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We propose a framework to understand the world by an ensemble of
theorems rather than by a set of axioms. We prove meta-logically that
the theorems of the ensemble must have feasible proofs and must re-
cover universality. The ensemble is axiomatized when it is constructed
as a partition function, in which case its axioms are, up to an error rate,
the bits of Ω (the halting probability of a prefix-free universal Turing
machine).

As a consequence of the axiomatization, the ensemble adopts the
mathematical structure of an ensemble of statistical physics. It is from
this context that the laws of physics are derived. It is shown that the
Lagrange multipliers of the partition function are the fundamental
Planck units and that the background, a thermal spacetime, emerges
as a consequence of the limits applicable to the conjugate pairs. The
background obeys the relations of special and general relativity, dark
energy, the arrow of time, the Schrödinger equation, the Dirac equation
and it embeds the holographic principle. In this context, the laws of
physics connect to the limits of feasible mathematics.

The framework is so fundamental that informational-equivalents to
length, time and mass (assumed as axioms in most physical theories)
are here formally derivable. It can prove that no alternative framework
can contain less bits of axioms than it contains (hence it is necessarily
the simplest theory). Furthermore, it can prove that, for all worlds
amenable to this framework, the laws of physics will be the same
(hence there can be no alternatives).

0.1 Notation

We will use the following notations: The double vertical lines |X|
means the length of the string X. The suffix b, for example in 110b,
refers to the binary notation. The symbol Σ refers to an alphabet for
strings. The notation Σb refers to the binary alphabet. In this case
X ∈ Σb means that X is a binary string, for example 0001b ∈ Σb.

1 Introduction

It is generally understood that a final and ultimate theory of every-
thing (ToE) in physics should be elegant (in the mathematical sense).
Indeed, it is hoped that a ToE could be formulated as a relatively
small set of axioms, which explains all of the physics of the universe.
The size of the set could (hopefully?) be between 10 to 30 axioms
which would make the theory particularly elegant. Finding such a
final theory is a major unsolved problem of physics.
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Pondering on the difficulty of finding such a theory, I asked my-
self; what would happen if we were to eliminate the requirement
that it should be elegant. Would the problem become simpler, and if
so by how much? In the first part of this paper, if you allow me the
indulgence, we will formulate a mathematically inelegant theory to
describe the universe. This exercise will be justified under the thesis
that any theory is better than no theory. Then in the second part, we
will see that the exercise was well worth the effort as we will be able
to improve the elegance of the theory quite significantly.

Relaxing the requirement on elegance allows us to define the uni-
verse using as many statements as we want (even possibly infinitely
many statements). We can think of this method as a fool-proof way to
produce a theory capable of describing all of the universe. To formu-
late it, we simply keep adding statements until we eventually explain
all of the facts. As we will be speaking generally, the explicit formu-
lation of the statements is not the primary interest. Therefore, we
can discuss them abstractly by naming them Statement1, Statement2,
Statement3, Statement4, etc. As these statements would not all be
logically independent, they could presumably be axiomatized to a set
of logically-independent axioms: Axiom1, Axiom2, Axiom3, etc..

I noticed that a set of abstract axioms could be connected to the
arrow of time when I realized that any set of n logically independent
axioms contained every axioms in its subsets but cannot by itself
determine the axioms found in its supersets. For example, the set
comprised of Axiom1, Axiom2, Axiom3, Axiom4 contains at least
the information that is contained in the subset of Axiom1, Axiom2,
Axiom3. But, as the axioms are logically independent, the smaller
set cannot determine what Axiom5 is. All that was left to do was to
define each instant of time as a specific set of a certain size. As time
moves forward, the size of the set would increase to accommodate
more axioms. The result is that the information of the past would be
encoded in the set associated with the present, but the future would
be undecidable until it occurs - yielding the arrow of time. At that
point I was hooked to the idea: Time may have an arrow because the
number of axioms grows with it. Under this initial intuition, I de-
cided to further investigate the abstract connections between axioms
and theorems with the goal of deriving more notions of physics.

After some research, I was able to show that the laws of physics
are a meta-logical consequence of the connection between axioms
and theorems. As long as the theorems have the property1 that they 1 Discussed rigorously in section 4

recover universality and that they have feasible proofs, the laws of
physics will be derivable and neither the axioms nor the theorems
need to be explicitly specified. In this context, the limits of feasible
mathematics and the laws of physics are the same.
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The fundamental equation describing the universe in this interpre-
tation is a discrete partition function describing a statistical ensemble
of theorems. The equation, stated here, will be formally derived and
justified in this paper;

Z =
∞

∑
i=1

2−A fi−|pi | (1.1)

, where

Z ∈ (R∩ [0, 1]) numerical value of the sum (1.2)(
2−A fi−|pi |

)
micro-state representing a theorem (1.3)

pi ∈ Σb prefix code of theorem (binary string) (1.4)

|pi| ∈N≥0 length of code (1.5)

fi ∈N≥0 size of proof (1.6)

A ∈ R≥0 conjugate to size of proof (1.7)

let us also introduce:

Ω ∈ (R∩ [0, 1]) halting probability of a prefix-free universal Turing machine
(1.8)

This equation connects a system of arbitrary logical complexity
(but otherwise bounded by a proof-size cutoff) to a binary expansion
of the axioms able to decide it’s theorems. Each term of the sum can
be interpreted as a micro-state describing a theorem. The micro-states
are aware of two core properties of the theorems of the system; the
length of their encodings (pi) and the length of their proofs ( fi). The
numerical value Z monotonically converges towards Ω as the conju-
gate A vanishes to zero. Z encodes (as bits) the axioms required to
decide all statements of the system up to a proof-size cutoff enforced
by A. In this way the interpretation of Z is similar to Ω but is only
valid up to an error bound which goes to zero as A goes to zero.

This meta-logical equation provides an axiomatization procedure
for feasible mathematics. It further recovers universal mathemat-
ics when the feasibility bound is lifted. With some interpretational
subtleties2, it holds for all possible formal systems. As a result, any 2 The interpretation that Z converges

towards an algorithmically-random
number (Ω) only holds for ensemble
of theorems sufficiently universal to
embed the description of a universal
Turing machine. For example, it holds
for Peano’s axioms and ZFC but not
for Presburger arithmetic. In the later
case, the equation would still produce a
number for Z but it would not necessar-
ily describe incompressible axioms.

successful and formal theory of everything in physics, as it would
presumably contain axioms and theorems, must be meta-logically
bounded by this equation.

This previously unknown yet relatively simple equation yields a
surprising amount of physics provided that we are willing to adopt
information and computation as the backbones of physics. From this
equation, we show that the Lagrange multipliers of the partition
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function are the Planck units and that the background, a thermal
spacetime, is emergent. We can show that this background obeys
the laws of special relativity, general relativity, dark energy, the
Schrödinger equation, the Dirac equation and that it embeds the
holographic principle.

These laws are derived from pure reason with no appeal to phys-
ical observations as the limits of feasible mathematics. As the en-
semble of theorems embeds a proof-size cutoff we can think of it as
describing the limits of ideal computation connecting theorems to
axioms.

1.1 Outline

The proof that we present in this paper is outlined as follows;

1. We start from the standard construction of Ω, the halting probabil-
ity of a prefix-free universal Turing machine.

Ω =
∞

∑
i=1

2−H(pi)−|pi | where H(pi) =

0 pi halts

∞ otherwise
(1.9)

2. We augment Ω with knowledge of the size of the proof of each
theorem ( fi). With this, we obtain the definition of Z.

Z =
∞

∑
i=1

2−A fi−|pi | (1.10)

3. With knowledge of proof-size, Z decides feasible mathematics.
The bound on feasibility is set by the value of A. (Of note, when
the bound on feasibility is lifted (A → 0+), then Z → Ω. In this
context, Ω would be interpreted as deciding universal mathemat-
ics.)

4. The limits of feasible mathematics and the laws of physics are the
same.

1.2 Avoiding the errors of the past

Many philosophers, notably Leibniz, Spinoza and Bertrand Rus-
sel, have attempted to construct a description of all of reality as
true/false statements. Specifically, Leibniz tried to create a language
that would be able to decide any statements. As expected by the
Gödel incompleteness theorem, the project ultimately failed. This is
often and incorrectly interpreted as a failure of the true/false project.
To understand why the failure interpretation is incorrect, an impor-
tant nuance must be understood. It is not the project of encoding a
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system as true/false statements per se that as failed. In fact, this form
of encoding is always possible when no restrictions are applied to the
decidability of the statements. The failure occurs when one tries to
formalize the project into a set of axioms of lesser complexity than
the statements it encodes so as to improve its elegance. In the most
complex systems, such as with the universe, many statements are
undecidable and must remain so for the system to be consistent.

Having some statements undecidable might appear to be quite
the limitation to the purest of Platonists, but as we will see it is what
actually gives complexity to the universe.

2 Preliminaries

We must be careful with our use of language from this point on.
Referring to the encoding as true/false statements will not suffice.
Indeed, we can show that some problematic statements, known as
logical paradoxes, do not have a true or a false answer. For example,
the barber paradox can neither be true nor false without introducing
a contradiction. Another example is the note-on-a-wall statement.
Imagine a note on a wall with a single statement that reads "All state-
ment on this note are false" - is the statement on the note true or
false? Let’s see. First, assume it is false. Then there must be one true
statement on the note. But, we just assumed that its only statement is
false. Hence the assumption must be wrong. Okay, now assume it is
true. Then as per the statement, all statements must be false. But, we
just assumed that it is true. A contradiction is obtained in both cases.
This is an undecidable statements which contradicts the idea that all
statements have a yes or no answer.

To get rid of these problematic statements, we simply re-align
the scope of the true/false encoding to a more modern formulation.
To properly define the encoding, we will introduce the notion of
sentences, theorems, provable and non-provable. First, we refrain
from using the word statement in favour of the word sentence. If
a sentence of a language is provable within a logical system, we
will say that the sentence is a theorem of the logical system. In the
general case, it is undecidable if a sentence is or is not a theorem of a
formal system. Reprising the note-on-a-wall example, we would ask:
"is the sentence on the note a theorem" - the answer is simply no.

As a result, we no longer use the word true or false to describe
sentences but will rather use theorem or not-a-theorem and the prob-
lem evaporates. For example, we will not refer to a sentence as being
’true in the universe’ but instead as being a ’theorem of the universe’.
Explicitly, the expression ’a theorem of the universe’ means a sen-
tence which is a theorem of the theory which explains the universe.
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2.1 Formalism

Let us consider a specific language, say binary, and associate to each
of its sentences a boolean value to be interpreted as related to the
provability of the sentence within a formal logic system. The boolean
value will be true if its associated sentence is a theorem and will
be false otherwise. We list all sentences of binary in shortlex order
(sorted both alphabetically and by length). Then, we associate a
boolean value to each sentence. As the sentences are enumerated
in shortlex, it is easy to see that all sentences are associated with a
boolean value. As an illustrative example, consider the following
case;

n sentence (all) boolean value (examples) is a theorem?

1 0b 1 yes (2.1)

2 1b 0 no (2.2)

3 00b 1 yes (2.3)

4 01b 1 yes (2.4)

5 10b 1 yes (2.5)

6 11b 0 no (2.6)

7 000b 0 no (2.7)

...
...

...
...

As we can see, all sentences of binary are part of the list. If the
sentence is a theorem of the logic system, its associated boolean value
is 1, otherwise it is 0.

Historically, Émile Borel3 suggested a know-it-all number which 3 Gregory J. Chaitin. How real
are real numbers? International
Journal of Bifurcation and Chaos,
16(06):1841–1848, 2006a. doi:
10.1142/S0218127406015726. URL
http://www.worldscientific.com/doi/

abs/10.1142/S0218127406015726

would encode the answer to all yes/no questions of a language.
Here, we revisit this concept but using the modern terms. In his
definition, we replace the word question with sentence and the yes/no
answer with theorem/not-a-theorem.

Definition 2.8 (Borel number). A Borel number is a real number between
0 and 1. It starts with 0 followed by a period and followed by an infinite
expansion of binary digits. The digits of the expansion are obtained by con-
catenating all boolean values back to back. Each digit corresponds to the
boolean value associated with its corresponding sentence. The ith digit after
the decimal corresponds to the boolean value associated with the ith sen-
tence. The Borel number of the above example would be 0.1011100...b. A
Borel number encodes the provability of each sentence of a language as a
single real number. A Borel number is an example of a real number that is
non-computable in the general case.

The Chaitin construction4, also called an Omega number, is a 4 Gregory J. Chaitin. A theory of
program size formally identical to
information theory. J. ACM, 22(3):
329–340, July 1975. ISSN 0004-5411.
doi: 10.1145/321892.321894. URL http:

//doi.acm.org/10.1145/321892.321894

http://www.worldscientific.com/doi/abs/10.1142/S0218127406015726
http://www.worldscientific.com/doi/abs/10.1142/S0218127406015726
http://doi.acm.org/10.1145/321892.321894
http://doi.acm.org/10.1145/321892.321894
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generalization of the above modern formulation of the Borel number.
Instead of associating each sentence to a natural number, they are
instead associated to a prefix-free code.

Definition 2.9 (Prefix-free code). A prefix-free code is a set of sentences
with the property that no member of the set is the prefix of another. For ex-
ample, the sentence 0b is a prefix of 00b hence the set of these two sentences
would not be a prefix-free code. But the set of 0b, 10b, 110b, 1110b, 11110b,
... would.

If each sentence of a language (s1, s2, s3, ...) are associated to a
prefix-free code (p1, p2, p3, ...) then the kraft inequality5 holds. 5 L. G. Kraft. A device for quanitiz-

ing, grouping and coding amplitude
modulated pulses. Master’s thesis,
Mater’s Thesis, Department of Electrical
Engineering, MIT, Cambridge, MA,
1949

1 ≥
n

∑
i=1

2−|pi | ≥ 0 (2.10)

, where

n ∈ (N∪ {∞}) total number of codes (2.11)

pi ∈ Σb prefix code string (in binary) (2.12)

|pi| ∈N≥0 length of code (2.13)

The inequality guarantees that the sum over the exponential decay
of the length of the codes will be between 0 and 1 inclusively. In
the case where the sentences are encoded with the unary code (a
certain prefix-free code defined as : 0b, 10b, 110b, 1110b, 11110b, ...),
the modern formulation of the Borel number is recovered.

The Chaitin construction is defined for all sentences of a language
encoded with a prefix-free code p. In this construction, each sentence
is considered to be a program which either halts (if the sentence is
provable), or doesn’t (if it is non-provable).

Ω =
n

∑
i=1

2−H(pi)−|pi | where H(pi) =

0 pi halts

∞ otherwise
(2.14)

, where

Ω ∈ R∩ [0, 1] halting probability (2.15)

When this construction applies to the programs that are exe-
cuted by universal Turing machine (UTM), it is possible to prove
that Ω is normal, algorithmically random, non-computable and non-
compressible. Like a Borel number, Ω encodes which sentences of a
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language are theorems. Unlike the Borel number however, the dig-
its of Ω do not necessarily have a one-to-one correspondence to a
specific sentence. As a result, the interpretation of Ω is different:

The Chaitin construction connects to the halting problem of com-
puter science. Consider a universal Turing machine running a pro-
gram that is searching for a proof of p1. If a proof is found, the pro-
gram halts and H(p1) is equal to 0. Consequently, the term of the
sum associated to p1 does not vanish. In the case where p2 is not a
theorem, then the program will search forever and will never halt.
In this case H(p2) is equal to ∞ and its contribution to the sum van-
ishes.

Knowledge of n bits of Ω allows an observer to count the total
number of programs of length less than or equal to n that halts. The
observer can then use this information to solve the halting problem
for programs of length less than or equal to n. Hence, as the halting
problem is unsolvable, the infinite expansion of the bits of Ω must
be non-computable. As it is normalized between 0 and 1, Ω is often
interpreted as the halting probability of a random program for a
prefix-free universal Turing machine.

