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0. Abstract

Claude Shannon[1] devised a way to quantify the information entropy[2] of a
finite integer set, given the probabilities of finding each integer in the set. 
Information entropy, hereinafter simply "entropy", refers to the number of 
bits required to encode some such set in a given numerical base (usually 
binary). Unfortunately, his formula for the "Shannon entropy" seems to have 
been widely misappropriated as a means by which to measure the entropy of 
such sets by supplanting the probability coefficients (which are generally 
unknowable) with the normalized frequencies of the integers as they actually 
occur in the set. This practice is so common that Shannon entropy is often 
defined in precisely this manner, and indeed this is how we define it here. 
However, the inaccuracy induced by this compromise may lead to erroneous 
conclusions, especially when very short or faint signals are concerned. To 
make matters worse, the numerical behavior of Shannon entropy formula is 
rather unstable over large sets, where otherwise it would be more accurate.

Herein we introduce the concept of agnentropy, short for "agnostic entropy", 
in the sense of an entropy metric which begins with almost no assumptions 
about the set under analysis. (Technically, it's a "divergence" -- essentially a 



Kullback-Leibler divergence[3] without the implicit singularies -- because it 
fails the triangle inequality. We refer to it as a "metric" only in the qualitative 
sense that it measures something.) This stands in stark contrast to the 
(compromised) Shannon entropy, which presupposes that the frequencies of 
integers within a given set are already known. In addition to being more 
accurate when used appropriately, agnentropy is also more numerically stable
and faster to compute than Shannon entropy.

To be precise, Shannon entropy does not measure the number of bits in an 
invertibly compressed code. It is, more accurately, an underestimation of that 
value. Unfortunately, the margin of underestimation is not straightforwardly 
computable, and has a size O(Z), where Z is the number of unique integers in
the set, assuming that said integers are of predetermined maximum size. By 
contrast, agnentropy underestimates that bit count by no more than 2, plus the
size of 2 logplexes. (Logplexes are universal (affine) codes introduced in [8].)
In practice, this overhead amounts to tens of bits, as opposed to potentially 
thousands of bits for Shannon. This difference has meaningful ramifications 
for the optimization of both lossless and lossy compression algos.

1. Distributional Encoding Algos

We use the term "distributional encoding algo" to refer to a lossless 
compression method, that is, a method by which a set of integers is 
transformed into bitstring, which can subsequently be transformed back into 
that set, identically. This transform is subject to the assumption that, while the
integers may have arisen with different probabilities, no other aspects of the 
set are nonrandom in origin. In other words, the set is not expected to exhibit 
any contextual statistical associations apart from what would be expected to 
arise randomly as a result of the biased distribution.

In practice, we can equivalently think of such sets as being composed of 
unsigned integers on the (closed) interval [0, (Z-1)], not all of which 
necessarily present, but all of which possibly present, to the best of our prior 
knowledge. And for our purposes here, it's assumed that (Z>1). (If some 
values in the middle of the range are precluded, then a simple many-to-one 
remapping, to which we refer as "densification", can shrink Z.) We refer to 



values on this interval as "masks", where Z is the "mask span". And for the 
sake of consistency with source code, we refer to such integer sets as "mask 
lists" -- a "list" being the equivalent of a "set". The number of masks in the 
list is given by Q, the "mask count", which must be nonzero. The number of 
times which mask M occurs in the list is given by F(M), which is its 
"frequency". The number of times that a given frequency occurs in the list is 
H(F), its "population". (Population is just the frequency of the frequency, but 
we use different terms to avoid confusion.)

Computationally, it's easier to deal in units of nats (bits times (ln 2)) than bits.
Hereinafter all entropy metrics will be expressed in nats. To begin with, we 
state the Shannon entropy S of a list of masks M with corresponding 
frequencies F(M), mask count Q, and mask span Z, in nats:

S≡Q ln Z−∑
M =0

Z−1

F (M ) ln F (M )

where we refer to (Q ln Z) as the "raw entropy". The raw entropy is the 
theoretical minimum size of the set in nats, given no information other than Q
and Z. Notice that the canonical form of this formula given in [2] has been 
modified to reflect frequency in place of probability; in other words, it's 
compromised in the manner discussed in the abstract. The reason is that 
probability is a function of the (unknowable) environment, so in practice 
we're forced to presume that

P(M)≡
F (M )

Q

but unfortunately F(M) is unknown ahead of time. Therein lies the main 
reason why S is inaccurate: it disregards the potentially substantial overhead 
required to specify F(M) for all M, especially if F(M) is sparse (mostly 
zeroes).

More broadly, a table is provided below which summarizesis various 
distributional encoding algos along with their required overhead.

1.1. Table of Distributional Encoding Algos



Algo Required Overhead in Addition to the Mask List

Raw entropy Q. (Z is assumed to be 2.) Nats out equals nats in.

Huffman[4] Q, Z, all F[M]. Maps each mask to a unique bitstring, 
resulting in a compressed size which is asymptotically a 
constant factor (greater than one) as big as S.

Arithmetic[5] Q, Z, all F[M]. A more efficient algo than Huffman which
uses nested fractions instead of a fixed mapping of masks
to bitstrings.

