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Abstract 

We prove the Navier-Stokes equations, by means of the Metabolic Theory of Ecology and 

the Rule of 72. Macroecological theories are proof to the Navier-Stokes equations. A 

solution could be found using Kleiber’s Law. Measurement is possible through the heat 

calorie. A Pareto Improvement exists within the Navier-Stokes equations. This is done by 

superposing dust solutions onto fluid solutions. In summary, the Navier-Stokes equations 

require a theoretical solution. The Metabolic Theory of Ecology, along with Kleiber’s Law, 

form a theory by such standards. 
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Introduction 

The Navier-Stokes (N-S) equations ask for a mathematical theory which will unlock the 

secrets hidden within its equations. Proof is asked of four statements: 

 

(A) Existence and smoothness of Navier–Stokes solutions on R3. Take v > 0 and n = 3. Let u° 

(x) be any smooth, divergence-free vector field satisfying (4). Take f(x, t) to be identically 

zero. Then there exist smooth functions p(x, t), ui(x, t) on R3 × [0,1) that satisfy (1), (2), 

(3), (6), (7). 

(B) Existence and smoothness of Navier–Stokes solutions in R3/Z3. Take v > 0 and n = 3. Let 

u° (x) be any smooth, divergence-free vector field satisfying (8); we take f(x, t) to be 

identically zero. Then there exist smooth functions p(x, t), ui(x, t) on R3 × [0,1) that satisfy 

(1), (2), (3), (10), (11). 

(C) Breakdown of Navier–Stokes solutions on R3. Take v > 0 and n = 3. Then there exist a 

smooth, divergence-free vector field u° (x) on R3 and a smooth f(x, t) on R3 × [0,1), 

satisfying (4), (5), for which there exist no solutions (p, u) of (1), (2), (3), (6), (7) on R3 × 

[0,1). 

(D) Breakdown of Navier–Stokes Solutions on R3/Z3. Take v > 0 and n = 3. Then there exist 

a smooth, divergence-free vector field u° (x) on R3 and a smooth f(x, t) on R3 × [0,1), 

satisfying (8), (9), for which there exist no solutions (p, u) of (1), (2), (3), (10), (11) on R3 

× [0,1). 

 

There exists a theory and law to satisfy (A) and (C). There exists a self-similarity solution 

to satisfy (B) and (D). The theory that satisfies (A) and (C) is the Metabolic Theory of 

Ecology (MTE) and the law is Kleiber’s Law (KL). The similarity solution that satisfies (B) 

and (D) is the Rule of 72. MTE is a macroecological theory, thereby making KL a weak 

solution of a partial differential equation (PDE). Since the Rule of 72 is also known as the 

Rule of 70 and the Rule of 69.3, it displays geometric rate of increase. This paper will focus 

on eliminating deterministic chaos under these constitutive relations. 

To classify a dynamical system as chaotic, it must have these properties: 

1. It must be sensitive to initial conditions. 

2. It must be topologically mixing. 

3. It must have dense periodic orbits. 

In some cases, the last two properties in the above have been shown to actually imply 

sensitivity to initial conditions. In these cases, while it is often the most practically 

significant property, “sensitivity to initial conditions” need not be stated in the definition. 



If attention is restricted to intervals, the second property implies the other two. An 

alternative, and in general weaker, definition of chaos uses only the first two properties in 

the above list. 

 

Metabolism (KL) and Rule of 72 

 
In hydrology, the harmonic mean is similarly used to average hydraulic conductivity values 

for flow that is perpendicular to layers (e.g. geologic or soil) - flow parallel to layers uses 

the arithmetic mean. This apparent difference in averaging is explained by the fact that 

hydrology uses conductivity, which is the inverse of resistivity. N-S coefficients are neither 

periodic nor statistically homogenous. Therefore, we can presume that N-S calls for a 

backing theory which coefficients are neither periodic nor statistically homogeneous (so-

called arbitrarily rough coefficients). We prove that the N-S equations are highly oscillatory 

coefficients and can be replaced with a homogeneous (uniform) coefficient. We prove that 

KL is this homogenized structure. We also find harmony with the Rule of 72 as a weak PDE 

solution. This can be shown through volatility in finance as opposed to viscosity. This is 

evident in dust solutions, which are all fluid solutions. The concept of credit crunch acts as 

a sort of ‘blow up’ time for these equations, and is Pareto Optimal. Leray (1934) showed 

that some N-S equations in three space dimensions always have a weak solution (p, u) with 

suitable growth properties. With the Rule of 72 (Rule of 70 and Rule of 69.3) acting as point 

(p) on unique weak solutions of N-S, we find a constitutive equation. The fluid 

parcel/element acts on the scalar field (and also vector field) by demonstrations of 

thermodynamic work, conservation of mass, and to be expected bioharmonic equation. The 

vector field is derived from the Rule of 70 and 69.3. Being axisymmetric with respect to 

density and other physical and chemical properties, a production of numerical dissipation 

in both velocity and mass can produce some exact solutions to the N-S equations. 

Therefore, we prove radial flow and R > 1.41 are related to e (mathematical constant) and 

pi (π). In place of chaotic properties we note that the properties of Stoke’s flow are the 

equivalent. Stoke’s flow properties call for instantaneity, time-reversibility, and Stoke’s 

paradox. Deterministic chaos properties call for sensitivity to initial conditions, 

topologically mixing, and dense periodic orbits. Thus, a Pareto Improvement is implicit. 