2.2 Statistical physics

Before continuing to the next section, we will provide a brief recap
of statistical physics. In statistical physics, we are interested in the
distribution that maximizes entropy

S = −kB ∑
x∈X

p(x) ln p(x) (2.16)

, where

S ∈ R≥0 entropy (2.17)

kB ≈ 1.38× 10−23 m2kg
s2K

Boltzmann constant (2.18)

X ensemble of micro-states (2.19)

x ∈ X micro-state (2.20)

p(x) ∈ R∩ [0, 1] probability of the system being in micro-state x (2.21)

Observable Conjugate Relation
Energy E Temperature T β = 1/(kbT)

Volume V Pressure p γ = p/(kbT)
Number of particles N Chemical potential µ δ = −µ/(kbT)

Table 1: Typical observables of statisti-
cal mechanics.
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subject to the fixed macroscopic observables. The solution for this
is the Gibbs ensemble. Taking the observables listed in Table 1 as
examples, the partition function becomes

Z = ∑
x∈X

e−βE(x)−γV(x)−δN(x) (2.22)

, where

Z ∈ R>0 normalization constant (2.23)

The probability of occupation of a micro-state is;

p(x) =
1
Z

e−βE(x)−γV(x)−δN(x) (2.24)

The average values and their variance for the observables are;

E = ∑
x∈X

p(x)E(x) E =
−∂ ln Z

∂β
(∆E)2 =

∂2 ln Z
∂β2 (2.25)

V = ∑
x∈X

p(x)V(x) V =
−∂ ln Z

∂γ
(∆V)2 =

∂2 ln Z
∂γ2 (2.26)

N = ∑
x∈X

p(x)N(x) N =
−∂ ln Z

∂δ
(∆N)2 =

∂2 ln Z
∂δ2 (2.27)

The laws of thermodynamics can be recovered by taking the fol-
lowing derivatives

∂S
∂E

∣∣∣∣
V,N

=
1
T

∂S
∂V

∣∣∣∣
E,N

=
p
T

∂S
∂N

∣∣∣∣
E,V

= − µ

T
(2.28)

which can be summarized as

dE = TdS− pdV + µdN (2.29)

This is known as the equation of state of the thermodynamic sys-
tem. The entropy can be recovered from the partition function. It is
given by

S = kB
(
ln Z + βE + γV + δN

)
(2.30)

2.3 Algorithmic thermodynamics

Many authors (Bennett et al., 1998, Chaitin, 1975, Fredkin and Tof-
foli, 1982, Kolmogorov, 1965, Zvonkin and Levin, 1970, Solomonoff,
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1964, Szilard, 1964, Tadaki, 2002, 2008) have discussed the similar-
ity between physical entropy S = −kB ∑ pi ln pi and the entropy in
information theory S = −∑ pi log2 pi. Furthermore, the similarity be-
tween the halting probability Ω and the Gibbs ensemble of statistical
physics has also been studied (Li and Vitanyi, 2008, Calude and Stay,
2006, Baez and Stay, 2012, Tadaki, 2002). Indeed, the Gibbs ensemble
compares to the halting probability as follows;

Gibbs ensemble Halting probability

Z = ∑
x∈X

e−β(E+pV+Fx) Ω = ∑
p halts

2−|p| (2.31)

Interpreted as a Gibbs ensemble, the halting probability forms a
statistical ensemble where each program corresponds to one of its
micro-state. It maximizes the entropy subject to constraints on its
observables. The halting probability admits a single observable; the
prefix code length |pi|. As a result, it describes the partition function
of a system which maximizes the entropy subject to the constraint
that the average length of the codes is a constant |p|;

|p| = ∑
p halts

|p|2−|p| from 2.25 (2.32)

, where

|p| ∈ (R∩ [0, 2]) Average prefix code length of Ω (2.33)

In this interpretation, the halting probability will have an entropy
which corresponds to the choice of prefix-free codes available to
encode the programs.

S = kB

(
ln Ω + |p| ln 2

)
from 2.30 (2.34)

where the constant ln 2 comes from the base 2 of the halting proba-
bility function instead of base e of the Gibbs ensemble.

John C. Baez and Mike Stay6 take the analogy further by suggest- 6 John Baez and Mike Stay. Algorithmic
thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–
787, September 2012. ISSN 0960-1295.
doi: 10.1017/S0960129511000521.
URL http://dx.doi.org/10.1017/

S0960129511000521

ing an interpretation of algorithmic information theory based on
thermodynamics, where the characteristics of programs are consid-
ered to be observables. Starting from Gregory Chaitin’s Ω number,
the halting probability

Ω = ∑
p halts

2−|p| (2.35)

http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
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is extended with algorithmic observables to obtain

Ω′ = ∑
p halts

2−βE(p)−γV(p)−δN(p) (2.36)

Noting the similarity between the Gibbs ensemble of statistical
physics (2.22) and (2.36), these authors suggest an interpretation
where E is the expected value of the logarithm of the program’s run-
time, V is the expected value of the length of the program and N is
the expected value of the program’s output. Furthermore, they inter-
pret the conjugate variables as (quoted verbatim from their paper);

"

1. T = 1/β is the algorithmic temperature (analogous to temperature).
Roughly speaking, this counts how many times you must double
the runtime in order to double the number of programs in the
ensemble while holding their mean length and output fixed.

2. p = γ/β is the algorithmic pressure (analogous to pressure). This
measures the tradeoff between runtime and length. Roughly speak-
ing, it counts how much you need to decrease the mean length to
increase the mean log runtime by a specified amount, while holding
the number of programs in the ensemble and their mean output
fixed.

3. µ = −δ/β is the algorithmic potential (analogous to chemical po-
tential). Roughly speaking, this counts how much the mean log
runtime increases when you increase the mean output while hold-
ing the number of programs in the ensemble and their mean length
fixed.

"

–John C. Baez and Mike Stay

From equation (2.36), they derive analogues of Maxwell’s relations
and consider thermodynamic cycles, such as the Carnot cycle or
Stoddard cycle. For this, they introduce the concepts of algorithmic
heat and algorithmic work.

Other authors have suggested other somewhat arbitrary map-
pings7. 7 Ming Li and Paul M.B. Vitanyi.

An Introduction to Kolmogorov
Complexity and Its Applications.
Springer Publishing Company, Incorpo-
rated, 3 edition, 2008. ISBN 0387339981,
9780387339986; and Kohtaro Tadaki. A
statistical mechanical interpretation of
algorithmic information theory. In Local
Proceedings of the Computability in
Europe 2008 (CiE 2008), pages 425–434.
University of Athens, Greece, Jun 2008.
URL http://arxiv.org/abs/0801.4194

2.4 Existence of a preferred mapping

We have found that there exists a preferred mapping such that the
laws of physics can be seen as having an origin in algorithmic in-
formation theory (AIT). The mapping will be introduced starting
from section 4 onwards. As we introduce physical quantities into the
discourse, we will initially prefix them with the word algorithmic so
as to make their AIT-origin explicit. For example, the action will be

http://arxiv.org/abs/0801.4194
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introduced from AIT as the algorithmic-action. Introducing a quan-
tity prefixed with the word algorithmic, as in algorithmic-"quantity",
should be understood as posing a mapping between the AIT-derived
quantity and the physical quantity. The units of these algorithmic
quantities will also follow the pattern. For example, the algorithmic-
action has the units of algorithmic-Joules times algorithmic-seconds, etc.

3 Philosophical justifications

Developing the philosophy behind the methodology will be of the
utmost importance as it will allow us to define the scope of the the-
orems that are part of the universe. Without this part, we would not
know if the universe comprises all possible theorems, or a fraction of
such and if so which fraction specifically. We want to avoid the situ-
ation where we over-scoped the set of theorems as that would mean
that we would recover properties not applicable to the universe. For
example, should the theorems encode the positions of particles? Or
should they encode the solutions to mathematical problems? etc. This
is what we want to answer in this section. But, before we dive in, let
us do a brief recap of select philosophical results that will be of use
to us.

3.1 The cogito ergo sum

To understand how the scoping of the theorems will be achieved,
we have to recall the philosophy of René Descartes (1596-1650), the
famous 17th century french philosopher most well-known for his
derivation of cogito ergo sum - I think, therefore I am. As we will see,
the proper scoping is naturally obtained when we modernize his
universal doubt method into a formal logic system such as first order
logic. But first, let us recall what the universal doubt method is and
how it applies to the derivation of the cogito.

Descartes’ main idea was to come up with a test that every state-
ment must pass before it will be accepted as true. The test will be the
strictest test imaginable. Any reason to doubt a statement will be a
sufficient reason to reject it. Then, any statement which survives the
test will be considered irrefutable.

Using this test, and for a few years, Descartes rejected every state-
ment he considered. The laws and customs of society, as they have no
logical justifications, are obviously the first to be rejected. Then, he
rejects any information that he collects with his senses; vision, taste,
hearing, etc, on the grounds that a "demon" (think hallucinogens)
could trick his senses without him knowing. He also rejects the theo-
rems of mathematics on the grounds that axioms are required to de-
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rive them, and such axioms could be wrong. For a while, his efforts
were fruitless and he doubted if he would ever find an irrefutable
statement.

But, eureka! He finally found one which he published in 1641.
He doubts of things! The logic goes that if he doubts of everything,
then it must be true that he doubts. Furthermore, to doubt he must
think and to think, he must exist (at least as a thinking being). Hence,
cogito ergo sum, or I think, therefore I am.

3.2 Miniversal logic

We now refocus our interest to Descartes’ universal doubt method
itself and not so much in the cogito. To identify the theorems of the
universe, we will repeat Descartes’ universal doubt method within
the context of a formal logic system. The method will produce a
minimal set of rules whose theorems are the theorems of the universe -
hence the name Miniversal logic.

Miniversal logic is, in many ways, similar to the constructivist
project in mathematics but taken to the extreme. We select first-order
logic as our starting point. Then, as we do not know which axioms
are the true axioms of the universe, we remove all formal axioms
from first-order logic on the ground that they carry doubt. Then, we
further remove all rules of inference with the exception of the rule of
deduction. This method parallels Descartes’ universal doubt method
within first order logic. The main argument is that if we remove
from first order logic all formal axioms and all rules of inference
which could potentially be controversial, then whatever theorem is
left will surely be irrefutable. The result is a system of logic which,
essentially, does not deceive its user.

Like Descartes with the cogito, we will also obtain statements
that cannot be doubted of, but since we have formalized Descartes’
method within first-order logic, the irrefutable statements obtained
will be logic statements and are therefore mathematically usable.
Specifically, the irrefutable statements obtained are the theorems of
Miniversal logic.

To write sentences in a clear and unambiguous manner, Miniversal
logic preserves the syntax of first order logic but does not retain its
rules of inference (with the exception of the rule of deduction). As
only the rule of deduction remains, let us recall its definition.

Definition 3.1 (Rule of deduction). The rule of deduction formalize the
idea that proving a theorem using a set of assumptions is valid within these
assumptions. It shows that if by assuming A one can show that A ` B,
then A → B is a theorem of the logical system. It is often considered one of
the most obvious rule of inference of logic, as without it we cannot extend a
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logical system with new axioms/assumptions. Using the rule of deduction,
we can start from seemingly nothing and rebuild any of the familiar logic
systems such as Peano’s axioms (PA) or set theory (ZFC) by assuming their
axioms.

Why keep the rule of deduction? For the simple reason that us-
ing it does not introduce doubt but removing it would. It is the only
standard rule that has this property. For example lets consider an-
other rule, say the rule of excluded middle. Adopting this rule in the
foundation of the theory would increase doubt as it is impossible to
determine a-priori if this is a valid rule of the universe or not. How-
ever, introducing it by first appealing to the rule of deduction would
be fine. Indeed, in the latter case we would say "if we assume the rule
of excluded middle (via the rule of deduction), then we can prove by
contradiction, for example, that

√
2 is irrational". It only affects the

branch of the tree under which it is assumed and not the whole sys-
tem.

In Miniversal logic, no theorem stands on its own. Any theorem
must include, within its description, the list of assumptions that are
required to prove it. The user of Miniversal logic is always reminded
that the theorems that he proves are of the form ’Assume A, then A
proves C’. Hence, by the rule of deduction, A → C is a theorem, but
C by itself never is. Miniversal logic can be interpreted as the starting
point of all logical work - it is the state of mind a logician is in before
having morning coffee and selecting a specific system of axioms to
work with. As a result and compared to other logic systems, it more
accurately represents reality as it reflects the full freedom available to
the logician to select any set of axioms prior to working.

3.3 Discussion on metaphysics

Le me apologize for injecting metaphysics into a physics paper, but if
you will allow, we will see that it will be useful. In this paper we are
only interested in deriving the following:

Definition 3.2 (Bridge from metaphysics to physics). A method to
remove elements from the set of all possible universes until only one element
is left. The derivation should rely only on the application of pure reason. It
should not rely on empirical observations.

The goal of this section is to construct a bridge from metaphysics
to physics. The completion of the exercise will identify all sentences
that are theorems of the universe. To iron out the subtleties we will
present, in the long standing tradition of philosophy, an hypothetical
dialogue about the thesis. The dialogue is based on a number of
real conversations8 which has been edited and combined to remove 8 Specifically, when Alice’s dialogue

is taken verbatim from a conversation
with Toid Boigler, it will be side-noted
with the initials TB.
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repetitions, to accelerate the flow and to help illustrate the points
being made.

Alice: - I believe in empiricism. To derive the laws of physics, one must make
observations. Without these observations, there is no way to know which of
many possible worlds is the actual world. For example, is the geometry of the
universe euclidian or hyperbolic? Is the speed of light maximal? Does the
microscopic world obeys the Schrödinger equation? Etc. Pure reason alone
cannot prove these to be actual. Only continual observations followed by
refinements or falsifications can improve our degree of confidence in a scientific
theory.

I understand your point of view, but I believe I have found a
bridge between metaphysics and physics that allows one to obtain
irrefutable knowledge about the universe. I will try to explain the
bridge from the following angle. First, lets assume that the cogito is
true: I think, therefore I exist. Do you agree with the cogito?

Alice: - Yes.

Then, for I to exist, the universe must be restricted in some way. At
the very least, it must be such that it does not contradict the existence
of thought. We have now essentially reformulated the anthropic prin-
ciple as an extension to the cogito. I think, therefore I exist - and to
exist, I must actually exist in a universe capable of supporting such exis-
tence. Would you agree that this argument rules out some universes?

Alice: - Fair enough, yes - it rules out the [...] universes incompatible with
the existence of thought.[...]9 9 TB

OK. From that, we already have a slight connection between meta-
physics and physics. An argument from pure reason, the cogito ex-
tended with the anthropic principle, can be used to place restrictions
on what the universe can be. As it contains very little information,
the restriction is very loose, but it is nonetheless a restriction.

Alice: - I agree that the anthropic principle rules out universes that are
not capable of producing an observer. But, a scientific theory should make
precise and falsifiable predictions and the anthropic principle is not sufficiently
specific for that.

Now we enter the core of the argument. We will use Miniversal
logic to improve the specificity of the anthropic principle. Each the-
orem of Miniversal logic that we can provide will serve to further
restrict what the universe is. For example, using my mind I can prove
the sentence “PA implies that two plus two equals four", and since
my mind is in the universe, then the sentence must be a theorem of
both my mind and the universe. This is how we find the theorems
applicable to the universe. We have now restricted the universe by
two statements instead of one. So the previously poorly defined
bound is now slightly better defined. Agree, or disagree?
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Alice: Well, you want the phrase “theorem of the universe" to be telling us
something about the physical world; to put it in your own words, “...this is
how we bridge metaphysics to physics." But how does this work? If “true in
the universe" just means provable in PA or ZFC or whatever (as you seem to
have just said), how does this provide any link with physical reality at all? 10 10 TB

Hold on, it appears that you have missed a subtlety. "Provable in
the universe" means provable in the Miniversal logic system I defined
earlier. If you use another logic system than Miniversal logic (such
as PA) then the argument does not work. If you use PA or ZFC, then
the theorems rely on the axioms PA or ZFC. As the universe might
have other axioms than PA or ZFC, we cannot prove that PA’s or
ZFC’s theorems are indeed the theorems of the universe. However,
Miniversal logic teaches us that the theorems of the universe are
not "two plus two equals four", they are "Assume PA, then two plus
two equals four". The "Assume PA" prefix is what the subtlety is
all about. "Assume PA, then 2+2=4" is a theorem of the universe
because, it is true that in the universe, if you assume PA you can
prove (within PA) that 2+2=4. You can easily do the exercise in your
head to prove that it can be done in the universe.

- Alice: OK, so you want to think of all mathematical proofs as conditional -
if certain axioms hold, then certain consequences follow. Fine. How does that
provide any connection with physics or the physical world?11 11 TB

Well yes, mathematical proofs that are explicitly conditional on
assumptions derived exclusively from the rule of deduction are theo-
rems of the universe. Whereas those that do not meet this condition
are theorems of their respective logic system. For example, "2+2=4" is
a theorem of Peano’s axioms. But, "Assume PA, then 2+2=4" is a the-
orem of the universe. So all worlds where "Assume PA, then 2+2=4"
is not true are ruled out.

- Alice: This is one point where I am a little confused. Pure logic (call it
[Miniversal] logic if you want) guarantees that PA implies 2+2=4. So it’s hard
to see what worlds it rules out - unless you mean worlds in which there is a
mind, but that [this] mind is too [primitive] to realize that PA implies 2+2=4.
Is that the kind of world that you take to have been ruled out? If so, I am OK
with what you have said.12 12 TB

Yes - that is part of what I am ruling out. Generally speaking, I
am ruling out any world which does not embed universal reason. I
also rule out worlds for which logic would be incomplete and worlds
which would contradict logic by say, letting you prove any theorems
regardless of the axioms that you assume.

Since our mind is able, in principle, to explore all branches of
Miniversal logic and since the universe must embed our mind, we
can precisely identify all the theorems of the universe: The ultimate
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theory which describes the universe must have, as its theorems, all
theorems of Miniversal logic.

Alice: Here I really don’t know what you mean, unless you are just saying
that there are no ’violations’ of [Miniversal] logic in the world. If that’s what
you mean, I’m happy with that claim.13 13 TB

I am indeed claiming that there are no violations of Miniversal
logic in the universe, but I am also claiming something additional.
What I am claiming is that we can use Miniversal logic and the an-
thropic principle to completely restrict the universe to a single solu-
tion.

Consider the following; each theorem of Miniversal logic that we
supply can be used to restrict the universe further. In principle, we
can supply arbitrarily many theorems. PA has "2+2=4" as a theorem,
but it also has "2+3=5", etc. Then, ZFC also has infinitely many the-
orems as well. If we keep supplying theorems, we will eventually
supply all theorems for all branches of Miniversal logic14. Further- 14 To avoid hanging on non-provable

sentences, we will have to work in
dovetail. We will return to the notion of
dovetailing in the next section.

more as Miniversal logic is universal, all possible theorems for all
possible sets of assumptions will eventually be supplied. No patches
of theorems will be left out by the process.

As a result, we will have maximally restricted what the universe
can be. Indeed, the universe cannot be simpler than Miniversal logic
because that would mean leaving a theorem out (but we already said
the work will eventually supply all possible theorems so none can be
left out). What about complexity - can the universe be more complex
then Miniversal logic? The universe cannot be more complex than
Miniversal logic either because that would mean the universe has
theorems that Miniversal logic hasn’t (but this cannot be the case
because Miniversal logic already embeds all possible theorems within
its branches).