Adaptive 
arithmetic[6]

Q, Z. F[M] is dynamically approximated, trading worse 
coding efficiency early on for the cost of storing F[M] 
explicitly. Simpler to implement but slower than 
conventional arithmetic encoding.

Combinatorial Q, Z, H[F]. This algo encodes the masks using 
combinatorics, resulting in an integer of size proportional
to logfreedom(Q, Z, H). Apparently, it has never actually 
been implemented, except for the case where (Z=2). For 
its part, logfreedom is precisely computable with 
Dyspoissometer[7].

Agnentropic Only Q and Z, which as in other cases can be represented 
by 2 logplexes. F[M] is dynamically approximated. The 
resulting bitstring tends to be smaller than with most 
arithmetic encoding implementations. But while 
computing agnentropy costs O(Q) (essentially realtime), 
agnentropic encoding costs O(Q2). This is actually a good
thing for folks in need of a good proof-of-work function; 
it's not intended to serve as a practical compression algo. 
Nevertheless, Agnentro[9] can perform agnentropic 
encoding, in order to prove that it's invertible -- and so 
much more!

Superagnentropic Absolutely nothing. Z expands dynamically over time, as 
new masks M are encoded as logplex(M+1) preceded by 
a "new" code (always zero), whose probability is also 
dynamically adjusted. The first "new" code is implicit 



and omitted from the stream. The stream ends with 2 
"new" codes in a row. In theory, this method is a more 
accurate metric than agnentropy by a tiny margin in 
exachange for fantastic complexity due to the mask 
symmetry-breaking effect of "new". No codec or 
mathematical formalization is known to exist.

2. Agnentropic Encoding in Theory and Practice

There is little reason to make use of an entropy metric if it doesn't accurately 
approximate the number of bits or nats required to encode a mask list 
invertibly. As mentioned above, I created the Agnentro toolkit to, among 
other things, demonstrate that agnentropic encoding is invertible, given only 
Q and Z. Moreover, it's unambiguous in the sense that any random bits may 
follow the agnentropic code without affecting the decoded mask list. And 
finally, it's dense in the sense that there is no infinite series of bits which 
cannot be agnentropically decoded to an infinite mask list.

Here is how it works:

2.1. Givens: What Agnentropy Doesn't Account For

Apart from the mask list itself, Q and Z are the only givens to the agnentropic
encoding algo. In practice, Z is probably known to the programmer way 
ahead of time (typically, a power of 2), and Q is specified by the operating 
system as a file size. But in a Turing machine, both could be specified by 
logplexes. Agnentro File, part of the Agnentro toolkit, can actually compute 
and store the logplexes prior to the agnentropic code corresponding to any 
arbitrary input file; it can then invert the encoding back to the original file.

2.2. Agnostic Frequency

Agnentropic codes rely on the concept of "agnostic frequency", as distinct 
from plain old frequency. While the frequency F(M) of every mask M in a 
null mask list is by definition zero, the agnostic frequency (F(M)+1) of every 



such mask is by definition one. In other words, we begin with 2 minimal 
assumptions:

1. The probability, and thus frequency, of all masks is identical.

2. The frequency of all masks less than Z is positive but as small as possible, 
hence one. The frequency of all masks greater than (Z-1) is zero (because 
they cannot occur).

We can actually assume even less, without resorting to the affine domain of 
superagnentropy, namely that the frequency of all masks is initially (1/Z); or 
equivalently that, while it's still one, actual frequency is to be multiplied by a
factor of Z. Either way, however, the result is troublesome from a precision 
standpoint. To the extent that some cheap preprocessing can be used to 
reduce Z, this approach isn't worth the complexity. However, this does 
explain why, in certain short mask lists heavily dominated by a small 
minority of possible masks, Shannon entropy may be a more useful, if 
slower, metric.

2.3. Asymptotic Generator Discovery

All Z masks start with agnostic frequency one. The agnostic frequency of 
each mask M thus ends up as (F(M)+1) after the entire mask list has been 
processed, at which time the sum of all agnostic frequencies will be (Q+Z). 
Therefore:

F (M )+1
Q+Z

→P(M )

which is to say that the normalized agnostic frequency of mask M 
asymptotically converges to the probability with which the "generator" 
instantiates M. The generator is the unknowable physical system which gave 
rise to the mask list, which can nevertheless be modelled with asymptotic 
accuracy, assuming that its only statistical biases are distributional -- not 
contextual -- in nature. That is, the unknown generator G({0, 1... (Z-1)}) 
consists of Z analog probabilities P(M) which sum to one. G manifests itself 
with asymptotic accuracy in the limit that Q approaches infinity.



In practice, overlapping contiguous subparts of neighboring masks in order to
create "virtual masks" can facilitate some understanding of the generator's 
contextual properties, if they exist to an extent beyond what distributional 
biases would imply, but this is a hack unrelated to agnentropy theory. (And 
again, by definition, G is assumed to be purely distributional.) Agnentro Find 
and Agnentro Scan offer optional mask overlap for this purpose.

