deriv*(xDat(i)-oldMin)

newY(i) = deriv*yDat(i)

end

endfunction

function [f] = fourier(c,s,x)

f = 0

L = length(c)

for i=1:L

n=i-1

f = f + c(i)*cos(n*x) + s(i)*sin(n*x)

end

endfunction

function [c,s] = trigMultiply(cs,sn,K,A,B)

L = length(cs)

// multiply by K

cs_0 = K*cs

sn_0 = K*sn

cs_0(L+1) = 0

sn_0(L+1) = 0

// multiply by cos and sin

for i=1:L+1

j = i-1

k = i+1

if j<1 then

leftTerm_c = 0

leftTerm_s = 0

else

leftTerm_c = cs(j)

leftTerm_s = sn(j)

end

if k>L then

rightTerm_c = 0

rightTerm_s = 0

else

rightTerm_c = cs(k)

rightTerm_s = sn(k)

end

cs_cc = A*(leftTerm_c+rightTerm_c)/2

cs_ss = B*(-leftTerm_s+rightTerm_s)/2

sn_sc = A*(leftTerm_s+rightTerm_s)/2

sn_cs = B*(leftTerm_c-rightTerm_c)/2

c(i) = cs_0(i)+cs_cc+cs_ss

s(i) = sn_0(i)+sn_sc+sn_cs

if i==2 then // left term treated as right (index 1 left from 2 but right from 0)

c(i) = c(i) + A*(leftTerm_c)/2

c(i) = c(i) + B*(leftTerm_s)/2

s(i) = s(i) - A*(leftTerm_s)/2 // because sin(-x) = -sin(x)

s(i) = s(i) - B*(-leftTerm_c)/2 // because sin(-x) = -sin(x)

end

end

endfunction

function [sub_x,sub_y,om_x,om_y]=getOmittedData(x,y,pos)

L = length(x)

k=0

for i=1:L-1

if i==pos then

k=1

end

sub_x(i) = x(i+k)

sub_y(i) = y(i+k)

end

om_x = x(pos)

8



om_y = y(pos)

endfunction

function [phi,K,nrm] = getSinglePointFnc(X,Y,om_x,om_y,f)

L = length(X)

nPairs = int(L/2)

for i=1:nPairs

phi(i) = -(X((2*i)-1)+X(2*i))/2

K(i) = -cos(X(2*i)+phi(i))

end

if (2*nPairs<L) then //Odd number of points

phiSum = 0

for i=1:nPairs

phiSum = phiSum + phi(i)

end

if f == 0 then // high sine cutoff, cosine remains

phi(nPairs+1) = -phiSum

elseif f==1 then// high cosine cutoff, sine remains

phi(nPairs+1) = %pi/2 - phiSum

else // symmetric cutoff

num = sin(phiSum) + cos(phiSum)

den = sin(phiSum) - cos(phiSum)

//phi(nPairs+1) = atan(num/den)

phi(nPairs+1)=3*%pi/4-phiSum

end

K(nPairs+1) = -cos(X(L)+phi(nPairs+1))

end

yVal = 1

nPairs = length(phi)

for i=1:nPairs

yVal = yVal*(cos(om_x + phi(i)) + K(i))

end

nrm = om_y/yVal

endfunction

function [array_phi,array_K,array_nrm] = singPtFnArray(X,Y,f)

L = length(X)

for i=1:L

[sub_X,sub_Y,om_x,om_y]=getOmittedData(X,Y,i)

[phiArr,kArr,normalization] = getSinglePointFnc(sub_X,sub_Y,om_x,om_y,f)

L2 = length(phiArr)

for j=1:L2

array_phi(i,j) = phiArr(j)

array_K(i,j) = kArr(j)

end

array_nrm(i) = normalization

end

endfunction

function [array_c,array_s]=get_CS_from_PhiK(array_phi,array_K)

L = length(array_phi)

for i=1:L

array_c(i) = cos(array_phi(i))

array_s(i) = -sin(array_phi(i))

end

endfunction

function [f] = evSinglPtFn(phi,K,nrm,x)

L = length(phi)

val=1

for i=1:L

val = val.*(cos(x+phi(i))+K(i))

end

f = nrm*val

endfunction

function [f] = getValFromProduct(array_phi,array_K,array_nrm,x)

L = length(array_nrm)

val = 0

for i=1:L

val = val + evSinglPtFn(array_phi(i,:),array_K(i,:),array_nrm(i),x)

end

f = val

endfunction

function [cosCfs,sinCfs] = getStandardFourier(arrPhi,arrK,nrm)

L = length(arrPhi)

cosCfs(1)=1

sinCfs(1)=0

for i=1:L

A = cos(arrPhi(i))

B = -sin(arrPhi(i))

K = arrK(i)

[cosCfs,sinCfs] = trigMultiply(cosCfs,sinCfs,K,A,B)

end

cosCfs = nrm*cosCfs

sinCfs = nrm*sinCfs

endfunction

9



function [c,s] = getFourierCfs(Phi_2D,K_2D,nrm_1D)

L = length(nrm_1D)

for i=1:L

if i==1 then

[c,s] = getStandardFourier(Phi_2D(i,:),K_2D(i,:),nrm_1D(i))

else

[cCfs,sCfs] = getStandardFourier(Phi_2D(i,:),K_2D(i,:),nrm_1D(i))

c = c + cCfs

s = s + sCfs

end

end

endfunction

function [minX,maxX,minY,maxY]=winSize(datX,datY)

minX = min(datX)

maxX = max(datX)

minY = min(datY)

maxY = max(datY)

deltaX = maxX-minX

deltaY = maxY-minY

minX = minX-0.2*deltaX

maxX = maxX+0.2*deltaX

minY = minY-0.2*deltaY

maxY = maxY+0.2*deltaY

endfunction

// Program flow start

dataSet = read("data.txt",-1,2)

nDat = length(dataSet)/2

datX = dataSet(:,1)

datY = dataSet(:,2)

// Transform data to a more appropriate interval??

//datX = tsfData(0,2*%pi,1,datX,datY)

[minX,maxX,minY,maxY] = winSize(datX,datY)

// Factorized version

[a_phi,a_K,a_nrm] = singPtFnArray(datX,datY,2)

xAx = linspace(minX,maxX,10000)

yAx = getValFromProduct(a_phi,a_K,a_nrm,xAx)

scf(1)

plot2d(datX,datY,-2,rect=[minX,minY,maxX,maxY])

plot2d(xAx,yAx,rect=[minX,minY,maxX,maxY])

// Standard version

[c,s] = getFourierCfs(a_phi,a_K,a_nrm)

disp(" COSINE COEFS: ")

disp(c)

disp(" SINE COEFS: ")

disp(s)

disp(" NORMALIZATION COEFS: ")

disp(a_nrm)

y2_Ax = fourier(c,s,xAx)

scf(2)

plot2d(datX,datY,-2,rect=[minX,minY,maxX,maxY])

plot2d(xAx,y2_Ax,rect=[minX,minY,maxX,maxY])

10