Therefore, as the universe is restricted both from the perspective
of increasing its complexity as well as reducing it, the bound cannot
be improved furthermore. The method herein described fully restricts
the universe to a single solution.

Alice: I am not sure [I see where you are going with this]. I’m happy to say
that the universe must allow for the possibility of a mind that, in princi-
ple, can verify all the theorems of [Miniversal] logic. But what follows from
that?15 15 TB

Usually a theory is first defined by a set of axioms, then the the-
orems follows from them. In our present situation, we have a list of
theorems but we do not have the theory which explains such theo-
rems. The theory is inside-out. The next step will be to axiomatize the
theory into a short list of axioms instead of infinitely many theorems.
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Alice: I don’t understand this at all. What we have now are all the tautologies
of [Miniversal] logic. What connection is there between that and a physical
theory?16 16 TB

The connection is that, for the reasons stated, the theorems of
Miniversal logic are the theorems of the universe. Hence Miniversal
logic, as its theorems are identical to those of the universe, must fully
describe the universe.

Alice: You say "The theorems of [Miniversal] logic are theorems of the uni-
verse.". If by this you just mean that the universe obeys the laws of [Miniver-
sal] logic, then yes, I agree. Then you say "Hence Miniversal logic, as its
theorems are identical to those of the universe, must fully describe the uni-
verse." This seems clearly wrong. It is true in the universe that there [is the
law of gravity]. That there [is the law of gravity] is, however, not a theorem
of [Miniversal] logic. Thus, the theorems of [Miniversal] logic do not fully
describe the universe.17 17 TB

There is a misunderstanding. I am not claiming that the laws of
the universe can be found within Miniversal logic under a certain
set of assumptions. What I am claiming is that Miniversal logic is
itself isomorphic to the universe. Miniversal logic along with the an-
thropic principle has allowed us to establish that whatever theory of
physics we construct to explain the universe, it must exactly recover
the theorems of Miniversal logic - it cannot do more and it cannot do
less.

Understanding a theory from infinitely many theorems is neither
convenient nor elegant. To improve the elegance, we will axioma-
tize Miniversal logic to its most elegant form. The limits of this ideal
axiomatization will be found to have the same behaviour as the uni-
verse. It is from those limits that the laws of physics are derived.

Alice: Can you spell out the [axiomatization that] you have in mind?18 18 TB

Yes, we are now ready to return to our interpretation of the uni-
verse as an ensemble of theorems.

3.4 Summary

The main argument of this section can be broken down and summa-
rized in a few points.

1. As Miniversal logic is a reproduction of Descartes’ universal doubt
method, its theorems are ’irrefutable’ for the same reasons and to
the same degree as the cogito is ’irrefutable’.

2. The anthropic principle guarantees that each theorem of Miniver-
sal logic is a ’synthetic a-priori’ statement. Hence, each theorem
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restricts what the universe can be. The implication is that the
ultimate theory which explains the universe must have, as its theo-
rems, all theorems of Miniversal logic.

3. Miniversal logic is universal - it embeds all possible theorems
within its branches. Hence the ultimate theory which explains the
universe cannot have more theorems than Miniversal logic.

4. As a result, the ’truth content’ of the universe is identical to the
’truth content’ of Miniversal logic - no more no less. The universe
is reduced to a single solution.

5. The conjecture is that by axiomatizing the theorems of Miniversal
logic to its most elegant form, the laws of physics will be recover-
able from the limits of this axiomatization.

4 The universe as an ensemble of theorems

Definition 4.1 (Universal ensemble). An ensemble of theorems is univer-
sal if it includes all possible theorems for all possible assumptions.

The ensemble of theorems corresponding to the universe must
include all theorems of Miniversal logic. Furthermore, as Miniversal
logic contains all theorems, the ensemble is universal.

We are looking for a construction of the ensemble of theorems
that will connect it to its axiomatic representation. This can be done
by making use of Chaitin’s construction. To be able to construct Ω,
we first adopt first-order Peano’s axioms (PA) as the meta-language.
As per the standard construction of Ω in PA, we begin by listing in
shortlex all sentences of Miniversal logic. Each sentence is either a
theorem or a non-theorem - this defines H(pi). We then encode the
sentences with a prefix-free code. The degree of contribution of each
encoded sentence to the sum is exponentially proportional to the
negative of the length of the code. This produces:

Ω =
∞

∑
i=1

2−H(pi)−|pi | where H(pi) =

0 pi halts

∞ otherwise
(4.2)

The sum is performed over all theorems of Miniversal logic and it
produces a single real number (Ω) as the result. To help fix the idea,
consider the following example using a unary prefix-free code;

= 2−∞2−1 + 2−02−2 + 2−02−3 + 2−02−4 + 2−∞2−5 + ... (4.3)
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The presence of the negative infinity in the term of the exponential
causes some terms to vanish to zero. Note that the suffix b indicates
the binary notation.

= 0b + 0.01b + 0.001b + 0.0001b + 0b + ... (4.4)

= 0.01110...b (4.5)

which recovers Ω for the example values.

As the bits of Ω are algorithmically random, they can be given
an interpretation as axioms. This is explained by Gregory Chaitin19. 19 Gregory J. Chaitin. The limits of

reason. Scientific American, 294(3):
74–81, 2006b. URL https://www.cs.

auckland.ac.nz/~chaitin/sciamer3.

html; and G. J. Chaitin. Foundations
of Mathematics. ArXiv Mathematics
e-prints, February 2002

He explains that the first N bits of Ω can decide the halting problem
for programs of length less than or equal to 2N bits. As the halting
problem is unsolvable, the infinite expansion of Ω must be algorith-
mically random. Hence, the value of the bits of Ω are, at best, set
axiomatically.

As the infinite expansion of Ω is algorithmically random, the rep-
resentation is not yet mathematically elegant (as it contains infinitely
many bits/axioms). The elegance will be soon be improved in the
next sections on entropy 4.2 and on feasibility 4.3.

- Alice: I have reservations about using a meta-language to describe a uni-
versal ensemble of theorems. Since PA is a branch of Miniversal logic, are we
not inadvertently restricting the universality of the ensemble by describing it
using a system which is only a branch of it?

To address this reservation, I will argue that Miniversal logic re-
peats itself within some of its branches. Any branches which is rigor-
ous and sufficiently flexible to repeat Miniversal logic can potentially
be used as a meta-language to describe the universal ensemble. One
such system is first-order PA.

To visualize why this is possible, consider a famous example, the
hyperwebster dictionary, proposed by mathematician Ian Stewart. In
this example, Ian Stewart considers the case of a publishing company
attempting to create a book which contains all words producible by
the permutations of the letters A to Z. As there are infinitely many
such words, the book would be never end (hence it is meant to be un-
derstood as an abstract object). The book will contain every possible
permutation of letters including; garbled words likes ADEERFKG,
valid words such as OBJECT, etc. The publisher arranges the words
in the following way:

https://www.cs.auckland.ac.nz/~chaitin/sciamer3.html
https://www.cs.auckland.ac.nz/~chaitin/sciamer3.html
https://www.cs.auckland.ac.nz/~chaitin/sciamer3.html
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A, AA, AAA, ... AB, ABA, ABAA, ... AC, ... AZ, AZA, ... (4.6)

B, BA, BAA, ... BB, BBA, BBAA, ... BC, ... BZ, BZA, ... (4.7)

C, CA, CAA, ... CB, CBA, CBAA, ... CC, ... CZ, CZA, ... (4.8)

...
...

...
...

...
...

...
...

...
...

...
...

...

Z, ZA, ZAA, ... ZB, ZBA, ZBAA, ... ZC, ... ZZ, ZZA, ... (4.9)

Then, as the example goes, the publisher decides to split the dic-
tionary in 26 volumes. One volume for each letter. The volume A
contains the first line (4.6). The volume B contains the second line,
and so on. But then, an editor notices that there is no need to print
the 25 other volumes as their content can be recovered in volume A
by simply removing the leading A from each word.

(A), (A)A, (A)AA, ... (A)B, (A)BA, (A)BAA, ... (A)C, ... (A)Z, (A)ZA, ... (4.10)

removing the leading A produces the content of all of the volumes:

A, AA, ... B, BA, BAA, ... C, ... Z, ZA, ... (4.11)

The implication is that the volume contains the same content as
the book. This example is often used to illustrate the non-intuitiveness
of infinities. It is for the similar reasons that we can recover the full
content of Miniversal logic using english, french, first-order PA, etc. -
even in the case where such are branches of Miniversal logic.

Starting from PA, we can recover the branches of Miniversal logic
by making use of Gödel’s numbering method. We first list all sen-
tences of the english language (or the binary language) in shortlex.
Then, to each sentence we associate a prime number. Finally, we de-
fine a set of equations which defines the allowable operations to be
done of the prime numbers - this is the set of axioms. As PA contains
both addition and multiplication, all sets of axioms can be encoded in
such a way. As a result, the description of Miniversal logic is recov-
ered within PA. Hence, a universal ensemble described using PA will
not have its universality restricted.

4.1 Language of algorithmic information theory

We will now be working with Ω extensively. Consequently, we will
adopt the language of algorithmic information theory (AIT) and we
will replace the following expressions by their AIT-equivalents.:
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Proof-theoretic AIT

sentence =⇒ program (4.12)

the sentence is a theorem =⇒ the program halts (4.13)

the sentence is not a theorem =⇒ the program does not halt
(4.14)

This language will be more in line with the subject matter.

4.2 Entropy

As we have previously stated, Miniversal logic restricts the universe
to a single solution. However, the formulation of Miniversal logic
itself is not unique. Should we express Miniversal logic in first order
logic, or second order logic? Should we use english, french, binary,
etc.? Since the choice of formulation of Miniversal logic itself is not
fixed by Miniversal logic, then to accurately represent reality, the
Chaitin construction must somehow embed these choices. Let us
consider this in more detail.

First, we consider that all choices of formulation of Miniversal
logic are logically equivalent such that none are preferred. Then, we
also consider that the construction of Ω imposes that the sentences
of Miniversal logic ultimately be encoded as a prefix-free code. These
considerations implies the presence of an entropy applicable to the
choice of prefix-free codes. Is the Chaitin construction compatible
with this assessment? Yes, the Chaitin construction does carry an
entropy and it is given by the standard relation :

S =
(

ln Ω + |p| ln 2
)

from 2.30 (4.15)

and its equation of state is

dS = (ln 2)d|p| from 2.29 (4.16)

As we can see, the Chaitin construction is able to carry an en-
tropy applicable to the choice of prefix-free code. Indeed, each avail-
able choice for the formulation of Miniversal logic corresponds to a
specific numerical value of Ω. Hence, each possible formulation of
Miniversal logic contains the same universal information.

4.3 Feasibility cutoff

In the previous section regarding bridging metaphysics to physics,
we have argued that an observer can produce, in principle, the proof
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of any theorem of Miniversal logic. Furthermore, we have argued
that as the universe embeds the observer, then any produced proof
is also a theorem of the universe (anthropic principle). Furthermore,
as Miniversal logic is universal, then the process will eventually enu-
merate all possible theorems. Hence the methodology can completely
identify the theorems of the theory which explains the universe. We
note that for the argument to work we must allow the notion ’in
principle’, which in this context means that an observer can submit
proofs of arbitrary size for theorems of arbitrary size.

In reality however an observer will hit a size limit to any proof
or theorem he can produce. What if a theorem is true but its proof
requires TREE(9999) bits? Alternatively, what if a theorem has a
short proof but the theorem itself requires a googolplex amount of
bits to express? To accurately represent what the observer can feasi-
bly do, we must add a feasibility cutoff to the ensemble. With such
a cutoff, the ensemble will only contain the size-bounded proofs to
size-bounded theorems. It describes all ’synthetic a-priori’ statement
that an observer can feasibly produce to restrict the universe to a solu-
tion. The resulting blob, which is no longer universal, will recover its
universality as the feasibility bound grows to infinity.

To adjust the equation such that it describes a feasible blob, we
must first introduce the concept of dovetailing. Consider an observer
attempting to prove the theorems of Miniversal logic. The observer
could pick a sentence at random and work at it until the proof is
found. The problem is that if the sentence is non-provable, the ob-
server will hang attempting to prove it. So instead, the observer
might try to write one bit of proof for each sentence, then the second
bit for each sentence, etc. However, since there are infinitely many
sentences, the observer will never return to write the second bit. The
solution is to dovetail the work.

Definition 4.17 (Dovetailing). Dovetailing is a proof-finding strategy for a
system of logic to guarantee that progress will be made on arbitrarily-many
theorems even in the presence of non-provable sentences.

Definition 4.18 (Simple dovetailing). Consider the case of simple dove-
tailing. First, an observer write one bit of the proof for the first sentence.
Then, the observer write a bit of the proof for both the first and the second
sentence. Then, the observer write a bit of the proof for the first, the second
and the third sentence. And so on. The observer stops writing bits for sen-
tences whose proof is completed. In the case of a non-provable sentence, the
observer would write a bit for it for all future iterations. Using this method,
progress will eventually be made on every sentence and no sentence will
cause the observer to hang indefinitely.

There are a few additional concerns and pitfalls that we want to
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avoid when introducing the feasibility cutoff.

• Consider that an observer can attempt to calculate Ω by work-
ing on each theorem using simple dovetailing. As proofs are
found, the observer adds their contributions to Ω. After an infi-
nite amount of time, Ω will indeed be recovered. However, the
calculation does not converge towards Ω as it progresses and dis-
continuously yields Ω only at infinity. To see why, consider the
case where the first non-halting program has a length of i. Since
the general non-halting problem is unsolvable, at most the cal-
culation of Ω differs from the real value of Ω by 2−i. The error
rate does not decrease during the calculation and only vanishes
at infinity when all halting programs are known. As each bit of Ω
is interpreted as an axiom of the system, the lack of convergence
via simple dovetailing causes the system to hit a complexity limit
quite soon into the calculation.

• When we define the state of the universe by a construction of Ω
which includes a proof-size cutoff (let’s use the symbol Z to de-
note the new construction), we want to avoid the situation where
the bits are overwritten as the calculation progresses. For example,
say at some point in the calculation Z(t1) = 0.001100...b and at
some other point Z(t2) = 0.101100...b (In this example the proof
associated with the first sentence is completed and the first bit
flips to a 1). As the bits are interpreted as axioms, the unfortunate
result is that the axioms are rewritten during the calculation. As
this calculation will be connected to time in a future section (sec-
tion 6.1), this would essentially imply that the future can rewrite
the past. To avoid this, we would require that Z monotonically
converges towards Ω as t→ ∞.

• As the concept of feasibility is the last metaphysical argument in
our toolbox, introducing it into the ensemble must be sufficient
to recover the familiar laws of physics such as; the arrow of time,
general relativity, dark energy, the Dirac equation, etc.

• Finally, as we have chosen to construct the framework as an en-
semble of theorems, then the dovetailing algorithm that we intro-
duce must not dissolve the construction. For that to happen we
will have to introduce it as a conjugate pair.

With all of these requirements in mind, we might expect the feasi-
bility term to be quite complicated. However this is not so at all. Sim-
ply adding; the algorithmic-frequency, represented by f , along with its
conjugate the algorithmic-action, represented by A, as a conjugate pair
is enough to meet all of these requirements! In the proof-theoretic
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paradigm, A can be interpreted as the "effort" required to complete a
proof and the algorithmic-frequency can be interpreted as the rate at
which steps of the proof must be made to complete the proof within
the allocated effort. Adding this conjugate pair replaces H(pi) and
gives this equation:

Z =
∞

∑
i=1

2−A fi−|pi | (4.19)

, where

Z ∈ (R∩ [0, 1]) numerical value of the sum (4.20)(
2−A fi−|pi |

)
micro-state representing a theorem (4.21)

pi ∈ Σb prefix code (4.22)

|pi| ∈N≥0 length of the prefix-code (4.23)

fi ∈N≥0 algorithmic-frequency (4.24)

A ∈ R≥0 algorithmic-action (4.25)

As with any conjugate, the value of A is the same for all micro-
states. With this addition, Z is now aware of the size of the proof
of each theorem of Miniversal logic (via fi). With knowledge of
proof size, a feasibility bound is now introduced by the effect of the
algorithmic-action A. To see exactly how all of this pans out, we will
now study in more detail the equation. First, lets prove this theorem.

Theorem 4.26. A fi recovers H(pi) when A→ 0+.

Proof. An arbitrary sentence i is associated to a corresponding fi ∈
[0, ∞]. If the sentence is a theorem the size of its proof will be finite
fi ∈ [0, ∞[. If the sentence is not a theorem, there will be no finite
proof of it fi = ∞. When the effort required to prove a theorem goes
to zero (e.i. A → 0+), all theorems are proven effortlessly. In this
case,

lim
A→0+

A fi =

0 pi is a theorem

∞ otherwise
(4.27)

This is the definition of H(pi). We recall it here;

H(pi) =

0 pi is a theorem

∞ otherwise
(4.28)
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Therefore,

lim
A→0+

A fi = H(pi) (4.29)

The theorem is proven. Replacing H(pi) by A fi in the construc-
tion still allows us to recover Ω when the effort required to perform
computation vanishes to 0+.