2.4. Floors and Levels

2.4.1. The Floor Forumla

We define the "floor" DZ+P(M) of mask M as the sum of the agnostic 
frequencies of all lesser masks as measured at zero-based index V of the 
mask list, and before reading the mask at that index:

DZ(M )≡M

DZ +V (M )≡M+∑
J=0

V−1

(U J<M ),V >0

where UJ is the mask at index J of the mask list U, and the term "(UJ<M)" is 
one if UJ is less than M, else zero.

2.4.2. Levels

As a consequence of the floor formula, each mask M at index V of the mask 
list "owns" a contigous set of whole numbers, called "levels". The number of 
levels owned by M is just (F(M)+1), as evaluated before reading the mask at 
that index. This set is known as the "level allocation" of the mask. We refer to
the least such level as the "floor" of M, and the greatest as its "ceiling".

2.4.3. Floor Lists

From the foregoing "floor formula", we can make a "floor list" which maps 
each mask M to its floor. (In practice, this is best implemented as a binary 



tree, but notionally, it's just a list.) Initially, because all agnostic frequencies 
are one, the floor of M is the only level owned by M, and simply has the 
value M. But suppose we have a mask list consisting of Q masks:

U≡{U0 ,U1 ,...UQ−1}

which will be processed from left to right.  Now, after U0  has been processed,
the floor list looks like this, reflecting its new agnostic frequency of 2:

Mask=M Floor=DZ+1(M)

0 0

1 1

... ...

U0 U0

U0+1 U0+2

... ...

Z-1 Z

Therefore, the floor of M is still M for all (M<=U0); for all other values of M,
it's (M+1).

Now suppose (U1 >U0). Then the floor list morphs as follows:

Mask=M Floor=DZ+2(M)

0 0

1 1

... ...

U0 U0

U0+1 U0+2

... ...

U1 U1+1

U1+1 U1+3



... ...

Z-1 Z+1

...and finally suppose (U2 =U0):

Mask=M Floor=DZ+3(M)

0 0

1 1

... ...

U0 U0

U0+1 U0+3

... ...

U1 U1+2

U1+1 U1+4

... ...

Z-1 Z+2

Remember that DZ+3 is merely the state of the floor list as it existed after 
reading U2. Therefore, while it will effect the probability distribution of U3, it 
had no such effect on U2.

2.5. Protoagnentropic Codes

Given Q and Z, and having set all F(M) to zero, we begin to load masks from
U one at a time. These masks are combined in an iterative manner to produce 
a "protoagnentropic code", which is a whole number which can be inverted 
back to U. Protoagnentropic codes are so named because they're the 
progenitors to "agnentropic codes", which we'll investigate later.

2.5.1 The Envelope Pochhammer

As we'll confirm below, the number K of unique protoagnentropic codes is 



given by:

K≡N (Z ,Q)≡Z∗(Z+1)∗(Z+2)∗...∗(Z+Q−1)

which is simply the product over V from zero to (Q-1) of (the number of 
levels that exist before reading mask UV). The quantity N is known as a 
"Pochhammer" in the WolframAlpha sense:

N (Z ,Q)≡Pochhammer (Z ,Q)

We refer to K as the "envelope Pochhammer" because it envelops all possible
protoagnentropic codes. Again, Q is required to be nonzero. However, we 
explicitly define N(Z, 0) to be one, consistent with the definition of a 
Pochhammer.

2.5.2 The Protoagnentropic Encoding Algo

Encoding itself begins with a single mask, U0, which results in a 
protoagnentropic code, B({U0}), of identically the same value:

B ({U 0})≡U 0

We can then append U1 as follows:

B ({U 0,U 1})≡U0∗(Z+1)+DZ+1(U1)

which is clearly invertible by dividing by (Z+1), which would yeild quotient 
U0 and remainder DZ+1(U1). The identity holds even if (U1 = U0). Just 
remember that we're dealing in floors, not masks, starting with the second 
addend. But what if we have {U0 , U1, U2}, where all the masks are unique? In
that case:

B ({U 0,U1 ,U2})≡U0∗(Z+1)∗(Z+2)+DZ+1(U1)∗(Z+2)+ DZ+ 2(U 2)

As before, at each step, we multiply the existing expression by the number of 
levels that exist before reading the next mask. And notice that the 2 (D)s are 
not the same: one refers to a floor list involving (Z+1) levels, whereas the 



other involves (Z+2). We can iterate this process indefinitely and still 
produce an invertible code. But what if some of the codes are equal? For 
example:

B ({U 0 ,U 0 , U 0})≡U0∗(Z+1)∗(Z+2)+DZ+1(U 0)∗(Z+2)+DZ+2(U 0)∗2

(The floor functions have been shown for clarity, but in fact they all resolve 
to U0 because no lesser masks are involved.) Now, what's that factor of 2 
doing there? It's effectively cramming the high bit of the floor of the last U0 
back into the level allocation of the second U0. We can do this without loss of
invertibility because: (1) The first U0 owns one of Z levels. (2) The 2nd U0 
has agnostic frequency 2, but cannot take advantage of this because all (Z+1) 
levels it inherited need to scale down to fit into the single floor owned by the 
first U0. (3) The 3rd U0 has agnostic frequency 3. We can double its floor 
because the (Z+2) levels it inherited from the 2nd U0 need to scale down to fit
into the 2 levels owned by the 2nd U0. Thus the 2nd U0 owns 2 levels, each 
consisting of (Z+2) sublevels. Before reading the 3rd U0, all masks other than
U0 own a consecutive pair of those sublevels, while U0 itself owns a triplet. 
Perhaps this is easier to understand graphically, where the levels owned by U0

are marked as such; remember, the number of levels equals the agnostic 
frequency of U0:



The bottom line is that the frequency multiplier lags the frequency by one 
mask. Let's consider another example, where (U0<U1<U2):

B ({U 0,U0 ,U0 ,U 1, U0 ,U2})≡U 0∗(Z+1)∗(Z+2)∗(Z+3)∗(Z+4)∗(Z+5)

+U 0∗(Z+2)∗(Z+3)∗(Z+4)∗(Z+5)

+U 0∗2∗(Z+3)∗(Z+4)∗(Z+5)

+(U1+3)∗2∗3∗(Z+4 )∗(Z+5)

+U0∗2∗3∗(Z+5)

+(U 2+5)∗2∗3∗4

Where (U1+3) reflects the 3 lesser masks which precede it, and likewise for 
(U2+5). We can generalize this as follows:

B (U )≡∑
J=0

Q−1

DZ+J (U J )∗N (Z+J +1,Q−J−1)∗∏
M=0

Z−1

(F '(M ,J )!)

where  DZ+J(UJ) and F'(M, J) are the floor of UJ and the (nonagnostic) 
frequency of M respectively, both of which computed before accounting for 
UJ itself. (And N is just a factor of the envelope Pochhammer.) Bear in mind 
that zero factorial is one, which is thus the lower bound of the product term. 
Given this, and the fact that DZ(U0) can take one of Z states, the number of 
unique protoagnentropic codes is indeed N(Z, Q), which is just K, as stated 
above.

However, note that the number of unique mask lists is merely ZQ, which at 
most equals K. This means that multiple protoagnentropic codes may invert 
to the same mask list. The formula for B given above produces a "canonical" 
protoagnentropic code, in the sense that it's the least such code which will 
invert to mask list U.

2.6. Protoagnentropic Span

The number of protoagnentropic codes -- canonical or not -- which invert to 
U is given by its "span", T:



T (U)≡(F (UQ−1)+1)∗∏
M=0

Z−1

(F ' (M ,Q−1)!)≡∏
M =0

Z−1

(F (M )!)

which is just the previous product term evaluated when (J=(Q-1)), times the  
frequency of the last mask (including the last mask itself). The simplified 
version on the right assumes that F(M) includes all masks and is nonagnostic:

F(M )≡∑
J =0

Q−1

(U J=M )

where (UJ=M) is one if UJ equals M, else zero.

Now, suppose we have the whole number U' expressed in base Z, the digits of
which are: U0 in the most significant position, U1 in the 2nd most significant, 
etc., in exactly the order specified in the mask list U. Furthermore define 
B'(U') as a function returning the same value as B(U), but taking the 
equivalent whole U' as its input. Then, given that B is by definition canonical,
it follows that:

T (U)≡B ' (U '+1)−B' (U ' )

which, as stated, is an identity which holds so long as U' is the base-Z 
equivalent of U.

This implies that T(U) successive protoagnentropic codes, starting with the 
canonical protoagnentropic code B(U), all invert to U. Furthermore, because 
all level allocations are contiguous, there must exist some integer Y such that:

B ' (U ')≤Y <B ' (U '+1)

and

Y mod T (U )=0

In other words, we could transform B'(U') into a much smaller integer -- 
potentially even smaller than ZQ --  by dividing Y by T(U), thereby 
accomplishing invertible distributional data compression on U. The trick is to
do this in such a way that guarantees invertibility in some convenient base 



(usually binary).

Another consideration is that we want all, or all but a constant, of the bits of 
Y to remain the same if we append a new mask, UJ, to U. This requirement, 
which is important for the sake of dynamic expandability (think: blockchain),
is fundamentally inconsistent with the manner in which Y is computed.

Alternatively, we could just save the numerator and denominator of the 
reduced fraction (B(U)/K). Along with a couple logplexes providing the bit 
counts, that fraction would preserve all of the information in B(U). We refer 
to its as the "agnentropic rational", R, of U:

R(U )≡
B(U )

K

where K is the envelope Pochhammer defined previously. However, due to 
the vagaries of fraction reduction, this practice would lead to asymmetric 
compression performance in the sense that some mask lists would compress 
much better than others despite having equal population lists. So instead of 
saving R(U) literally, we approximate it as A(U), a binary fraction on [0, 1). 
Similarly to Y, it has the property that:

R(U )≤A (U )<
B '(U '+1)

K

A(U) is the "canonical agnentropic code" of U, which is the shortest (and, if 
not unique, least) binary fraction which inverts to U regardless of the "junk" 
bits which follow it (the "unambiguous invertibility" constraint). All binary 
fractions which unambigously invert to U, or U followed by other masks, are 
"agnentropic codes" of U.