 

Existence, Smoothness, and Breakdown of Metabolism (KL) 

 

Symbolically: if q0 is the animal’s metabolic rate, and M the animal’s mass, then Kleiber’s 

law states that q0 ~ M¾. In MTE, B = B0M¾. 

The following are equivalent: 

 



(TFAE1) q0 ~ M¾ or B = B0M¾ 

And 

(TFAE1) B ⊂ R3 or Br ⊂ R3 is a ball of radius r. 

(TFAE2) parabolic cylinders Qr = Br × Ir ⊂ R3 × R where Ir ⊂ R is an interval of length r2. 

And 

(TFAE2) specific metabolic rate SMR= (B/M) = b0M-1/4e-E/kT where E is activation energy in 
electronvolts or joules, T is absolute temperature in kelvins, and k is the Boltzmann 
constant in eV/K or J/K. 

Given there is no rate of strain on the sphere (no E) since the spheres are assumed to be 
rigid, there cannot be a singular set of u° (x) and, hence, no divergence-free vector field. 
Therefore, the solution exists in mass (M) satisfying (A). Since the metabolic formula 
shows dense periodic orbits (e.g. thermodynamic work and conservation of mass), hence 
Stoke’s paradox, the solution breakdown is on (C). State of equation should not be 
presumed. 

 
Existence, Smoothness, and Breakdown of Rule of 72 

 

For periodic compounding, the exact doubling time for an interest rate of r per period is:  

t = ln(2)/ln(1+r) ≈ 72/r where t is the number of periods required. 

Note that r makes sense for u ∈ L2, f ∈ L1, p ∈ L1, whereas t makes sense only if u(x, t) is 

twice differentiable in x. Similarly, if φ(x, t) is a smooth function, compactly supported in R3 

× (0, 1), then a formal integration by parts and density (e.g.  time-reversibility) imply a 

weak solution of N-S. Therefore, the solution exists as an equation of state in (B). The value 

72 is a convenient choice of numerator, since it has many small divisors: 1, 2, 3, 4, 6, 8, 9, 

and 12. However, lower numbers are more accurate. Direct numerical simulations (DNS) 

relate the number of time-integration steps. Instantaneity must be proportional to L/(Cη) 

where C is here the Courant number and η is the Kolmogorov scale. Thus, from the 

Reynolds number definitions for Re, η and L, it follows that L/η ∼ Re3/4. This equation of 

state on the fluid parcel/element proves thermodynamic work, which implies conservation 

of mass. Therefore, the solution breakdown is on (D). Topological mixing should not be 

presumed. 

 

Observations 

 

A few constitutive relations have been observed between Faxen’s law and DNS. Faxen’s law 

is a correction to Stoke’s law. In such a way, it can be said to model the significant relation 

that KL is to MTE. The two equations are one in the same, but the latter holds the larger 

theory. The former equations are doled out in three’s (e.g. laws and models). According to 



the statistical Rule of Three, there is a 95% probability that they hold the same purpose. A 

similar equation appears to exist between the Michell solution, an elasticity equation, and 

the Rule of 72. This can be demonstrated by replacing the stress function C with similar 

natural logarithms, say the natural logarithm of 2. This leads to a relation with radial flow. 

As constitutive equation to radial flow as there is also an accepted relation to the 

mathematical constant (e) and pi (π).  

 

MTE Theory 

 

N-S is used in many metabolic functions, but whether MTE theory is in fact the solution to 

N-S equations has not been looked at. There is more likely a direct similarity than once 

thought, leading to bioharmonic equations of state. Perhaps, a single bioharmonic equation 

of state. An attempt to link the mathematical constant and pi to N-S is displayed in an 

absolute difference of unit area metric:  

Absolute difference in unit area of √(2/π)σ = 0.798σ.  

This metric is possible when fluid is incompressible. As bounded energy, the absolute 

difference metric is viewed as one of the physical quantities of ‘the theory’, thus it 

transforms in a certain manner when the frame of reference is changed, and it can be 

legitimately used in describing Stoke’s flow and should be expected to solve for (A), (B), 

(C), and (D). In a surprising number of cases, the laws of physics in special relativity (such 

as the famous equation E=mc2) can be deduced by combining the postulates of special 

relativity with the hypothesis that the laws of special relativity approach the laws of 

classical mechanics in the non-relativistic limit. The self-similarity is not a coincidence. 

Therefore, we find it necessary to make the point that the calorie is a unit of heat. The 

“Calorie” used by nutritionists is called the “large calorie” and is actually a kilocalorie (1 

Cal=1 kcal=103 cal). 

 

Conclusion 

 

We find that the N-S equations can be solved using MTE and financial principles. 

Observations on Faxen’s law, the Michell solution, and other physical laws reiterate this 

fact. The calorie can help in proving N-S. Thus, a solution could be found using Kleiber’s 

Law. This paper has found a solution using Kleiber’s Law. Replacing N-S equations with 

certain macroecological theories will create pointwise solutions consistent within the 

equations. Finally, a Pareto Improvement exists within the Navier-Stokes equations by 

making dust solutions more on point with fluid solutions. 
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