Let us now expand Z explicitly with an example. Assume a sys-
tem comprised of three micro-states with prefix code-length |p1| = 1,
|p2| = 2 and |p3| = 3 and with the algorithmic-frequencies f1 = 5,
f2 = ∞ and f3 = 5. In this example, f1 and f2 are theorems and f3 is
a non-theorem. For the purposes of simplicity we can assume that all
other sentences are non-theorems. In this case the system is not uni-
versal but let us nonetheless use it as a simplified numerical example.
The sum Z becomes;

Z(A) = 2−1−5A + 2−2−∞A + 2−3−5A (4.30)

We will now produce a series of numerical calculations with pro-
gressively smaller values of A and we will look at the evolution of
the error rate ξ(A) = Ω− Z(A). For this system, Ω = 0.1010b.

A Z(A) ξ(A) error

∞ 0 Ω max (4.31)

1 0.000000101...b 0.10011011b ≈ 2−1 (4.32)

0.1 0.011100010...b 0.00101110...b ≈ 2−3 (4.33)

0.01 0.100110101...b 0.00000010...b ≈ 2−6 (4.34)

0.001 0.011100010...b 0.00000000...b ≈ 2−9 (4.35)

...
...

...
...

0 Ω 0 none (4.36)

As we can see, reducing the effort to perform computational steps
causes the system Z to monotonically converges towards Ω. The er-
ror rate decreases as more valid bits of Ω are obtained. The error rate
is the axiomatic cutoff. This yields an asymmetric arrow connected
to the non-computability of Z. It will be presented in section 6.1 as a
possible solution to the problem of the arrow of time in physics.
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4.4 Summary

1. We have shown that a universal ensemble of theorems can be
axiomatized in PA by constructing it as the halting probability Ω.
In this case each bit of Ω can be interpreted as an algorithmically
random axiom.

2. A universal theory, such as Miniversal logic, requires infinitely
many bits of Ω to be fully axiomatized. Hence, it cannot be made
finitely elegant. However, the same theory but now with a feasi-
bility cutoff on proof-sizes introduced as a conjugate pair can be
made finitely elegant. We name the resulting ensemble Z.

3. We have defined Z as an ensemble constructed from Ω but which
is also aware of the proof-size of each theorem of Miniversal logic.
In this case, the conjugate A acts as a cutoff which bounds the
proofs to a feasible size. The numerical value of Z converges to-
wards Ω with a monotonically decreasing error rate.

4. The ensemble is therefore finitely axiomatized by the first N ran-
dom bits of Ω. Furthermore, as Ω is non-compressible, then for
any value of A, the system is reduced to the smallest amount of
bits of Ω which is able to decide the theorems of the ensemble and
such that Ω is recovered at A → 0+. For A > 0, the amount is
always finite. Mathematically, the theory is now elegant.

5 Thesis

We are now in a position to define the following thesis;

Definition 5.1 (Thermal UTM thesis). It is the thesis that a prefix-free
universal Turing machine which maximizes the entropy during the calcula-
tion of its own halting probability Ω, is isomorphic to the universe. To max-
imize the entropy, the calculation is performed via thermal dovetailing. Like
other forms of dovetailing, it allows work to be done on arbitrarily many
sentences even in the presence of non-provable sentences. The calculation is
expressed as the following sum

Z =
∞

∑
i=1

2−A 1
ti
−|p| where ti =

1
fi

(5.2)

and occurs when t goes from 0 to ∞ and as Z goes to Ω.

Definition 5.3 (Thermal dovetailing). Thermal dovetailing is an algo-
rithm according to which the work done on programs is scheduled so as to
maximize the entropy of the system during the computation. To guaran-
tee that the entropy of maximized, thermal dovetailing is introduced into
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the Ω construction as a conjugate-pair. Thermal dovetailing exponentially
suppresses the contribution to Ω of programs based on their halting time.

5.1 Thermodynamics

How will this equation connect to physics? It has been said that
statistical physics is perhaps the most general of all the disciplines of
physics. Hence, the reader has perhaps already intuited that it would
be first in line.

"A theory is the more impressive the greater the simplicity of its
premises, the more different kinds of things it relates, and the more
extended its area of applicability. Therefore the deep impression that
classical thermodynamics made upon me. It is the only physical theory
of universal content which I am convinced will never be overthrown,
within the framework of applicability of its basic concepts."

- - A. Einstein

"But although, as a matter of history, statistical mechanics owes its ori-
gin to investigations in thermodynamics, it seems eminently worthy
of an independent development, both on account of the elegance and
simplicity of its principles, and because it yields new results and places
old truths in a new light in departments quite outside of thermody-
namics."

- - J.W. Gibbs

Indeed, the equation for Z embeds all the familiar concepts of
statistical physics. It carries an entropy, its mathematical formulation
is the same as that of a Gibbs ensemble, it has multiple microstates
applicable to the formulation of Miniversal logic and now, with a
feasibility cutoff, the microstates extends to the size of proofs as well.
The entropy and equation of state of Z are;

S = ln Z + (ln 2)
(

A f + |p|
)

entropy (5.4)

dS = (ln 2)
(

Ad f + d|p|
)

algorithmic equation of state (5.5)

These relations are similar to the ones obtained for Ω (at 4.16)
with the exception that they have the additional term Ad f . Let’s
interpret this term. In statistical physics, the equation for the average
frequency f is (from 2.25):

f =
∞

∑
i=1

p(x) fi where p(x) =
1
Z

2−A fi−|p| (5.6)

The interpretation then is that 5.2 is the probability measure
that maximizes entropy subject to the constraint that the mean
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algorithmic-frequency is some constant f , and the algorithmic-action
A is its conjugate variable. The term |p| is given a similar interpreta-
tion:

|p| =
∞

∑
i=1

p(x)|pi| where p(x) =
1
Z

2−A fi−|p| (5.7)

Because of |p|, equation 5.2 has the further constraint that the
mean length of the prefix-free codes are some constant |p|. But where
is its missing conjugate variable? Just like a physical system can
have a fixed temperature (β = 1), we can imagine that its conjugate
variable would be a variable D which is permanently fixed to 1.

- Alice: This equation is still missing some of the more physical elements of
the Gibbs ensemble. For example, there is no temperature term and none of its
quantities are physical. The Gibbs ensemble refers to something physical. This
equation does not.

The principles of statistical physics are not restricted to physi-
cal systems. As we have seen, a purely information system such as
Miniversal logic can meet the requirements applicable to the Gibbs
ensemble such that its conventional interpretation is applicable to it.
I will agree that it is not yet readily obvious how the laws of physics
come out of this equation, however, simple transformations will take
care of that.

We can rewrite the equation to give it a form that is associated
to physical system, including an algorithmic-temperature and other
"physically-associable" variables. To do so, we will perform a number
of mathematical transformation and will rename most of its variables.
Lets us first complete this purely mathematical exercise, then we will
return to your question. As only legitimate mathematical operations
will be applied (on both side of the equation), the transformed equa-
tion remains equivalent to 5.2 but its connection to physics will be
more apparent.

Theorem 5.8. The equation, using standard mathematical operations,

dS = (ln 2)
(

Ad f + d|p|
)

algorithmic formulation (5.9)

can be rewriten to

1
ln 2

TdS = 2πSd f + Fdx + kdA + pdV + ... action-frequency formulation (5.10)

1
ln 2

TdS = −Pdt + Fdx + kdA + pdV + ... power-time formulation (5.11)
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where,

T ∈ R algorithmic-temperature (5.12)

S ∈ R≥0 entropy (5.13)

S ∈ R entropic action (5.14)

f ∈ R≥0 algorithmic-frequency (average) (5.15)

P ∈ R entropic power (5.16)

t ∈ R≥0 algorithmic-time (average) (5.17)

F ∈ R entropic force (5.18)

x ∈ R≥0 algorithmic-length (average) (5.19)

k ∈ R entropic viscosity (5.20)

A ∈ R≥0 algorithmic-area (average) (5.21)

p ∈ R entropic pressure (5.22)

V ∈ R≥0 algorithmic-volume (average) (5.23)

Proof. As a first step, we will be taking a Taylor expansion20 over 20 Taking the Taylor expansion intro-
duces a smoothness requirement on
L(p). We will talk about this in more
detail after this proof.

d|p|. To do so, we first pose L(p) := |p|. Then, the Taylor expansion
for L(p) is:

L(p) = L(0) + L′(0)p +
1
2

L′′(0)p2 +
1
6

L′′(0)p3 + ... (5.24)

then taking its derivative,

dL(p) = L′(0)dp + L′′(0)pdp +
1
2

L′′′(0)p2dp + ... (5.25)

then switching the notation back to |p|,

d|p| = L′(0)d|p|+ L′′(0)|p|d|p|+ 1
2

L′′′(0)|p|2d|p|+ ... (5.26)

We replace d|p| in the algorithmic formulation by its Taylor expan-
sion. We obtain:

1
ln 2

dS = Ad f + L′(0)d|p|+ L′′(0)|p|d|p|+ L′′′(0)|p|2d|p|+ ... (5.27)

We multiply each side of the equation by a constant T,

T
1

ln 2
dS = TAd f + TL′(0)d|p|+ TL′′(0)|p|d|p|+ TL′′′(0)|p|2d|p|+ ...

(5.28)

We rename each of the coefficients of the Taylor expansion as
the multiplication of two variables; L′(0) := g′(0)G′(0), L′′(0) :=
g′′(0)G′(0) and L′′′(0) := g′′′(0)G′′′(0), we obtain
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T
1

ln 2
dS = TAd f + Tg′(0)G′(0)d|p|+ Tg′′(0)G′′(0)|p|d|p|+ Tg′′′(0)G′′′(0)|p|2d|p|+ ... (5.29)

We rename F := Tg′(0), k := Tg′′(0), p := Tg′′′(0) and 2πS := TA.
We also pose dx := G′(0)d|p|, dA := G′′(0)|p|d|p| and dV :=

G′′′(0)|p|2d|p|, we obtain21 22. 21 The use of the factor 2π will become
clear when we connect the action S to
the reduced Planck constant and f to
the angular frequency ω in section 10.
It is added here so as to recover the
definition of the Planck units in terms
of h̄, commonly used in physics.
22 The p in p := TG′′′(0) refers to
pressure, not to program.

1
ln 2

TdS = 2πSd f + Fdx + kdA + pdV + ... (5.30)

To final step is to use the definition t := 1/ f to convert S to a
power P.

2πSd f = 2πSd
(

1
t

)
t := 1/ f (5.31)

2πSd f = 2πS
(
−
(
t
)−2
)

dt d f = −t−2dt (5.32)

2πSd f = −Pdt where P = 2πS
(
t
)−2 (5.33)

We finally rewrite the algorithmic formulation to

1
ln 2

TdS = 2πSd f + Fdx + kdA + pdV + ... action-frequency formulation (5.34)

1
ln 2

TdS = −Pdt + Fdx + kdA + pdV + ... power-time formulation (5.35)

This proves the theorem.

We take note that, as the Taylor expansion was taken, the physical
equation of state is only defined for smooth functions of L(p) = |p|.
Therefore, a smoothness of the space of L(p) is implicitly assumed.
Such smoothness can be obtained by any analytical continuation
technique such a spline interpolation, etc.. The smoothness approx-
imation, as it is inexact, introduces a restriction on the domain of
applicability of the action-frequency and the power-time formulation.
Hence, these two formulations are less general than the algorithmic
formulation. Specifically, the applicability of these two formulations
occurs over sizes much greater than the minimal prefix-code step
size.23 23 For example, we can imagine that

the minimal prefix-code step size for
programs is significant on the smallest
scales (order of the Planck length). In
this case, understanding small-scale
spacetime would involve studying the
algorithmic formulation itself. This
would be difficult as non-computable
effects would be dominant on this scale.
But when the sizes involved are much
greater, the power-time formulation
would be an appropriate smooth
approximation.

- Alice: So you have rewritten the equations using basic mathematical trans-
formations and renamed most of the variables. But these are just arbitrary
variable names. There is no proof that the x in your equation corresponds to a
length in nature, that the t in your equation corresponds to time in nature or
that the T corresponds to a temperature, etc. Just naming them as such does
not make it so.



the world as emergent from pure entropy 32

The laws of physics will be recovered from these formulations. For
example, the Dirac equation will be recovered in section 9.2 and the
length and time referred to by it will correspond to the x and the t
in the power-time formulation. Same thing will happen for special
relativity in section 7, or general relativity in section 8.2 or any of
the other laws that we will derive. The x and the t of the laws will
properly connect to the t and the x of the power-time formulation
(and to each other). Hence, they form a coherent web of laws which
corresponds to our empirical observations of what time and length
are.

- Alice: But the physical connection itself is not proven by this. It doesn’t
prove that the variables exist objectively.

Normally the laws of physics are derived from empirical obser-
vations. In such a context, it is clear that the force F, the mass m and
the acceleration a (in say F = ma) does correspond to real physical
quantities. It is simply the law that best fits the data to date. Thus,
no leap of faith is required to connect it to the physical world it de-
scribes as such connection is implied by the empirical origin of the
theory.

However, in this paper, the derivation of the laws has an origin in
pure reason and not from empirical observations. Therefore the claim
that such laws corresponds to real physical quantities may appears to
require a "leap of faith". This possible objection is actually incorrect
for a few of reasons.

Let’s first understand what Z means in this context. Z is an uni-
versal ensemble of theorems bounded by a feasibility bound. From
Miniversal logic, we can prove that the universe, as it embeds the ob-
server, is describable by such an ensemble. Therefore, the entropy of
Z must also be admitted by the universe. The entropy is the physical
connection. The variables (t, x, etc.) that are introduced as quantities
that are emergent from this entropy. They are not parachuted from
thin air. For example, an entropic force is a force that can emergence
from the entropy of a system. It is defined as:

F := T
∂S
∂x

(5.36)

The derivation of the force F from the power-time formulation
yields the standard definition of an entropic force in statistical
physics. This is true for all other quantities : S , P, k and p. Let us
derive each of them explicitly here:

Theorem 5.37. The action-frequency formulation implies an entropic action
as per the statistical physics definition.
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Proof.

2πS = T

[
∂

∂ f

(
2πSd f + Fdx + kdA + pdV + ...

)∣∣∣∣∣
x,A,V

(5.38)

Theorem 5.39. The power-time formulation implies an entropic power,
an entropic force, an entropic viscosity and an entropic pressure as per the
statistical physics definition.

Proof.

−P = T
[

∂

∂t
(
−Pdt + Fdx + kdA + pdV + ...

)∣∣∣∣
x,A,V

(5.40)

F = T
[

∂

∂x
(
−Pdt + Fdx + kdA + pdV + ...

)∣∣∣∣
t,A,V

(5.41)

k = T
[

∂

∂x
(
−PdA + Fdx + kdA + pdV + ...

)∣∣∣∣
t,x,V

(5.42)

p = T
[

∂

∂V

(
−PdA + Fdx + kdA + pdV + ...

)∣∣∣∣
t,x,A

(5.43)

These entropic quantities are necessary consequences of the irre-
ducible entropy intrinsic to any system describable by Z (including
the universe itself).

- Alice: Ok for the conjugate S , P, F, k and p as they are emergent from the
entropy. But, what about the observables f , t, x, A and V? Are you not mak-
ing a semantic error by calling t as time and x as length? For instance, you
are naming t as time because you know that, from empirical observations, this
is what t represents. If you did not have the benefit of empirical observations,
these would just be nameless variables with no physical meaning and with
arbitrary properties.

I suppose it depends on the semantics. If we use an empirical def-
inition of time such as "Time is what a clock measures" then yes, it
is a semantical error. However, we now have a mathematical defini-
tion of time to compete with it. Bluntly, time is the variable t in this
equation:

Z =
∞

∑
i=1

2−A 1
ti
−|p| where

1
ti
= fi (5.44)

Likewise the length x also now has a proper mathematical defini-
tion. Bluntly, it is the first term of the Taylor expansion of the analytic
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continuation of the function |p|. The observables, just like the emer-
gent conjugates, also have an explanation in statistical physics. They
are the average values of the algorithmic quantities. The relations are

variable average

algorithmic-frequency f f =
−∂ ln Z

∂S (5.45)

algorithmic-time t t =
−∂ ln Z

∂P
(5.46)

algorithmic-length x x =
−∂ ln Z

∂F
(5.47)

algorithmic-area A A =
−∂ ln Z

∂k
(5.48)

algorithmic-volume V V =
−∂ ln Z

∂p
(5.49)

Any system describable by the construction Z will have these
average quantities emergent from the entropy.

5.2 Time and length as thermal effects

Where does time and length come from? Consider the observables t
and x of the power-time formulation. As we have just discussed, their
average value is given by the standard relations (from 2.25).

variable average

algorithmic-time t t =
−∂ ln Z

∂P
(5.50)

algorithmic-length x x =
−∂ ln Z

∂F
(5.51)

According to statistical physics, t and x are the average of the
observables t and x. The role of their respective conjugate (P and F)
is to vary the ponderation over the ti and the xi across the system so
as to meet the average value. From these relations, we now interpret
time as the average t of the proof-sizes and length as the average x of
theorem-sizes for the system. As they are averages over the entropy,
we can think of them as a thermal time and a thermal length. Let us
revisit an earlier theorem armed with our new definition of thermal
time.

Z =
∞

∑
i=1

2−A 1
ti
−|pi | where fi =

1
ti

(5.52)

Theorem 5.53. As t→ ∞ then A→ 0+ and Z → Ω.
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Proof. The convergence of Z to Ω can now be interpreted as an in-
crease in the age of the system (as t varies from 0+ to ∞) instead of
as a reduction in the effort required for computation (A varies from
∞ to 0+). As a system ages, the average proof-size of the theorems
comprising its ensemble increases. At t → ∞, all proofs regardless of
size are included in the system, hence Z → Ω.