But before we explain how to convert U to its A(U), we must precisely define
our entropy metric, namely, agnentropy. We must then show that the size, in 
binary, of a canonical agnentropic code is bounded by the agnentropy of U 
plus some predictable (and hopefully small) overhead.

2.7. The Agnentropy Formula



We can place a lower bound on the amount of information required to be 
present in A(U) in order to allow it to invert umambiguously to U. We call 
this quantity the "agnentropy" of U, denoted X(U). Conceptually, it's 
proportional to the number of bits required to distinguish B(U) from the 
protoagnentropic codes which don't invert to U. It has units of nats, mainly 
because we don't want the extra precision loss due to carrying around factors 
of (ln 2):

X (U )≡ln
N (Z ,Q)

T (U)

which, after substituting for N and T, is:

X (U )≡ln
Z∗(Z+1)∗(Z+2)∗...∗(Z+Q−1)

∏
M=0

Z −1

(F(M )!)

But the log of a product is just a sum of logs. Therefore:

X (U )≡ln((Q+Z−1)!)−ln((Z−1)!)−∑
M=0

Z−1

ln(F (M )!)

First of all, note that X(U) is commutative with respect to mask order. In 
other words, agnentropy depends only on frequency. (Moreover, it depends 
only the populations of the frequencies, but the form above is often more 
computationally expedient.)

Now, on the face of it, X(U) is computationally expensive for a mask list of 
any reasonable size. That's true in the sense that we must first tally up all the 
masks of each type, resulting in F(M). However, that task takes essentially no
longer than just reading the mask list from storage in the first place. But what
about all those expensive log calculations?

In practice, because various masks tend to have the same frequency, a cache 
of previously used log results can greatly accelerate the math. (Agnentro Find
and Agnentro Scan actually use this technique.) But it's better than that 



because we need not compute the log of a factorial as a sum of logs. There's a
much faster method which takes advantage of the following identity:

∑
a=1

A

ln a≡ln(A!)≡logΓ ( A+1)

In other words, we can evaluate the loggamma function once instead of the 
log function N times in order to compute log(N!):

X (U )≡logΓ (Q+Z )−logΓ (Z )−∑
M=0

Z−1

logΓ (F(M )+1)

which is the "agnentropy formula". Again, this formula could be expressed in
terms of populations of frequencies, although I chose not to do that because 
tracking poplations is rather more computationally expensive. (The 
Poissocache library included with Agnentro does exactly that, but for 
logfreedom as opposed to agnentropy. It's actually a generic hash cache 
manager with miss-count-per-lookup expected to follow a Poisson 
distribution.)

By the way, one might reasonably ask whether it would be more useful to 
include the cost of encoding Q and Z, via logplexes or some other universal 
code, in the definition of agnentropy. The practical answer is no, simply 
because these values are usually constant: in real life software, we tend to 
deal with blocks of constant numbers of items, each of which some constant 
number of bits in size. Including the logplex overhead would at best waste 
time and tax precision.

It's uncanny how, having thus succintly expressed agnentropy in terms of the 
loggamma function, the frequencies have suddenly become agnostic. This is 
one of many weak hints which suggest to me that there's a connection 
between agnentropy and the Riemann zeta function. Another is that the sum 
of loggammas expands into a linear combination of logs of natural numbers, 
which in turn expands into a linear combination of logs of primes. But I'll 
leave it at that for now.

The loggamma, for its part, is a beast. Just the infinite series used to compute 



it requires a number of weird transcendentals and precomputed rational 
coefficients. To make matters worse, it's very difficult to see how terminating 
the series at any given term affects the error in the result. This is all to say 
that it's not readily apparent how to implement it using interval arithmetic. 

But necessity is the mother of invention! First of all, I published in [10] a 
rigorous demonstration that the error is bounded by a simple expression. 
Then I implemented fast interval arithmetic libraries (in open source C, like 
all of Agnentro) called "Fracterval U64" and "Fracterval U128" (which are 64
and 128-bit normalized unsigned fixed-point interval libraries, respectively). 
Best of all, Agnentro doesn't use any floating-point math, which means it will
execute identically on all supported platforms. (Floating-point functions 
suffer from a seemingly hopeless dearth of standardization, notwithstanding 
IEEE attempts to the contrary. This raises the specter of platform dependency
and even security vulnerabilities. Besides, fractervals (normalized intervals) 
are simpler to understand and faster in many cases.) The result is that 
agnentropy can now be computed in a reproducible manner with interval 
math, such that the result is guaranteed to be between a certain minimum and 
maximum value. In practice, the uncertainty tends to be negligible compared 
to the input file size, which enables highly sensitive signal detection and 
comparison. More on that later.

As to performance, on a commodity 3 GHz Intel CPU in a single thread, the 
Agnentro File utility is able to compute the agnentropy of a billion bytes 
(Q=109, Z=256) in about a second, after subtracting read time from storage.

2.8. Computational Complexity

Asymptotically, it's quite clear from using Agnentro File that the 
computational complexity of agnentropy is O(Q), which means that the time 
it takes is asymptotically proportional to the size of the mask list. Granted, 
some time is required up front to lazily populate the log and loggamma 
lookup tables. Fortunately, those tables can be reused for multiple files in the 
case of bulk processing.