After this section, we will see explicitly how this averaging effects
has the properties and laws that we associate with length and time;
such as special relativity, general relativity, etc. - hence do correspond
to our idea of what a physical length or time is. The implication is
that the time and space axis should not be understood as fundamen-
tal concepts but should instead be understood as an emergent thermal
spacetime.

5.3 Universal Brownian motion

The primary conjugate pairs applicable to the power-time formula-
tion are Fx and Pt. The F and P are the conjugate and are constant
for all micro-states of the system. However x and t are each adjusted
for their specific micro-states and are not fixed within the system.
Therefore, like any statistical observable of statistical physics, x and t
undergo fluctuations. The equations describing the process are (from
relation 2.25).

variable fluctuation

algorithmic-time t (∆t)2 =
∂2 ln Z

∂P2 (5.54)

algorithmic-length x (∆x)2 =
∂2 ln Z

∂F2 (5.55)

Using the original argument made by Einstein in 1905 which lead
to the derivation of Brownian motion, we argue here that fluctuations
of the t and x variables produce a universal Brownian motion along
the axis themselves. What does a thermal spacetime with fluctuations
look like? The consequences of such are nothing to be feared. Indeed,
we will show in section 9.1 that Brownian motion over dx will pro-
duce the Schrödinger equation. Furthermore, we will show in section
9.2 that Brownian motion over both dx and dt will produce the Dirac
equation.

- Alice: Are you suggesting a pilot-wave interpretation where particles un-
dergo Brownian motion until a measurement is made?

Not at all. Rather, we are suggesting that any positional or time in-
formation undergoes a "Dirac equation-like diffusion" so as to make
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positional or time information perishable over time. To illustrate, we
can imagine placing a mark at a position in space. After a certain
time, Brownian motion will diffuse the position of the marker at any
number of possible locations until its actual position is measured
again. Instead of being punctual, the marker could be continuous
and weighted and the same diffusion-like behaviour will be ob-
served. This Brownian motion would universally apply to the axis
themselves. This is not a claim that a particle is punctual.

5.4 Universal constants

For convenience, we repeat here the action-frequency and the power-
time formulations.

1
ln 2

TdS = 2πSd f + Fdx + kdA + pdV + ... action-frequency formulation (5.56)

1
ln 2

TdS = −Pdt + Fdx + kdA + pdV + ... power-time formulation (5.57)

These formulations contain the following conjugates: The force F,
the power P, the action S , the viscosity k and the pressure p. They
are the Lagrange multipliers of the partition function. For a system
at maximal entropy, these values are constant throughout the system
and are the primary constants defining it. We will show in section
10 from first principles that these are indeed the Planck force, the
Planck power and the Planck action. This will allows us to recover
the gamut of the Planck units.

The reader might wonder why we leave the derivation of the
Planck units for the end. The reason is simple; the true fundamen-
tal constants (at least as far as this formulation is concerned) are the
force F, the power P and the action S . However, the Planck constant
assumes that the primary fundamental constants are h̄, the speed of
light c and the Gravitational constant G. Although it is an equivalent
construction, we cannot connect the two until we first obtain a lot of
preliminary results. For example, to rewrite F in terms of G, we will
first need to recover the law of gravitation to show explicitly how the
two connects. This will indeed be done but not until we reach section
10. Until then, the reader is advised to keep in the back of the mind
that F, P, k, p, S , etc. refers to Planck units.

5.5 Regimes and cycles

We will study the power-time formulation as we would study any
thermodynamic equation of state. A thermodynamic regime can be
produced as the permutations over posing some derivatives to zero,
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while allowing the others to vary. The equation contains 6 derivatives
(dS, dt, dx, dA and dV). As each can be set to 0 or allowed to vary,
the formulation yields a total of 57 thermodynamics regimes (57
is obtained by taking the total of 64 permutations and subtracting
those for which all variables would be 0). We will look at the simplest
regimes and will leave the others as open problems. The list below
serves as an outline for the future sections of the paper. The principal
law provable from each regime is named in the rightmost column.

Regime Law
...

...
...

...
...

...
...

(ln 2)−1TdS = − Pdt + Fdx 0 0 0 Limiting speed (5.58)

(ln 2)−1TdS = − Pdt 0 + kdA 0 0 Limiting viscosity (5.59)

(ln 2)−1TdS = − Pdt 0 0 + pdV 0 Limiting vol. flow rate (5.60)

...
...

...
...

...
...

...

0 = − Pdt + Fdx 0 0 0 Special relativity (5.61)

...
...

...
...

...
...

...

(ln 2)−1TdS = − Pdt 0 0 0 0 Arrow of time (5.62)

(ln 2)−1TdS = 0 + Fdx 0 0 0 Law of Inertia (5.63)

(ln 2)−1TdS = 0 0 + kdA 0 0 General relativity (5.64)

(ln 2)−1TdS = 0 0 0 + pdV 0 Dark energy (5.65)

(ln 2)−1TdS = 0 0 0 0 + c(dx)≥4 Darker energies? (5.66)

...
...

...
...

...
...

...

(ln 2)−1TdS = − Pdt + Fdx + kdA + pdV + . . . (The Universe) (5.67)

As examples of how this tabular should be interpreted; the regime
defined by dA = 0, dV = 0 and (dx)≥4 = 0 will allow us to prove
the existence of the limiting speed. The regime defined by dx = 0,
dA = 0, dV = 0 and (dx)≥4 = 0 will allow us to prove the arrow of
time. Etc..

5.6 Summary

Since the last summary,

1. We have claimed that the the power-time formulation suggests
multiple regime of physics, each associated with the provability of
a specific law of physics.

2. The Lagrange multiplier S , P, F, k and p of the ensemble are
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the primary constants of the system and are emergent from the
entropy of any system describable by Z.

3. The observables f , t, x, A and V are statistical averages resulting
from the entropy of, again, any system describable by Z.

4. As x and t are entropic averages, a universal Brownian motion
applies to all axis which encodes space or time information.

We will now derive the laws of physics themselves.

6 Arrow of time

Adding a time variable to a Gibbs ensemble adds a whole new dy-
namic to a thermodynamic system. The system now becomes aware
of future, past and present entropy and can translate from time to
space and from space to time for an entropic cost (provided that
various limits are respected). By studying thermodynamic cycles in-
volving space and time, I was able to investigate what happens to
the entropy when a system is translated forward or backward in time
and draw conclusions in regards to the arrow of time. In the model
presented, space serves as an entropy sink that encourages a forward
arrow of time, the future is non-computable and the past is singular.

6.1 Negative power

Theorem 6.1. In the power-time formulation, increasing t, while keeping
the other variables constant, decreases the entropy.

Proof.

(ln 2)−1TdS = −Pdt regime 5.62 (6.2)

=⇒ dS
dt

= −(ln 2)
P
T

decreasing entropy (6.3)

Definition 6.4 (Halting entropy). The halting entropy is the contribution
by the following term to the entropy over time.

− (ln 2)
P
T

(6.5)

Alice: - Why does the entropy decreases with time?

We have to be careful about the formulation of the question. The
power-time formulation admits other terms; Fdx, kdA and pdV. The
term −Pdt, as it has a negative sign, works towards reducing the
entropy, but the other variables, as their signs are positive, work in
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the other direction. Thus, the entropy of the system as a whole need
not necessarily decrease. It is more accurate to say that increasing t,
while keeping the other variables constant, decreases the entropy.

In this situation, the halting entropy decreases because the system
has a negative power. So a similar question would be what is a neg-
ative power and why is it negative is this system? Before we answer,
let us first study its more familiar cousin: the negative temperature.

If we understand temperature as the random movement and vi-
brations of molecules then a temperature is always equal to or above
zero. However, the Gibbs ensemble allows a generalized definition
of temperature as the tradeoff between energy and entropy. Most
systems cannot admit a negative temperature as their entropy will
always increase at higher energies. But for some system, for example
the population inversion in a laser, their entropy saturate at higher
energies. Hence, they can admit a negative temperature.

A negative power has essentially the same interpretation. As t is
increased, the entropy is decreased.

Alice: - You have explained macroscopically what happens, but how does this
pans out in the partition function. Why is there less entropy at increased t

To understand why, recall the construction of the partition func-
tion (5.2) as an ensemble of theorems. Each micro-state is defined
by both the theorems-size and the proof-size. At t = 0, the average
proof-size is 0. Hence, the provability of all sentences is unknown.
As t is increased, the provability of more sentences becomes known.
Eventually, t is so high that most theorems are proven. Borrowing the
term from laser thermodynamics, this would be when the population
is inverted. Thus, the entropy in regards to unprovability of sentences
decreases with time.

Alice: - How does this result reconcile with the second law of thermodynamics
which states that the entropy increases with time (or in some ideal cases stays
constant)?

To answer that, we need to introduce the concept of exfoliation of
spacetime.

6.2 Exfoliation

An entropy decreasing with time would violate the second law of
thermodynamics. We suggest that an entropic exfoliation along the
observables dx, dA and dV occurs to offset the reduction.

Theorem 6.6. The negative power of the power-time formulation implies an
entropic exfoliation along the dx, dA and dV observables.
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Proof.

TdS
ln 2

= −Pdt + Fdx + kdA + pdV regime 5.67 (6.7)

dS
dt

= (ln 2)
1
T

[
Fdx
dt

+
kdA
dt

+
pdV
dt
− P

]
exfoliation (6.8)

Definition 6.9 (Exfoliation entropy). The exfoliation entropy is the
contribution by the following term to the entropy over time.

(ln 2)
1
T

[
Fdx
dt

+
kdA
dt

+
pdV
dt

]
(6.10)

Note that P is not present in the definition as it is already associated with
the halting entropy.

To investigate this result, let us look at three cases;

Fdx
dt

+
kdA
dt

+
pdV
dt

< P =⇒ dS
dt

< 0 decreasing entropy (6.11)

Fdx
dt

+
kdA
dt

+
pdV
dt

= P =⇒ dS
dt

= 0 constant entropy (6.12)

Fdx
dt

+
kdA
dt

+
pdV
dt

> P =⇒ dS
dt

> 0 increasing entropy (6.13)

At (6.12), a shift occurs in the direction of the production of en-
tropy over time. It is the point at which the exfoliation entropy over-
takes and exceeds the reduction in halting entropy. The second law of
thermodynamics, which states that dS/dt ≥ 0 will hold for (6.12) and
(6.13), but will be violated for (6.11).

6.3 Discussion

In this section, we will explain why these two theorems provide
us with an understand of time and its arrow. Indeed, it links the
arrow of time to three concepts; 1) a reduction in halting entropy over
time, 2) a non-computability of future theorems and 3) an increase in
exfoliation entropy over time. This derivation more closely matches
the observer’s understanding of time. Indeed,

1. at the beginning of time the number of possible future alternatives
is maximal. To reflect this, the halting entropy is at its maximum at
t = 0, and the exfoliation entropy is equal to 0. This matches our
current empirical beliefs in that the exfoliation entropy at the Big
Bang is very low.

2. during the evolution the future becomes past which is immutable.
As the past becomes immutable, the halting entropy of the bits
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defining it are equal to 0. This is because we "remember" or "ob-
serve" only one past. This reduction in halting entropy is offset by
a growth in exfoliation entropy, which is related to the size and
complexity of the space encoded by the exfoliation observables.
This growth in space entropy obeys the observed second law of
thermodynamic.

3. at the end of time there is no future. The value of Ω has been cal-
culated, and the full history of the system is now "set in stone".
The halting entropy is 0 and the exfoliation entropy is at its maxi-
mum. This matches the hypothesis of the heat death.

Alice: - I am still not clear on this. The conventional wisdom in physics is
that the arrow of time is connected to an increase in entropy with time. Now
you seem to be saying the reverse of that.

Yes, I am stating that time has an arrow principally because the
halting entropy decreases with time, and yes, it contradicts the con-
ventional wisdom. But nonetheless it is correct for the following
reason:

An observer who defines a statistical system without inserting
a time observable will see a second law of thermodynamic. This
statistical effects is heuristically explained by the H-theorem of Boltz-
mann. However, this is not necessarily the case when time is inserted
into the ensemble as an observable. Such an ensemble then becomes
aware of the past, the present and the future. Each instant represents
a different micro-state distribution of the occupancy of the system.
A system with a low t has a completely different micro-state distri-
bution than a system with a high t. Hence, there is no time reversal
symmetry and such lack of symmetry is very explicit.

Alice: - But why is time specifically associated with a decrease in entropy, and
not an increase?

The partition function encodes all past, present and future states
as micro-states. Thus, at a specified t theorems with longer proofs
will not be part of the system and the future will be undecided. The
system will carry an entropy attributable to the undecidability of
the future. The role of increasing time is to consume this entropy
by closing possible futures. In other words, time collapses future
undecidability into a singular past.

Alice: - But, a system cannot decrease its entropy without violating the
second law of thermodynamics.

A system can decrease its entropy if it is connected to an entropy
sink. For example, biological life can reduce its entropy but only at
the cost of severely increasing it in its environment. This requires
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work and in the case of Earth, the Sun supplies excess energy to the
ecological system. Thus, the power-time conjugate can decrease the
entropy as long as it is connected to a sink.

Alice: - So, there should be a sink in the universe available to offset the de-
crease in halting entropy over time?

In the case of time, the sink is the universe itself. It is in this con-
text that the laws of physics will be derived. They are the limits re-
quired to produce a sink of sufficient entropy to accommodate a
forward direction of time.

Alice: - Why do we remember the past but not the future?

An observer cannot pre-calculate his exact future before it occurs
without increasing the size of the sink. Here we make a distinction
between calculating a probable future versus the exact future. Cal-
culating a probable future does not necessarily imply a reduction of
entropy within the system but calculating the exact future requires
consuming the entropy of all possible alternative futures hence a sink
is required.

Alice: - How do we understand this from the algorithmic theory perspective?

The exfoliation variable represents the entropy in the choice of
available prefix-free encodings for the programs of the UTM. In the
beginning of the calculation, when no bits of Ω are known, it doesn’t
make sense to speak of the ways to encode this information as there
is nothing to encode. Hence, the entropy of the result should be 0.
As more bits of Ω are known, then more ways to encode this infor-
mation exist and the entropy associated with the possible encodings
increases.

Alice: - Does the second law of thermodynamic need to be corrected?

Absolutely. To my knowledge, statistical physics has never been
used with a time observable. Time was always considered to be an
independent background to statistical physics. But, when we add a
time observable to a Gibbs ensemble, new physics emerge.

Indeed, an observer cannot move forward into the future unless
its potential future alternatives are closed. Hence, its halting entropy
must decrease with time. The second law of thermodynamics is a
consequence of the system increasing its present entropy to offset the
reduction in future alternatives as time moves along.
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7 Special relativity

7.1 Limiting relations

Let us immediately prove the first three regimes (5.58, 5.59 and 5.60).
To prove that these are limits, we will consider the assumption that
an observer who evolves forward temporally must see a growth in
the size of its available entropy sink to offset the reduction in future
alternatives. The limit occurs when the sink exactly offsets the reduc-
tion in entropy by time - in which case dS/dt = 0.

Theorem 7.1. The power-time formulation of the equation of states (5.57)
implies a limiting speed.

Proof.

(ln 2)−1TdS = Fdx− Pdt regime 5.58 (7.2)

1
ln 2

T
F

dS
dt

=
dx
dt
− P

F
division by Fdt (7.3)

To see why this implies a maximum speed, first consider that the
units of this equation are length/time hence are describing a speed.
Second, consider the following three cases;

dx
dt

=
P
F

=⇒ dS
dt

= 0 (7.4)

dx
dt

<
P
F

=⇒ dS
dt

< 0 (7.5)

dx
dt

>
P
F

=⇒ dS
dt

> 0 (7.6)

We notice a reversal in the production of entropy at the inflexion
point where dS/dt = 0. Therefore, for an observer at rest to evolve
forward in time, it must see its entropy sink grow at the speed of
P/F.

Remark 7.7. As we have already mentioned, we will show in section 10
that P is the Planck power and F is the Planck force. Indeed, when they are,
we do recover c the speed of light;

P
(

1
F

)
=

c5

G

(
G
c4

)
= c (7.8)

Thus, the entropy sink of an observer moving forward in time must grow
at the speed of light.
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Theorem 7.9. The following relations each characterize a limiting quantity.

approx.

none
1

ln 2
T
F

dS
dt

= −P maximum power (J/s) (7.10)

S ∝ L
1

ln 2
T
F

dS
dt

=
dx
dt
− P

F
maximum speed (m/s) (7.11)

S ∝ A
1

ln 2
T
k

dS
dt

=
xdx
dt
− P

k
maximum viscosity (m2/s) (7.12)

S ∝ V
1

ln 2
T
p

dS
dt

=
x2dx

dt
− P

p
max. vol. flow rate (m3/s) (7.13)

Proof. Each relation can easily be obtained from (5.57) by posing
the other observables to 0. To show that the quantities are inflexion
limits, it suffices to notice that they each correspond to a growth of
the entropy sink that an observer at rest must see to fuel its forward
translation in time.

It is well-known that a limiting speed implies special relativity
(section 7), but what about to other two? It is less well known, but
nonetheless, a maximum viscosity does implies general relativity.
In this context, we can interpreted space as being encoded by bits
moving very slowly (like molasses) on the surface of a sphere (section
8.2). The maximum volumetric flow rate is associated with dark
energy and is responsible for the Hubble horizon - beyond which the
flow rate would be exceeded (section 8.3).

7.2 Light cones as thermodynamic cycles

In this section, we look at the thermodynamic cycle of the system
transiting through time and space starting at O to A to B and back
to O, as illustrated on Figure 1. During the transitions and to keep
the energy constant, tradeoffs must be made between time, distance
and entropy. This cycle is reminiscent of other thermodynamic cycles,
such as those involving pressure and volume but also of relativistic
light cones.

We select regime 5.61 (special relativity) for our cycle.

1
ln 2

TdS = −Pdt + Fdx (7.14)

O A

B

x'=
P/
F

t

x

Figure 1: A thermodynamic cycle
through space, time and entropy as
observables.

O to A: As O is translated forward in time to A while keeping the
distance constant (dx = 0), the entropy must decrease over time to
compensate.
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(
1

ln 2
TdS = −Pdt + Fdx

∣∣∣∣
dx=0

(7.15)

=⇒ dS
dt

= −(ln 2)
P
T

(7.16)

A forward translation in time causes the system to know more bits
of Ω. As the unknown bits of Ω carry an entropy, knowing more re-
duces the entropy. Conversely, a backward translation in time causes
the system to erase bits from its pool of information which increases
its entropy. A backward translation in time is equivalent to erasing
halting information about the system’s present.

A to B: As A is translated forward in space to B while keeping
the time constant (dt = 0), the entropy must increase over space to
compensate.

(
1

ln 2
TdS = −Pdt + Fdx

∣∣∣∣
dt=0

(7.17)

=⇒ dS
dx

= (ln 2)
F
T

(7.18)

We conclude that the further away from A a region is, the higher
its entropy will be. Since dt = 0, no change in time is experienced.

O to B: As O is translated forward both in time and in space to B
while keeping the entropy constant (dS = 0), the system has a speed
c.

(
1

ln 2
TdS = Fdx− Pdt

∣∣∣∣
dS=0

(7.19)

=⇒ dx
dt

=
P
F

(7.20)

We conclude that an object traveling at speed P/F is neither en-
couraged nor discouraged by entropy. However, the type of entropy
changes. The rate P/F is the rate of conversion of time entropy to
space entropy. At O, the system is comprised exclusively of time
entropy as its future is not yet determined. As the system evolves
towards B, its time entropy is decreased over time as the system
replaces its future entropy with a singular past. Its space entropy
(which encodes the singular past), however is increased to offset the
reduction.

As a backward translation in time erases the most recently cal-
culated bits of Ω, we conclude that the system "forgets its future"
during the backward translation.
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7.3 Lorentz’s transformation

θS

O

O'

L

L cosθ

L
si
nθ

t

x

t ′

x ′

Figure 2: The spacetime intervals
between two observers. Here O′ travels
at speed |v| in O’s reference frame.

To recover the Lorentz’s factor γ, let us consider figure 2. Two ob-
servers start at the origin S and travel in space-time respectively to O
and O′. We regard O′ as traveling at speed |v| in the reference frame
of O. From standard trigonometry, we derive the following values for
the length of the segments;

Segment Length∣∣SO
∣∣ L (7.21)∣∣∣SO′
∣∣∣ L cos θ (7.22)∣∣∣O′O∣∣∣ L sin θ (7.23)

We start with the Pythagorean theorem and solve for cos θ.

∣∣SO
∣∣2 =

∣∣∣SO′
∣∣∣2 + ∣∣∣O′O∣∣∣2 (7.24)

L2 = (L cos θ)2 + (L sin θ)2 (7.25)

1 = (cos θ)2 + (sin θ)2 (7.26)√
1− (sin θ)2 = cos θ (7.27)

We consider that the distance between two observers moving at

constant speed is simply vt. Hence,
∣∣∣O′O∣∣∣ = vt. Solving for sin θ, we

obtain

∣∣∣O′O∣∣∣ = vt = L sin θ (7.28)

=⇒ sin θ =
vt
L

(7.29)

From equation (7.27) and (7.29), we get the reciprocal of the
Lorentz factor,

√
1− v2t2

L2 = cos θ = γ−1 (7.30)

=⇒ γ =
1√

1− v2t2

L2

(7.31)

Finally, we consider that L is the distance travelled in time by O
in its own reference frame. This is given via the relation dx = cdt.
Hence L = ct. We obtain,

γ =
1√

1− v2

c2

(7.32)
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which is the well-known Lorentz factor and is the multiplication
constant connecting

∣∣SO
∣∣ to

∣∣∣SO′
∣∣∣.

8 Saturation of entropy

8.1 Entropy saturation principle

The power-time formulation suggests three competing entropic sat-
uration rates; linear, quadratic and cubic. Each is responsible for a
saturation principle of a different dimensional level. In the quadratic
case, it corresponds to the well-known holographic principle24. In the 24 G. ’t Hooft. Dimensional Reduction

in Quantum Gravity. ArXiv General
Relativity and Quantum Cosmology
e-prints, October 1993; and L. Susskind.
The world as a hologram. Journal of
Mathematical Physics, 36:6377–6396,
November 1995. doi: 10.1063/1.531249

other cases, it corresponds to an exfoliation of the holographic screen
into spacetime.

Theorem 8.1. The power-time formulation implies a holographic principle
in the quadratic saturation.

Proof.

(ln 2)−1TdS = kdA regime 5.64 (8.2)∫
TdS = (ln 2)

∫
kdA (8.3)

TS = (ln 2)k
1
2

A + C (8.4)

=⇒ S ∝ A holographic principle (8.5)

The laws of physics that will be derived as a consequence of
quadratic saturation will necessarily contain a holographic princi-
ple linking the entropy to the area enclosing the volume.

However, this need not necessarily hold at other entropic satura-
tions, for example, when under cubic saturation. Indeed, the power-
time formulation would appear to suggest three different scales, each
having a saturation principle of a different dimensional size.

Dimension Associated Term Entropy

1D Fdx S ∝ L (8.6)

2D kdA S ∝ A (8.7)

3D pdV S ∝ V (8.8)

We can further show that these saturation scales compete with
each other. Recall the definitions of dx, dA and dV:
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dx := G′(0)d|p| (8.9)

dA := G′′(0)|p|d|p| (8.10)

dV := G′′′(0)|p|2d|p| (8.11)

The terms G′(0), G′′(0) and G′′′(0) are associated with the coef-
ficient of the Taylor expansion. For dx, dA and dV to vary indepen-
dently, the coefficients must be varied. For example, we can stuff all
the entropy into the dA variable, but to do so, we must set the coeffi-
cient G′(0) and G′′′(0) to zero, and vice versa. Likewise, the entropy
of dA can be reduced provided that G′′(0) is reduced and G′(0) and
G′′′(0) are increased.

In this scenario, the exfoliation variables each compete with each
other for entropy. Hence, a holographic screen can be exfoliated into
the linear term while preserving the total entropy of the system.

8.2 2D saturation of entropy (General relativity)

In this section, we will show how regime 5.64 suggests that general
relativity is an emergent entropic phenomenon attributable to the
quadratic saturation of entropy (holographic principle).

Theorem 8.12. The 2D saturation of entropy implies general relativity.

Proof. Our goal in this proof is to derive the Einstein field equation
of general relativity starting from the holographic principle. First
consider that the units of TdS are algorithmic-Joules, hence we can
pose dE = TdS where dE is an algorithmic-energy.

1
ln 2

TdS = kxdx (8.13)

=⇒ S ∝ A (8.14)

=⇒ dE = γdA (8.15)

Deriving general relativity from dE = γdA has indeed been done
before in the literature, notably by Ted Jacobson, then later (and dif-
ferently) by Erik Verlinde25. Furthermore, Christoph Schiller argues 25 Ted Jacobson. Thermodynamics

of spacetime: The einstein equa-
tion of state. Phys. Rev. Lett.,
75:1260–1263, Aug 1995. doi:
10.1103/PhysRevLett.75.1260. URL
https://link.aps.org/doi/10.1103/

PhysRevLett.75.1260; and Erik P.
Verlinde. On the origin of gravity
and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

that a maximum power (7.10) implies the Field equation26. Here, we

26 Christoph Schiller. General rela-
tivity and cosmology derived from
principle of maximum power or force.
International Journal of Theoretical
Physics, 44(9):1629–1647, Sep 2005.
ISSN 1572-9575. doi: 10.1007/s10773-
005-4835-2. URL https://doi.org/10.

1007/s10773-005-4835-2

will provide a sketch of the proof by Ted Jacobson as summarized by
Schiller.

Jacobson, starting from dE = TdS, first connects dE to an arbitrary
coordinate system and energy flow rates,

dE =
∫

TabkadΣb (8.16)

https://link.aps.org/doi/10.1103/PhysRevLett.75.1260
https://link.aps.org/doi/10.1103/PhysRevLett.75.1260
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2


the world as emergent from pure entropy 49

Here Tab is an energy-momentum tensor, k is a killing vector field
and dΣ the infinitesimal elements of the coordinate system. Jacobson
then shows that, assuming that the holographic principle holds (here
we have an equivalent saturation principle 5.64), the right part of
(8.15) can be rewritten to

dA =
c2

a

∫
RabkadΣb (8.17)

where Rab is the Ricci tensor describing the space-time curvature.
This relation is obtained via the Raychaud-Huri equation giving
it a geometric justification. Combining the two with a local law of
conservation of energy, he obtains

∫
TabkadΣb = γ

c2

a

∫
RabkadΣb (8.18)

which can only be satisfied if

Tab = γ
c2

a

[
Rab −

(
R
2
+ Λ

)
gab

]
(8.19)

Here, the full field equations of general relativity are recovered,
including the cosmological constant (as an integration constant).

8.3 3D saturation of entropy (Dark energy)

Associating dark energy to a volumetric entropy has been suggested
and discussed by other authors before27. Here, we suggest that dark 27 Damien A. Easson, Paul H. Frampton,

and George F. Smoot. Entropic acceler-
ating universe. Physics Letters B, 696(3):
273 – 277, 2011. ISSN 0370-2693. doi:
https://doi.org/10.1016/j.physletb.2010.12.025.
URL http://www.sciencedirect.

com/science/article/pii/

S0370269310014048; and Damien A.
Easson, Paul H. Frampton, and
George F. Smoot. Entropic inflation.
International Journal of Modern
Physics A, 27(12):1250066, 2012. doi:
10.1142/S0217751X12500662. URL
http://www.worldscientific.com/doi/

abs/10.1142/S0217751X12500662

energy provides the interpretation for cubic saturation of entropy.

TdS = (ln 2)pdV regime 5.65 (8.20)

To determine the value of the pressure p associated with volumet-
ric entropy, we consider the case of an entropic force. In this case, the
pressure relates to the force as

F = −pA (8.21)

=⇒ p = − F
A

= − F
4πx2 (8.22)

The sign of the force is negative because the force points in the di-
rection of increased entropy, which is oriented outward the enclosing
area.

http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.worldscientific.com/doi/abs/10.1142/S0217751X12500662
http://www.worldscientific.com/doi/abs/10.1142/S0217751X12500662
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To determine x, it suffices to notice that the exfoliation variables
encodes the informational content of the universe up to a bound-
ary on size, which is common to all terms of the Taylor expansion.
Physically and as argued by Easson et al., it makes sense to connect
this bound to the Hubble horizon as it defines an event horizon ap-
plicable to the "instantaneous" system. As it is an event horizon, its
temperature is given by De Sitter’s temperature and is constant at
the horizon. Therefore, an entropic force is expected. To obtain the
magnitude of the force, it suffices to calculate the entropic force as
per the Bekenstein-Hawking entropy and the De Sitter temperature,
both applicable to event horizons.

dS = 2π
kBc3

Gh̄
xdx Bekenstein-Hawking entropy (8.23)

T =
h̄

kB

H
2π

De Sitter temperature (8.24)

F = T
dS
dx

entropic force (8.25)

=⇒ F =

(
h̄

kB

H
2π

)(
2π

kBc3

Gh̄
x
)

(8.26)

=
c3

G
Hx clean up (8.27)

As x is the radius of the Hubble horizon x = c/H, we obtain
the final value of the force F = c4/G, the Planck force. Finally, the
pressure is given by;

F =
c4

G
Planck force (8.28)

=⇒ p = − F
A

= −
(

c4

G

)(
1

4π(c/H)2

)
(8.29)

p = − c2H2

4πG
(negative pressure)

This is close to the current measured value for the negative pres-
sure associated with dark energy28. As we can see, the suggested 28 Damien A. Easson, Paul H. Frampton,

and George F. Smoot. Entropic acceler-
ating universe. Physics Letters B, 696(3):
273 – 277, 2011. ISSN 0370-2693. doi:
https://doi.org/10.1016/j.physletb.2010.12.025.
URL http://www.sciencedirect.

com/science/article/pii/

S0370269310014048

entropic derivation of dark energy applies to the third term of the
Taylor expansion.

8.4 1D saturation of entropy (Law of inertia)

In this section we will need to use the Unruh temperature29. As can 29 Stephen A. Fulling. Nonunique-
ness of canonical field quantization in
riemannian space-time. Phys. Rev.
D, 7:2850–2862, May 1973. doi:
10.1103/PhysRevD.7.2850. URL
https://link.aps.org/doi/10.1103/

PhysRevD.7.2850; P C W Davies.
Scalar production in schwarzschild
and rindler metrics. Journal of Physics
A: Mathematical and General, 8(4):
609, 1975. URL http://stacks.iop.

org/0305-4470/8/i=4/a=022; W. G.
Unruh. Notes on black-hole evapo-
ration. Phys. Rev. D, 14:870–892, Aug
1976. doi: 10.1103/PhysRevD.14.870.
URL https://link.aps.org/doi/10.

1103/PhysRevD.14.870; and Erik P.
Verlinde. On the origin of gravity
and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

be reviewed in the citations provided, the Unruh temperature is
an exact result obtained from special relativity. The Unruh effect is
the prediction that an accelerating observer will observe blackbody

http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
https://link.aps.org/doi/10.1103/PhysRevD.7.2850
https://link.aps.org/doi/10.1103/PhysRevD.7.2850
http://stacks.iop.org/0305-4470/8/i=4/a=022
http://stacks.iop.org/0305-4470/8/i=4/a=022
https://link.aps.org/doi/10.1103/PhysRevD.14.870
https://link.aps.org/doi/10.1103/PhysRevD.14.870
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
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radiation (at the Unruh temperature) where an inertial observer
would observe none. The Unruh temperature is:

T =
h̄a

2πckB
Unruh temperature (8.30)

The Unruh temperature connects acceleration to temperature. We
will use it here to convert an entropic force expressed in terms of a
temperature to an entropic force expressed in terms of acceleration.

First, let us derive a relation between dS and dN. Here N repre-
sents the number of bits.

Theorem 8.31. dS = (ln 2)kBdN

Proof.

S = NkB ln(2) binary entropy (8.32)

=⇒ dS = (ln 2)kBdN (8.33)

Second, let us look at the implications of the first term, Fdx in the
S ∝ L regime.

Theorem 8.34. The S ∝ L scale implies the law of inertia, F = ma.

Proof. First, consider the equation for an entropic force F = T∆S/∆x
such as a the case of a polymer or of osmosis. In the case of a binary
entropy, the entropic force takes the form;

Fdx = (ln 2)−1TdS regime 5.62 (8.35)

F = (ln 2)−1T
dS
dx

divide dx (8.36)

F = (ln 2)−1T
(ln 2)kBdN

dx
binary entropy (8.37)

F = TkB
dN
dx

entropic force (8.38)

An accelerated object implies the Unruh temperature. Here, we
start from the other side. We have T and we replace it with the Un-
ruh temperature.

F =

(
h̄a

2πckB

)
kB

dN
dx

Unruh temperature (8.39)

F =

(
1

2π

h̄
c

dN
dx

)
a clean up (8.40)
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Finally, the equation F = ma can be recovered under the hypothesis
that the ratio dx/dN is the reduced Compton wavelength multiplied
by 2π.

=⇒ 2π
dx
dN

=
h̄

mc
(8.41)

From this derivation, the reduced Compton wavelength can now
be understood as the ratio between inertial mass and entropy.

8.5 Note on the Schwarzschild radius

As we have seen, the inertial mass is associated with the linear en-
tropy. We have also seen the existence of a saturation principle appli-
cable to linear entropy. As a result, we would expect that the mass in
the universe is bounded linearly. Is that the case?

Consider the Schwarzschild radius,

R =
2GM

c2 (8.42)

As we can see, the radius grows linearly with the mass M. Hence,
the linear entropy does saturate.

9 Universal Brownian motion

As we have seen in section 5.3, thermal spacetime experiences fluctu-
ations along the x and t axis. We recall the fluctuation relations;

average fluctuation

t (time) t =
−∂ ln Z

∂P
(∆t)2 =

∂2 ln Z
∂P2 (9.1)

x (space) x =
−∂ ln Z

∂F
(∆x)2 =

∂2 ln Z
∂F2 (9.2)

9.1 Schrödinger equation

In section 8.4, we have used the program-size to entropy relation
TdS = Fdx to recover F = ma. In this section we use the same
relation but we extend it with the fluctuations effects of the thermal
UTM. Doing so will allow us to recover the Schrödinger equation.

We recall that a thermal UTM encodes position via the dx conju-
gate associated with program lengths. As a result, the UTM can only
express a position if the program with the corresponding size is part
of its partition function (e.i. it halts). In this section, we will argue
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that the missing non-halting programs are responsible for a universal
Brownian motion in space applicable to the dx variable. This will be
enough to recover the Schrödinger’s equation.

Theorem 9.3. A position described with missing program-sizes will evolve
in time according to Schrödinger’s equation.

ih̄
∂

∂t
ψ(x, t) =

[
−h̄2

2m
∇2 + V(x, t)

]
ψ(x, t)

The proof is slightly more involved than the preceding theorems.
First, here is a sketch of the proof.