The story is very different for agnentropic encoding.



First of all, agnentropic codes are in no way commutative with respect to 
mask order. They can't be, because they're required to be invertible, which 
includes the preservation of order as well as frequency. In fact, they're quite 
expensive to compute, to the tune of O(Q2). Of this, one factor of O(Q) is due
to handling each mask one by one, and another factor of O(Q) is due to the 
increasingly large integer multiplications and divisions required to compute 
the protoagnentropic code. (I wrote the open source Biguint library, provided 
free with Agnentro, just for the purpose of handling all this painful 
arithmetic.)

2.9. Beware the Arithmetic Gap!

For the record, arithmetic compression, whether or not adaptive, suffers from 
the same O(Q2) malaise, but in practice its complexity is reduced to 
something like O(Q ln Q) by implementing a close approximation of the algo
which obviates the need for large integer arithmetic. However, this 
approximation method may create cases in which certain arithmetic codes do 
not decompress properly due to the programmer's failure to consider the gaps
between valid cases, and in particular fractions very close to one. This 
"arithmetic gap problem" may well manifest as future security vulnerabilities.
Personally, I would bet on it.

This brings us to the advantage of evaluating agnentropic codes as a practical
matter: their execution inefficiency is rooted in their coding efficiency, so in 
principle they could give rise to a robust class of proof-of-work functions, of 
the sort used in cryptocurrency and other blockchain apps. At the same time, 
due to their dense nature, they would safely avoid the arithmetic gap 
problem.

2.10. Agnentropic Codes

As stated above, we define the canonical agnentropic code A(U) as the 
shortest (and, if not unique, least) binary fraction which will unambiguously 
invert to U. First of all, this constraint falls short of the mark for a universal 
code, like a logplex, because we still need Q and Z to be provided up front. 



This is why agnentropy is entropy from almost nothing, as opposed to 
entropy from nothing.

We already know the minimum number of bits required to represent A(U): it's
just the agnentropy over (ln 2), rounded up to the nearest bit. If this were not 
the case, then we'd have asymmetrical compression performance even in 
cases where R(U) were exactly representable in a finite bitstring (sequence of
bits). And indeed, we can only reach the exact minimum in such cases.

But now let's consider the maximum number of bits which might be required 
to approximate R(U) as a binary fraction. Our precision must be sufficient to 
recover U from its contiguously owned subset of [0, 1). That interval has size
(1/C(U)) where:

C(U)≡
N (Z ,Q)

T (U )

Now, C(U) is a natural number because N(Z,Q) is a nonzero multiple of the 
span. (This is true even though the same, in general, does not hold for B(U).) 
The reason is that the factors of N(Z, Q) increment at least as quickly as the 
frequency of the most frequent mask.

If C(U) is a power of 2, then (log2 C(U)) is the exact number of bits required 
to unambiguously invert B(U). Otherwise, things get complicated.

Consider the case where (Q=1) and (Z=3). B(U) is then either zero, (1/3), or 
(2/3). Because (log2 3) is between one and 2, we should be able to invertibly 
represent each of these fractions in 2 bits. And indeed we can:

0/3 = 0.000000...
1/3 = 0.010101...
2/3 = 0.101010...

As you can see, we can ignore the zero to the left of the binary point because 
it's implied. The first 2 bits to the right then distinguish all 3 fractions from 
one another. But this is not sufficient to guarantee unambiguous invertibility.



Consider, for example, the case of 0.0100, which ends in a pair of junk 
zeroes. This represents the interval [(1/4), (5/16)), which falls in the bottom 
third of [0, 1), which means that it's "owned" by zero. So in practice we 
would need to encode 3 bits to the right of the binary point (0.011), which is 
[(3/8), (1/2)), which is fully owned by (1/3). However, in the case of (0/3), 
we could in fact use just 2 such bits (0.00), as it could never reach (1/3), 
regardless of the junk bits. This simple example illustrates why different 
values of U with the same agnentropy may nevertheless have canonical 
agnentropic codes which differ in size by up to one bit.

Granted, in the simple example above, we would know that 0.0100 is actually
owned by (1/3) because (Q=1) implies that all frequencies must be either zero
or one. But in practice, there's no easy way to know ahead of time where the 
fraction ends, even if we have Q and Z up front, because the frequencies 
which imply the span and thus the size of the fraction are discovered 
incrementally. It's not impossible, but learning that information would add 
fantastic complexity in the form of a binary search for the bit  position at 
which the inverse of the inverse of the code equals the code itself -- all in 
order to save one bit. It's not worth the trouble, even for merely theoretical 
purposes.

This, in short, is why agnentropy times (ln 2) is at most 2 bits less than the 
number of bits in the agnentropic code: we need up to one bit to round up to 
the nearest whole bit, plus up to one additional bit to ensure unambiguous 
invertibility. Every test of Agnentro File has thus far produced results 
consistent with this constraint.