1. We will show that non-halting programs leave holes in space such
that a position cannot be expressed.

2. We will show that these holes are causing a Brownian motion of
the encoded position.

3. We will derive its diffusion coefficient to be h̄/(2m).

4. We will consider that the presence of any external field is experi-
enced as acceleration via F = ma.

5. Using the well known Brownian motion equations of Langevin,
we show that the above reproduces Schrödinger’s equation exactly.

Lemma 9.4. A spacial encoding based on programs will leave holes in space
corresponding to non-halting programs.

Proof. We use regime 5.63 applicable to the inertial law. We have
also seen that the conjugate x denotes program lengths. However,
not all programs halt hence some lengths are missing from the sum.
These missing programs are holes in space the position of which
cannot be expressed by the UTM’s positional algorithm. Since Ω is
a normal number, we can expect the position of these holes to be
algorithmically random.

Lemma 9.5. A particle in space will experience Brownian motion due to the
holes.

Proof. We will calculate the average displacement ∆x of a particle
subjected to entropic positioning and space holes. Since Z is a normal
number, we conclude that half of the program’s lengths are available
to describe position and half are not. Therefore, to describe a par-
ticle at position x, there is a 50% chance there is a halting program
available to express it. And in the case where there is no program at
exactly x, then there is a 50% chance that there will be one at position
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x + 1, and so on. In other words, a particle at x has 50% chance of be-
ing at x, 25% chance of being at x + 1, 12.5% chance of being at x + 2,
etc. Expressed as a sum, we obtain

∆x =
1
2

0 +
1
4

1 +
1
8

2 +
1
16

3 + ... (9.6)

=
∞

∑
i=0

i
2i+1 (9.7)

= 1 (9.8)

On average, as it moves through space, a position will shift by
∆x = 1 at each iteration of the Brownian motion.

Lemma 9.9. The diffusion coefficient of the described Brownian motion is

D =
h̄

2m

Proof. From Einstein paper the diffusion coefficient of Brownian
motion is given by

D =
l2

2τ
(9.10)

where l is the length of the random step and τ is the frequency
of the occurrence of the steps. As we have previously connected
the reduced Compton wavelength to F = ma taking the role of the
system’s characteristic length associated with positional encoding for
a mass of bits, it makes sense to use it here as well. We get a scaling
factor of

λ =
h̄

mc
(9.11)

Since entropic positioning can only express position as multiples
of λ, we take it as the Brownian step of length l. The diffusion coeffi-
cient becomes

D =

(
h̄

mc

)2 1
2τ

(9.12)

This leaves of us with the need to define τ. For τ, we take the
characteristic frequency of the wave E = h̄ω. This is related to proof-
step frequency. Solving for τ = 1/ω, we obtain

ω =
E
h̄

(9.13)

ω−1 =
h̄
E
= τ (9.14)
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Replacing τ in the equation for D, we obtain

D =
h̄2

m2c2

(
E
2h̄

)
(9.15)

Using E = mc2, and reducing the constants, we obtain our final
expression of D,

D =
h̄2

m2c2
(mc2)

2h̄
(9.16)

=
h̄

2m
(9.17)

Lemma 9.18. The Langevin equations for Brownian motion with a diffusion
coefficient of h̄/(2m) and an external inertial field experienced as F = ma
reproduces Schrödinger’s equation.

Proof. We recall the Langevin equation,

d [x(t)] = v(t)dt (9.19)

d [v(t)] = − γ

m
v(t)dt +

1
m

W(t)dt (9.20)

where W(t) is a random force and a stochastic variable giving the
effect of a background noise to the motion of the particle.

From F = ma and replacing the acceleration d[v(t)]/dt with F/m,
Edward Nelson 30 is able to show that the Langevin equation be- 30 Edward Nelson. Derivation of the

schrodinger equation from newtonian
mechanics. Phys. Rev., 150:1079–
1085, Oct 1966. doi: 10.1103/Phys-
Rev.150.1079. URL https://link.aps.

org/doi/10.1103/PhysRev.150.1079

comes,

∇
(

1
2
~u2 + D∇ · ~u

)
=

1
m
∇V (9.21)

where D is the diffusion coefficient of h̄/(2m) obtained in lemma
9.9, where ~F = −∇V, where ~u = v∇ ln ρ and ρ is the probability
density of x(t). For brevity, the proof of 9.21 is omitted here but can
be reviewed in Nelson’s paper. Eliminating the gradients on each
side and simplifying the constants, we obtain

m
2
~u2 +

h̄
2
∇ · ~u = V − E (9.22)

where E is the arbitrary integration constant. This equation in non-
linear because of the term ~u2 but it can be made linear by a change of
dependant variable. To make it linear, let us pose

~u =
h̄
m

1
ψ
∇ψ (9.23)

and replace it into equation 9.22 , we obtain

https://link.aps.org/doi/10.1103/PhysRev.150.1079
https://link.aps.org/doi/10.1103/PhysRev.150.1079
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V − E =
m
2

(
h̄
m

1
ψ
∇ψ

)2
+

h̄
2
∇ ·

(
h̄
m

1
ψ
∇ψ

)
(9.24)

=
h̄2

2m
1

ψ2 (∇ψ · ∇ψ) +
h̄2

2m

[
∇ ·

(
1
ψ
∇ψ

)]
(9.25)

=
h̄2

2m
1

ψ2 (∇ψ · ∇ψ) +
h̄2

2m

[
ψ∇ · ∇ψ−∇ψ · ∇ψ

ψ2

]
(Identity)

=
h̄2

2m
1

ψ2 (∇ψ · ∇ψ) +
h̄2

2m

[
1
ψ
∇ · ∇ψ− 1

ψ2 (∇ψ · ∇ψ)

]
(9.26)

The first and the last terms cancel each other.

h̄2

2m
1
ψ
∇2ψ = V − E (9.27)

Finally, it simplifies to[
− h̄2

2m
∇2 + V − E

]
ψ = 0 (9.28)

which is the time independent Schrödinger’s equation.

We are now ready to derive the time dependent Schrödinger equa-
tion and prove theorem 9.3.

Proof. We use the same proof used by Edward Nelson in the same
paper. Starting from the time dependent Schrödinger equation, we
show that a replacement of ψ = eR+iS leads to the Langevin equation
of Brownian motion.

∂ψ

∂t
= i

h̄
2m
∇2ψ− i

1
h̄

Vψ (9.29)

Replacing ψ with eR+iS, we obtain

∂
(
eR+iS)
∂t

= i
h̄

2m
∇2
(

eR+iS
)
− i

1
h̄

V
(

eR+iS
)

(9.30)

Taking the derivatives and the gradients, we obtain[
∂R
∂t

+ i
∂S
∂t

] (
eR+iS

)
=

ih̄
2m

[
∇2R + i∇2S + (∇(R + iS))2

] (
eR+iS

)
− i

1
h̄

V
(

eR+iS
)

(9.31)

Eliminating eR+iS from each side and simplifying, we obtain

∂R
∂t

+ i
∂S
∂t

=
ih̄
2m

[
∇2R + i∇2S + (∇(R + iS))2

]
− i

1
h̄

V (eliminating eR+iS)

∂R
∂t

+ i
∂S
∂t

=
ih̄
2m

[
∇2R + i∇2S + (∇R)2 + 2i∇R · ∇S− (∇S)2

]
− i

1
h̄

V (taking the product)

∂R
∂t

+ i
∂S
∂t

=
h̄

2m

[
i∇2R−∇2S + i(∇R)2 − 2∇R · ∇S− i(∇S)2

]
− i

1
h̄

V (distributing the i)
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We obtain two equations by separating the real and the imaginary
parts

∂R
∂t

=
h̄

2m

[
−∇2S− 2∇R · ∇S

]
(9.32)

∂S
∂t

=
h̄

2m

[
∇2R + (∇R)2 − (∇S)2

]
− 1

h̄
V (9.33)

This is equivalent to the Langevin equations with some replace-
ments

∂~u
∂t

= − h̄
2m
∇(∇ ·~v)−∇(~v · ~u) (9.34)

∂~v
∂t

=
h̄

2m
∇(∇ · ~u) + 1

2
∇(~u2)− 1

2
∇(~v2)− 1

m
∇V (9.35)

Lemma 9.36. Equation 9.32 with the replacements ∇R = (m/h̄)~u and
∇S = (m/h̄)~v produces 9.34

Proof.

∂R
∂t

=
h̄

2m

[
−∇2S− 2∇R · ∇S

]
(equation 9.32)

∇∂R
∂t

= ∇
(

h̄
2m

[
−∇2S− 2∇R · ∇S

])
(taking the gradient)

∂∇R
∂t

= ∇
(

h̄
2m

[−∇ · ∇S− 2∇R · ∇S]
)

(9.37)

m
h̄

∂~u
∂t

= ∇
(

h̄
2m

[
−∇ ·

(m
h̄
~v
)
− 2

(m
h̄
~u
)
·
(m

h̄
~v
)])

(replacing ∇R and ∇S)

∂~u
∂t

= ∇
(

h̄
2m

[
−∇ ·~v− 2

m
h̄
~u ·~v

])
(eliminating m/h̄)

∂~u
∂t

= − h̄
2m
∇(∇ ·~v)−∇(~u ·~v) (equation 9.34)

Lemma 9.38. Equation 9.33 with the replacements ∇R = (m/h̄)~u and
∇S = (m/h̄)~v produces 9.35

Proof.

∂S
∂t

=
h̄

2m

[
∇2R + (∇R)2 − (∇S)2

]
− 1

h̄
V (equation 9.33)

∇∂S
∂t

= ∇
(

h̄
2m

[
∇ · ∇R + (∇R)2 − (∇S)2

])
− 1

h̄
∇V (taking the gradient)

m
h̄

∂~v
∂t

= ∇
(

h̄
2m

[
∇ ·

(m
h̄
~u
)
+
(m

h̄
~u
)2
−
(m

h̄
~v
)2
])
− 1

h̄
∇V (replacing ∇R and ∇S)

∂~v
∂t

= ∇
(

h̄
2m

[
∇~u +

m
h̄
~u2 − m

h̄
~v2
])
− 1

m
∇V (eliminating m/h̄)

∂~v
∂t

=
h̄

2m
∇(∇ · ~u) + 1

2
∇(u2)− 1

2
∇(v2)− 1

m
∇V (equation 9.35)
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This completes the proof of theorem 9.3.

9.2 Dirac equation

In a previous section, we have used TdS = Fdx to recover F = ma. In
section 7, we have used TdS = Pdt + Fdx to recover special relativity.
We have then used a random walk on dx to recover the Schrödinger
equation which is the quantum analogue to F = ma. Of course, the
natural question to ask is, will using TdS = Pdt + Fdx and applying
a random walk to both dt and dx be enough to recover the Dirac
equation, the quantum analogue to special relativity? The answer is
yes!

In this section, we will see that applying a random walk to both
the dt and the dx variables is enough to recover the Dirac equation
for relativistic quantum mechanics. Let us begin by answering why
would there be a random walk on dt.

First we consider that, as is the case with program length, program
runtime varies from one UTM to the next. Programs that are diffi-
cult to solve on one UTM are likely to be difficult to solve on other
UTMs. For example the travelling salesman problem is hard to solve
on every UTM. The runtime of these programs will be randomly
distributed and centred around a mean runtime.

Second, we consider an analogous argument to the one used to
justify a random walk on dx, but applied to dt. On some UTM a pro-
gram of size x might have halted and on others it might not have.
Therefore a particle can be defined to be at a time t only if a program
halting at time t is in the partition function. If there is no such avail-
able halting program at time t, then the particle will be a time t± ∆t,
the runtime of the next available halting program. Since the halting
problem is algorithmically random and non-computable, we consider
this behaviour as a random walk in time.

A connection between a random walk in time and space and the
telegraphic equation has been linked to the Dirac equation before31. 31 D Mckeon and G N. Ord. Time

reversal in stochastic processes
and the dirac equation. Physical
review letters, 69:3–4, 08 1992; and
D. G. C. McKeon and G. N. Ord.
On how the (1+1)-dimensional dirac
equation arises in classical physics.
Foundations of Physics Letters, 9

(5):447–456, Oct 1996. ISSN 1572-
9524. doi: 10.1007/BF02190048. URL
https://doi.org/10.1007/BF02190048

D. G. C. McKeon and G. N. Ord proposes a random walk model in
space and in time. Starting from the equation for a random walk in
space, we have

P±(x, t + ∆t) = (1− a∆t)P±(x∓ ∆x, t) + a∆tP∓(x± ∆x, t) (9.39)

then, D. G. C. McKeon and G. N. Ord extend this equation with a
random walk in time. They obtain

https://doi.org/10.1007/BF02190048
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F±(x, t) = (1− aL∆t− aR∆t)F±(x∓ ∆x, t− ∆t) + aL,R∆tB±(x∓ ∆x, t + ∆t) + aR,L∆tF∓(x± ∆x, t− ∆t)
(9.40)

where F±(x, t) is the probability distribution to go forward in time
and B±(x, t), backward in time. They then introduce a causality con-
dition such that F±(x, t) and B±(x, t) only depends on probabilities
from the past.

F±(x, t) = B∓(x± ∆x, t + ∆t) (9.41)

From equation 9.2 and 9.41, they get

B±(x, t) = (1− aL∆t− aR∆t)B±(x∓ ∆x, t + ∆t) + aL,R∆tB∓(x± ∆x, t + ∆t) + aR,L∆tF±(x∓ ∆x, t− ∆t)
(9.42)

In the limit ∆x, ∆t→ 0 and with ∆x = v∆t, they get,

±v
∂F±
∂x

+
∂F±
∂t

= aL,R(−F± + B±) + aR,L(−F± + F∓) (9.43)

±v
∂B∓
∂x

+
∂B∓
∂t

= aL,R(−B∓ + F∓) + aR,L(−B∓ + B±) (9.44)

Posing these changes of variables,

A± = (F± − B∓) exp[(aL + aR)t] (9.45)

λ := −aL + aR (9.46)

then 9.44 becomes

v
∂A±
∂x
± ∂A±

∂t
= λA∓ (9.47)

Finally, they pose v = c, λ = mc2/h̄ and ψ = F(A+, A−), they get

ih̄
∂ψ

∂t
= mc2σyψ− ich̄σz

∂ψ

∂x
(9.48)

which is the Dirac equation in 1+1 spacetime.

9.3 Discussion

The mathematical derivation of the Schrödinger and the Dirac equa-
tion are borrowed from the field of stochastic mechanics. The field
has different goals and provides a different interpretation that what
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is suggested in this paper. The goal of stochastic mechanics is to re-
cover and explain the laws of quantum mechanics as emergent from
microscopic stochastic processes such as Brownian motion. They ad-
mit punctual particle type of interpretation in which the particle is
imagined to undergo a random walk creating a diffusion in the prob-
ability of its position. The position is recovered when the point-like
particle is measured again.

In this paper32, Edward Nelson reviews the pros and cons of the 32 Edward Nelson. Review of stochastic
mechanics. In Journal of Physics:
Conference Series, volume 361, page
012011. IOP Publishing, 2012

stochastic mechanics approach. In in, he lists the following successes
and failures of the approach.

"4. Successes of stochastic mechanics

Here is a list of the main successes of stochastic mechanics.

1. A classical derivation of the Schrödinger equation, by Guerra and
Morato33. 33 Francesco Guerra and Laura M

Morato. Quantization of dynamical
systems and stochastic control theory.
Physical review D, 27(8):1774, 1983

2. The probability density ρ of the Markov process agrees with |Ψ|2 at
all times.

3. A stochastic explanation of the relation between momentum and the
Fourier transform of the wave function, by David Shucker34. 34 David S Shucker. Stochastic me-

chanics of systems with zero potential.
Journal of Functional Analysis, 38(2):
146–155, 1980

4. A proof of the existence of the Markov process under the physically
natural assumption of finite action, by Eric Carlen35. This is perhaps

35 Eric A Carlen. Existence and sample
path properties of the diffusions in
nelson’s stochastic mechanics. In
Stochastic ProcessesâĂŤMathematics
and Physics, pages 25–51. Springer,
1986

the most technically demanding work in the entire subject.

5. A stochastic explanation of why identical particles satisfy either
Bose-Einstein or Fermi-Dirac statistics if d ≥ 3, with para-statistics
possible if d = 2. This is not contained in §20 of [this reference]36,

36 Edward Nelson. Quantum
fluctuations. Princeton University
Press, 1985

but it follows from the discussion there.

6. A stochastic explanation of spin and why it is integral or half-
integral, work of Thaddeus Dankel37, Timothy Wallstrom38, and of

37 Thad Dankel Jr. Higher spin states
in the stochastic mechanics of the
bopp–haag spin model. Journal of
Mathematical Physics, 18(2):253–255,
1977

38 Timothy C Wallstrom. On the deriva-
tion of the schrödinger equation from
stochastic mechanics. Foundations of
Physics Letters, 2(2):113–126, 1989

Daniela Dohrn and Francesco Guerra jointly39.

39 Daniela Dohrn and Francesco Guerra.
Nelson’s stochastic mechanics on
riemannian manifolds. Lettere al Nuovo
Cimento (1971-1985), 22(4):121–127,
1978

7. If the force is time-independent, the expected stochastic energy
Et(

1
2 uiui +

1
2 vivi + ϕ) is conserved; see §14 of [this reference]40.

40 Nelson, 1985

8. A stochastic picture of the two-slit experiment, explaining how
particles have trajectories going through just one slit or the other,
but nevertheless produce a probability density as for interfering
waves; see §17 of [this reference]41."

41 Nelson, 1985

- - Edward Nelson

Edward Nelson, in the same paper also suggests the following
failure of the theory.