2.10.1. The Agnentropic Encoding Algo

Here, then, is how to produce an agnentropic code, given the whole number 
C(U) computed above. This code, first of all, must be fully owned by the 
following interval:

[ R(U ) ,
B(U )+T (U)

K
)

because the lower (closed) limit is the least rational which is invertible to U, 



and the upper (open) limit is the maximum such rational. We want to find the 
shortest (and, if not unique, least) possible binary fraction which fits this 
constraint and also has unambiguous invertibility.

1. Compute:

J≡⌊ log2(C (U))⌋+2

that is, the integer floor of (log2 C(U)), plus 2. This is the maximum possible 
number of bits required. Conceptually, one bit is required for the rounding 
error in agnentropy conversion to binary, and another bit is sometimes 
required to compensate for odd level allocation alignment.

2. Compute:

A L≡
B(U )≪J

K
+! ! ((B(U )≪J )mod K )

rounded down to the nearest whole number. (The "<<" symbol denotes 
shifting to the left, in this case by J bits. The "!!" symbol denotes 
"Booleanization", which returns zero for a zero operand, or else one.) The 
resulting value, which represents a fraction over 2J, will be the least such 
fraction which is fully owned by the interval above, hence the subscript "L".

3. Compute:

AG≡
(B (U )+T (U ))≪J

K
−1

rounded down to the nearest whole number. The resulting value, which 
represents a fraction over 2J, will be the greatest such fraction which is fully 
owned by the interval above.

4. Set AL0, AL1, AG0, and AG1 to bit zero of AL, bit one of AL, bit zero of AG, 
and bit one of AG, respectively. Use the following table to determine how to 
set A(U). For example AG[1X] means "Set A(U) to AG. Set bit one to one. 
Delete bit zero by shifting to the right by one." Then also subtract the number



of (X)s from J.

AL1 AL0 AG1 AG0 A(U)

0 0 0 0 AL[00]

0 0 0 1 AL[0X]

0 0 1 0 AL[0X]

0 0 1 1 AL[XX]

0 1 0 0 AL[1X]

0 1 0 1 AL[01]

0 1 1 0 AL[01]

0 1 1 1 AL[1X]

1 0 0 0 AL[1X]

1 0 0 1 AL[1X]

1 0 1 0 AL[10]

1 0 1 1 AL[1X]

1 1 0 0 AL[11]

1 1 0 1 AG[0X]

1 1 1 0 AG[0X]

1 1 1 1 AL[11]

5. Now that J is its minimum possible value, arrange all J bits of A(U), so that
bit zero of memory contains bit (J-1) of A(U), bit one contains bit (J-2), etc. 
(Depending on whether one performed the foregoing computations in bitwise
big or little endian, A(U) may already be in this form. Also, note that 
hexadecimal bytes are conventionally displayed with the high nybble first, 
whereas successive bytes involve progressively higher bits of A(U). This can 
be a source of confusion when inspecting memory contents, especially when, 
as in the case of Agnentro File output, A(U) is preceded by logplex codes for 
Q and Z.)

6. Save all J bits of A(U) without regard to the junk bits that follow them, but 



beware that saving such bits straight out of memory may have security 
ramifications.

If all of this sounds complicated, feel free to see how Agnentro File does it. It
also performs decoding, which we'll explore later.

2.10.2. Agnentropic Encoding Example

Find the agnentropic code of (U={3, 5, 3, 2, 1, 3, 3}) when (Q=7) and (Z=6). 

First, compute the envelope Pochhammer:

K=(6+0)*(6+1)*(6+2)*(6+3)*(6+4)*(6+5)*(6+6)=3,991,680

Next, compute the protoagnentropic code:

B=
+3*(6+1)*(6+2)*(6+3)*(6+4)*(6+5)*(6+6)
+(5+1)*(6+2)*(6+3)*(6+4)*(6+5)*(6+6)

+3*(6+3)*(6+4)*(6+5)*(6+6)
+2*2*(6+4)*(6+5)*(6+6)

+1*2*(6+5)*(6+6)
+(3+2)*2*(6+6)

+(3+2)*2*3
=2,607,414

Compute the span:

T=(0!)*(1!)*(1!)*(4!)*(0!)*(1!)=24

Compute C:

C=K /T=3,991,680/24=166,320

Compute J:

J=⌊ log2(166,320)⌋+2=19



Compute AL in binary:

A L=
(2,607,414≪19)

3,991,680
+! !((2,607,414≪19)mod 3,991,680)=342,472=1010011100111001000

Compute AG in binary:

AG=
((2,607,414+24)≪19)

3,991,680
−1=342,473=1010011100111001001

Examine the low bits:

A L1=0, AL0=0, AG 1=0, AG0=1

Look them up in the table above, then issue the canonical agnentropic code 
accordingly, which turns out to contain 18 bits:

A=AL [0 X ]=101001110011100100

This answer has been verified with Agnentro File by creating a file equal to U
and enabling automask (whereby the utility automatically computes Z). It 
says: "agnentropy_bit_count=12", which is hexadecimal for 18. It also 
mentions "output_bit_count=1C", which means that the low 10 bits of the 
output file are consumed by logplexes storing Q and Z. For that matter, 
another instance of Agnentro File was able to decode its own output file back 
to exactly U. Then, I appended more than 64 ones to the end of the canonical 
agnentropic code; Agnentro File still produced the same output, confirming 
that my junk bits didn't matter. Finally, I incremented the original output A, 
whereupon decoding failed to produce U, which confirmed that A does not 
contain any redundant information. (In some cases, incrementing A will still 
preserve U, due to violations of canonical constraints which may or may not 
ensure unambiguous invertibility. To be sure, such violations should not be 
allowed to create security vulnerabilities.)

2.11. Verifiability and Security Considerations



The beauty of agnentropic codes is that they can be inverted given only Q 
and Z; we need not know where they end. This is especially useful where 
dense packing is required, in which case they can be blindly concatenated 
one after another. This practice is safe because, after the first fraction is 
decoded, it can be reencoded in order to (1) determine the number of bits in 
the fraction just decoded, and therefore no longer needed; and (2) verify that 
the reencoded fraction matches the one that was read from the file, which, if 
it fails, suggests that an attacker may be attempting to exploit a security 
vulnerability by employing noncanonical agnentropic codes.

It's possible to expand the codes bit by bit, thereby appending more masks 
after the original code has been written to memory. However, this requires 
accumulating the frequency list over multiple sessions. It also may require 
modification of some bits of the fraction, due to the discretization of the 
terminal bits as discussed above. Nevertheless this feature may have some 
practical use with regards to proof-of-work functions, above and beyond 
what O(Q2) already provides.

Finally, Q need not be known exactly; a lower bound will suffice. In other 
words, because agnentropic codes are expressed as fractions, we can always 
correctly decode fewer masks than the fraction actually encodes. Of course, 
in this case, the verify-by-reencoding strategy won't work. On the plus side, 
this technique can be used to recover some portion of data from a corrupted 
stream.

2.12. Agnentropic Decoding

Given Q and Z, which in the case of Agnentro File are decoded from 
logplexes, we must first compute J, the maximum possible number of bits 
required in order to completely decode U. If in fact we lack J bits, we can 
simply append zeroes to the end. This will work properly provided that the 
encoder faithfully saved a complete agnentropic code of U, whether or not 
canonical. So, compute:

J≡⌊ log 2(K)⌋+2



which is just the greatest possible number of bits which could be required to 
encode a U, because it assumes a span of one.

Now, bear in mind that the code is currently in bitwise big endian form, 
where the most significant bit resides at bit zero of memory and the least 
significant at bit (J-1). We'll heretofore just consider the code and the states 
into which it evolves as a whole number called the "bitstring". Notionally, its 
binary point is located just before bit zero. We will operate on the bitstring in 
a big endian manner, just like a student would handle an arithmetic 
computation on paper.

Create a floor list which identically maps level M to mask M, for all Z masks.
This floor list can thus also be used to compute agnostic frequency.

Now, iterate as follows:

1. Multiply the bitstring by the current number of levels, initially Z, then 
(Z+1), etc. This will usually result in a code exceeding one. Notionally, its 
integer part will appear at negative bit positions not exceeding bit negative 
one.

2. Set L to this integer part of the code.

3. Use the floor list to determine which mask M owns this level L. (Agnentro 
File does this via an iterative binary search of a binary tree.)

4. Store M to the next mask index in the output U, initially at index zero.

5. Set F to the agnostic frequency of M.

6. Adjust the floor list in order to reflect incrementation of the agnostic 
frequency (F(M)+1), but don't actually increment F(M) just yet.

7. Set D to the floor of M.



8. Subtract D from the integer part of the bitstring.

9. Divide the bitstring by F(M), as though the former were a whole number 
with the binary point located just after bit (J-1). If the remainder is nonzero, 
then increment the bitstring, assuming the same binary point.

10. Revert to the assumption that the binary point is just before bit zero. If Q 
masks have not yet been produced, goto 1.

11. If it matters for security reasons, reencode U in order to test whether or 
not the input agnentropic code was in fact canonical.

3. Remarks

This paper exists solely to explain the math behind agnentropic encoding, 
which in turn provides a logical justification for the use of agnentropy as an 
entropy metric. Whether or not agnentropic encoding finds the suggested uses
in proof-of-work functions, blockchain encoding, or other areas in which it 
matters to have only one way of doing something, useful applications of 
agnentropy have already been demonstrated with the Agnentro toolkit.

For its part, agnentropy is fast enough to process signals in real time, as they 
arrive from the environment. This allows the detection of bursts of 
anomalously low, high, or out-of-band entropy. Such anomalies could in turn 
trigger more meticulous automated analysis because they might result from 
unexpected or interesting phenomena. Likewise, signals can be compared and
classified by simply dropping them into buckets which coincide with their 
relative agnentropy levels.

Due to its incremental nature which obviates the need to account for the size 
of a frequency list, agnentropy is usually more accurate than Shannon 
entropy, to the extent that all Z masks are actually possible. It's also faster to 
compute in dynamic regimes, in which one mask is being supplanted for 
another, over and over again. These advantages make it a useful tool for 
realtime signal analysis.



For more details, or to download the Agnentro toolkit, see 
https://agnentropy.blogspot.com .
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