"5. Failures of stochastic mechanics

[...]

Since ρ = |Ψ|2 at all times, stochastic mechanics gives the same predic-
tion as quantum mechanics for a measurement performed at a single
time. But it can give wrong predictions for measurements performed
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at two different times; see Chapter 10 of [this reference]42. Consider 42 William G Faris. Diffusion, Quantum
Theory, and Radically Elementary
Mathematics.(MN-47). Princeton
University Press, 2014

two entangled but dynamically uncoupled harmonic oscillators. Let
Xi(t) be the Heisenberg position operator of oscillator i at time t. Each
is periodic in t, so the correlation of (X1(t1), X2(t2)) does not decay as
t2 → ∞. Let xi(t) be the position of oscillator i at time t according to
stochastic mechanics. Then xi(t) has the same probability distribution
as Xi(t) for each i and each t, but (x1(t1), x2(t2)) does not have the
same probability distribution as (X1(t1), X2(t2)). In fact, the correlation
of (x1(t1), x2(t2)) decays to 0 as t2 → ∞. The oscillators are uncoupled,
so X1(t1) and X2(t2) commute, and according to quantum mechanics,
the probability distribution is that of (X1(t1), X2(t2)). If (x1(t1), x2(t2))

represented the real physical situation, theirs would be the probability
distribution. Thus stochastic mechanics and quantum mechanics give
different predictions for the result. Why do I not suggest that the ex-
periment be done? Because if a record of the observation of the first
oscillator at time t1 is made by some physical means, and similarly for
the second oscillator, and the two records are compared at a common
later time t3, this is an observation at a single time, for which quan-
tum mechanics and stochastic mechanics agree. The non-locality of
stochastic mechanics conspires to bring the records into agreement.

How can a theory to be so right and yet so wrong? The most natural
explanation is that stochastic mechanics is an approximation to a
correct theory of quantum mechanics as emergent. But what is the
correct theory?"

- - Edward Nelson

This failure only occurs because stochastic mechanic attempt to
explain quantum effects (such as entanglement) by replacing them
with a statistical and classical approach. However, this failure does
not apply to us because we are not trying to eliminate quantum
entanglement. As a result, we are fine accepting entangled states
onto which the Schrödinger equation is applied as per the standard
quantum mechanics theory.

10 Characteristic units

Our goal in this section is to show how the definition of the Planck
units naturally follows from the state equation (5.57). To do so, we
must first obtain definitions for G, c and h̄ by deriving from it known
laws of physics that contain them.

10.1 Gravitation constant

We start by obtaining the gravitational constant G from Newton’s law
of gravitation.

Theorem 10.1. The gravitational constant G is defined as c3L2/h̄.
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Proof. A derivation of Newton’s law of gravitation from the entropic
perspective has been done before by Erik Verlinde43. Here to obtain 43 Erik P. Verlinde. On the origin of

gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

the law of gravitation, we work in regime 5.64. This regime contains
the 2D-holographic principle and, as a result, the entropy of the sys-
tem grows via x2, an area law. We further consider that the entropy
of this area law is given by bits exclusively occupying a small area L2

on the surface. In this case, the total number of bits on the surface is
given by

N =
4πx2

L2 (10.2)

The equipartition theorem applies to energy terms of the partition
function, which are quadratic. The term kxdx is 1

2 kx2 in the partition
function. As a result its average energy is E = 1

2 NkBT as per the
equipartition theorem.

E =
1
2

(
4πx2

L2

)
kBT (10.3)

=⇒ T =
L2

2πkB

E
x2 (10.4)

We obtain a constant temperature throughout the system indicating
that it is at thermodynamic equilibrium. As our goal is to recover the
gravitational constant, we inject this temperature in the entropic force
relation.

F = TkB
dN
dx

entropic force (8.38) (10.5)

F =

(
L2

2πkB

E
x2

)
kB

dN
dx

derived temperature (10.6)

We then replace the ratio dx/dN by the reduced Compton wave-
length.

F =

(
L2

2πkB

E
x2

)
kB

(
2π

mc
h̄

)
(10.7)

F =

(
L2c
h̄

)
Em
x2 clean up (10.8)

We then convert E to its rest mass via E = mc2.

F =

(
L2c3

h̄

)
Mm
x2 (10.9)

https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
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We obtain the Newton’s law of gravitation along with a definition for
G.

F = G
Mm
x2 (10.10)

=⇒ G =
L2c3

h̄
(10.11)

which further implies that

L =

√
h̄G
c3 (Planck’s length)

10.2 Speed of light

Theorem 10.12. The speed of light c is defined by P/F.

Proof. We refer to the proof for theorem 7.1 where P/F is a character-
istic speed associated with an inversion in the direction of the second
law of thermodynamics. Then, under the principle that the second
law is irreversible, the speed P/F is a boundary and defines c.

10.3 Planck’s constant

Theorem 10.13. The action S is defined by h̄.

Proof.

1
ln 2

TdS = 2πSd f regime 5.62 (10.14)

dE =
1

ln 2
TdS = 2πSd f units of energy (10.15)

dE = 2πSd f posing dS = 0 (10.16)

Switching to the angular frequency,

dE = Sdω d f = dω/(2π) (10.17)∫
dE =

∫
Sdω (10.18)

E = Sω + C (10.19)

Posing C = 0, this is the photon angular-frequency to energy relation
E = h̄ω =⇒ S = h̄.

10.4 Planck’s units

We have now obtained a definition for three of the fundamental
constants.

h̄ = S c =
P
F

G =
L2c3

h̄
(10.20)
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We can now definite characteristic units applicable to the thermal
UTM,

G =
L2c3

h̄
=⇒ L =

√
h̄G
c3 (Planck’s length)

t =
L
c
=

√
h̄G
c5 (Planck’s time)

E = S/t =⇒ E =

√
h̄c5

G
(Planck’s energy)

P = t−2S =
c5

G
(Planck’s power)

P
F
= c =⇒ F =

c4

G
(Planck’s force)

which agrees with the physical Planck units.

11 Discussion

A convincing scientific theory is one that survives falsification. Mean-
ing, the theory should make predictions that can be either verified
or falsified via physical observations. The concept of falsifiability,
in principle, serves as an ideal. In practice however, there is an ad-
ditional informal criteria whose mention is often neglected but one
that is nonetheless also important - the prediction must be remark-
able. And indeed, looking into the history of science we find that the
more remarkable the prediction is, the more convinced we are of the
validity of the theory predicting it. Being remarkable is an aesthetic;
it is connected to the uniqueness of the explanation as well as to the
impact of the prediction on the current state of the art.

For example, a theory which predicts a slight correction of less
than one thousand of a percentage point on some measured quantity
(while everything else remains equal) will not be considered a re-
markable prediction. The prediction might be absolutely correct, but
it would very unlikely come to replace the existing textbook theory
within a reasonable timeframe. First, the cognitive burden of learning
a new approach hardly justifies the near-negligible improvement.
Second, many alternative theories would be presumed to be able to
account for such a small variation and its uniqueness will be ques-
tioned. And indeed, in the literature, we find this is quite often the
case.

However, the situation is different when the prediction is remark-
able. For example, before Einstein’s theory of relativity, time was
assumed to be absolute and constant. Hence, the prediction that it
was not was remarkable. Once experimental evidence was found to
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confirm this unexpected prediction, then the adoption of the new
theory was favoured.

11.1 Reductio ad 400

Our goal here will be to produce a prediction that is both remarkable
and falsifiable. One that, ideally, no other theory has predicted be-
fore. One that is of significant impact not only to physics but also to
philosophy and one that if confirmed, must alter our deepest concep-
tion of reality. This prediction, if it is observed to be true, will lend
tremendous credibility to this theory.

Our prediction will be a numerical estimation of the minimum
number of bits required to encode the full complexity of the ensem-
ble Z describing the universe. In other words, its compressibility
ratio. Evidence of this prediction should be abundant in the universe
as it affects all things. At t the numerical value of Z converges to-
wards Ω up to an error rate. Up until the error rate, the first n bits
of Z are the first n bits of Ω. We will calculate the numerical value
of n as predicted by this theory for the current size and age of the
universe.

To calculate it, we will consider the case where the entropy satu-
ration principles competes with each other. In this case, we can take
any saturation scale and suppose that it holds all the entropy.

Let us recall the ensemble Z.

Z =
∞

∑
i=1

2−A fi−|pi | (11.1)

From this equation, we can calculate n as follows; Under the holo-
graphic principle, the entropy of the universe is restricted by the
number of bits occupying the Planck area that can fit on the surface
of a sphere enclosing the universe with radius equal to the cosmic
event horizon. This is approximately 10122 bits of entropy. Hence, as
the first n bits of Ω can decide the first 2n theorems, we calculate n as
follows:

n = log2

(
10122

)
≈ 400 bits (11.2)

Four hundred is the number of leading bits of Ω required to decide
10122 theorems. This calculation suggests that the entire informa-
tional description of the universe can be compressed to a mere 400
bits of data, enough to fit into the memory of a pocket calculator.
These 400 bits are the leading part of Ω which itself is algorithmi-
cally random and cannot be compressed any further by any possible
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algorithm. The value of the bits of Ω as they are not given by an al-
gorithm, cannot be deduced from pure reason. Consequently, we
will argue that these bits are better interpreted as the axioms of the
theory of everything of the universe. Hence, the theory of everything
which describes the universe at its current size and age must have
approximately 400 algorithmically random bits of axioms.

An observer knowing these 400 bits could calculate the entire
informational description of the universe from first principles. To the
knowledge of the author, no other theory has suggested such a strong
compressibility applicable to the universe.

How credible is 400 bits? Well, we will grant that it is mind bog-
glingly low. But, for purposes of falsification this is a good thing. If
we had obtained a compressibility of say 10100 bits instead of 400 bits
then it would have been a much less remarkable prediction. The fact
that it is so low is precisely why it is so remarkable. As far as to its
credibility, consider the axioms of vanilla non-relativistic quantum
mechanics. Copy-pasting the text of the axioms in notepad taken
from wikipedia 44 and applying a compression algorithm, I obtain 44 Wikipedia - Mathematical formula-

tion of quantum mechanics https://

en.wikipedia.org/wiki/Mathematical_

formulation_of_quantum_mechanics

1235 byte of data as a zip file. The file is very small, yet it can explain
a large percentage of the universe. The Dirac equation takes only a
handful of compressed bytes to express yet it explains an even larger
part of the universe. The point is that axioms contain tremendous
amount of information in a small amount of bits. Nonetheless, the
compressibility of the whole universe to 400 bits of data should still
surprise us. Evidence of such a low bound on complexity should be
plentiful in the universe.

It is worth mentioning that a similar number was obtained by Paul
Davies45 in the context of the maximal number of qubits usable by 45 Paul CW Davies. The implications of

a cosmological information bound for
complexity, quantum information and
the nature of physical law. Fluctuation
and Noise Letters, 7(04):C37–C50, 2007

a general quantum computer. Here, we suggest that the bound of
≈ 400 as described by Davies in the context of quantum comput-
ers and qubits is essentially the same bound described here but in
terms of Ω bits. The bound should serve as the primary falsifiable
prediction of an informational theory of the universe. It predicts an
ultimate compressibility of the universe to 400 bits of data. We can
consider that the data is so compressed that its decompression al-
gorithm operates over billions of years - the amount of time it takes
to produce approximately 10122 uncompressed facts from 400 Ω bits
using thermal dovetailing.

11.2 An axiom-free theory

If the bits are the theory of everything, and we have not explicitly
specified any of these bits, why is it that we were able to obtain phys-
ical laws? Are the physical laws not supposed to be encoded within

https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
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the bits (Therefore, if the bits are unknown then the laws should also
be unknown)? And if not, then what exactly do the bits represent?

Before we answer the question, let us imagine a computer program
which constructs a virtual world out of a seed. The seed is a short
sequence of random or pseudo-random numbers. As a result, the
seed can be shared between two users and the world building pro-
gram, as it is deterministic, will always rebuild the same world from
the same seed. Hence, the world building program is the same for all
worlds. Changing the seed changes the world, but it does not change
the rules used to build the world.

We essentially suggest a similar interpretation. The theory of
everything is the seed and the laws of physics is the program that
builds the world from the seed. This is why the axiom-free method-
ology of removing all formal axioms and rules of inference from
Miniversal logic was so critical to deriving the laws of physics. The
theory of everything only contains the seed. As surprising as this
might sound, the laws of physics are not part of the theory of every-
thing - they are independently deducible from pure reason by any
and all observers. This turns out to be an absolute necessity. When
we reproduced the universal doubt method of Descartes within for-
mal logic by removing rules of inference and formal axioms, we set
up the only logical system capable of proving the laws of physics.

11.3 The unreasonable effectiveness of mathematics in the natural sci-
ences

As Wigner46 once wrote, mathematics is unreasonably effective in the 46 Eugene P. Wigner. The unreason-
able effectiveness of mathematics in
the natural sciences. richard courant
lecture in mathematical sciences de-
livered at new york university, may
11, 1959. Communications on Pure
and Applied Mathematics, 13(1):
1–14, 1960. ISSN 1097-0312. doi:
10.1002/cpa.3160130102. URL http:

//dx.doi.org/10.1002/cpa.3160130102

natural sciences. In the present theory, the universe contains 400 bits
of mathematically unexplainable information, and 10122 of mathe-
matically explainable information. The entropy of 10122 is produced
by a deterministic algorithm. This explains why mathematic is so
effective. The world building program is deterministic and follows
mathematical and repeatable patterns for all of its facts.

11.4 Boltzmann brains

The prediction that the universe is describable by only 400 bits lends
weight to the Boltzmann brain hypothesis. The hypothesis states that
a brain is most likely to be in the simplest possible universe that is
capable of producing a brain. At 400 bits of complexity, this might be
as simple as it gets.

The argument is actually stronger because the complexity of the
universe is grown bit by bit. At the beginning of the universe, 1 bit
of Ω was sufficient to produce all of its facts. As time advances, the
number of bits required to describe it must also grow. At some point

http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.1002/cpa.3160130102
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it would have grown to 100 bits, then to 200 bits, and so. Eventually
it would become sufficiently large and complex to encode sentient
life. The development of sentient life would occur more or less when
n is sufficiently large to allow it. Hence, the first sentient life in the
universe are invariably Boltzmann brains.

11.5 Why do all observers agree on the laws of physics?

All subjective observers who can produce complex thought such
as the cogito will be able to deduce the same laws of physics inde-
pendently of any observations. The occurrence of complex thought
defined as being able to in principle verify the proof of any theorem
of any assumption, guarantees the laws of physics as we know them.

11.6 Undecidable future

The world building program of the universe unpacks the Ω seed
starting from leftmost bit and moving to the right. This allows it to
extract facts and as they are calculated store them in the large en-
tropy of the universe. Facts stored as such are immediately accessible
as part of the entropy of the universe at little algorithmic time cost.
The future as it contains more fact, will use more bits of Ω to be pro-
duced from. Hence the value of n, currently ≈ 400 will grow with
time and was smaller in the past. The future as it is connected to a
larger n than the present cannot mathematically be decided from the
present as the bits of Ω are non-computable.

12 Conclusion

We note an affinity between a thermal universal Turing machine and
the laws of physics. The affinity occurs when we consider a prefix-
free UTM calculating its Ω number in a manner so as to maximize
the entropy throughout the calculation. When the entropy is maxi-
mized, the halting probability becomes a Gibbs ensemble.

Understanding physics from the perspective of an thermal UTM
holds several conceptual advantages. First, the system is at thermo-
equilibrium hence it doesn’t impose a ’special’ case or a ’fine-tuning’.
Second, it is a universal Turing machine hence it defines a universal
system capable of arbitrary computation which can match the uni-
verse’s complexity. More specifically, the representation can define
a non-computable future with a computable singular past whose
halting entropy is 0. This provides us with an arrow of time closely
matching human experience. The entropy of the complete system
(which includes future possibilities as well as an encoding scheme
for the past) does stay constant over time as the change of entropy
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of one is offset by the other. The second law of thermodynamics,
understood as an increase in entropy over time, is perceived in the
exfoliation variables while the larger system, made to include future
possibilities, has a constant entropy over time. In this system future
possibilities are consumed to produce encoding possibilities. The
second law of thermodynamics is therefore corrected to a law of con-
servation of entropy for the larger system comprised both thermal
time and thermal space.

The decomposition of the program encoding scheme used by the
thermal UTM via a Taylor expansion produces terms which can be
linked to a various saturation scales. For the first Taylor expansion
term, we recover special relativity (speed of light (7.1), light-cones
(figure 1) and the Lorentz’s factor (figure 2)) and the law of inertia
(8.34). For the second term, we recover general relativity (8.12) and
the holographic principle (8.2). Finally, the third term is related to
an entropic origin of dark energy (8.20). Quantum mechanics is re-
covered as a result of the random walk produced on dx and dt and
associated with fluctuating thermodynamic variables. The Lagrange
multipliers of the partition function are the Planck units.

The derivation of the representation can be achieved from pure
reason. It does not require an appeal to experimental evidence. It
contains a metaphysical proof that the solution is unique hence it
provides an explanation for why the universe is the way it is, and
not an alternative. Finally, in the last part of the paper, we have cal-
culated to compressibility of the universe under the holographic
assumption to be approximately 400 bits. Those bits are the theory
of everything for the current size and age of the universe and can be
loosely interpreted as a random seed. This can serve as a remarkable
prediction which opens the theory to the possibility of falsification.
As the 400 bits are the leading bits of Ω the formulation, as it is non-
compressible, is necessarily the simplest theory.
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