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Abstract 
The ingredients of basic quantum field theory were discovered in the eighteenth century. In those 

times quantum physics played no role. In the twentieth century, these ingredients were forgotten 

and stayed ignored.  

This paper introduces two categories of super-tiny dark objects that represent the most basic field 

quanta. Warps represent a tiny bit of energy. Clamps represent a tiny bit of mass. In separation, 

these objects cannot be perceived. They are the tiny dark objects that science is still missing. 

Introduction 
Quantum field theory requires a continuum that can be deformed or vibrated and actuators that 

cause this deformation or vibration. Next the activity of these actuators must be quantized. Thus, the 

strength of the deformation or vibration occurs in a set of fixed values. Deformation or vibration can 

be temporarily or persistent. 

Field dynamics 

A continuum can be described by a function for which both the parameter space and the 

target space are multi-dimensional. Dynamics requests a progression parameter and the 

spatial part requests a multi-dimensional spatial parameter. Quaternions have the 

advantage that they combine storage for the progression part and for the spatial part 

and defines a multiplication procedure for the combination of the two. Quaternions can 

also store the scalar part and the vector part of the target value of a quaternionic 

function. Quaternions can describe the behavior of dynamic fields via quaternionic 

differential calculus. Partial second order differential equations describe the interaction 

between point-like artifacts and quaternionic continuums. 

The combination of a quaternionic infinite dimensional separable Hilbert space and its 

unique non-separable companion Hilbert space that embeds its separable partner offers 

the playground where this interaction can take place. This playground stores separate 

quaternions in eigenspaces of operators that reside in the separable Hilbert space and 

can store quaternionic continuums as eigenspaces of operators that reside in the non-

separable Hilbert space. 

A subspace that scans this base model as function of a selected progression value 

represents the static status quo of the model and splits it in a historical part, the current 

static status quo, and a future part. 

The embedding maps the discrete quaternions onto an embedding continuum. The 

embedding process occurs inside the scanning subspace. 



Solutions of the differential equations 

he dynamic solutions of the homogeneous second order partial differential equations do 

not occur spontaneously. They are generated by actuators that determine what kind of 

solution is generated. For example, a periodic harmonic actuator causes wave solutions 

of a homogeneous second order partial differential equation, which is therefore known as 

the wave equation. Also, another, quite similar homogeneous second order partial 

differential equation exist that does not offer waves as its solutions. This equation splits 

into two first order partial differential equations. Both homogeneous second order partial 

differential equations offer solutions that are triggered by one-shot actuators that 

generate shock fronts. These solutions occur in two versions. Warps are one-

dimensional shock fronts that during travel keep their amplitude. Clamps are spherical 

shock fronts that quickly fade away because their amplitude diminishes as 1/r with 

distance r from the trigger location. In the meantime, clamps integrate into the Green’s 

function of the carrier field. This means that they temporarily deform the carrier. Warps 

carry a standard bit of energy and clamps carry a standard bit of mass. This makes them 

the most basic quanta of the carrier field. 

Super-tiny dark objects 
Warps and clamps form two categories of super-tiny objects that in separation cannot be perceived. 

Only organized in huge collections these objects become observable. For example. If emitted at 

equidistant instants, the warp strings become a frequency, and if these strings obey the Einstein-

Planck relation, then the strings implement the functionality of photons.  

If recurrently regenerated by dense and coherent swarms of hop landing location triggers, the 

clamps become noticeable as elementary particles. Less coherent assemblies of warps can create a 

noticeable amount of dark energy. Less coherent assemblies of clamps can create a noticeable 

amount of dark mass. 

Elementary particles are elementary modules. Together these elementary modules generate all 

other modules and the modules construct modular systems. 

Ensuring coherence 

Mechanisms that apply stochastic processes that own a characteristic function generate a 

hopping path and a hop landing location swarm. The characteristic function acts as a 

displacement generator and ensures that a coherent swarm is generated that moves as a 

single unit. The location density distribution of the swarm is the Fourier transform of the 

characteristic function and equals the squared modulus of the wavefunction of the object 

that the swarm represents. 

The generated swarms represent elementary modules. They show both particle and wave 

behavior. The characteristic function of the stochastic process explains the wave 

behavior. 

Elementary modules reside on private platforms that own a private parameter space that 

is generated by a version of the quaternionic number system. The platforms float over a 

background parameter space that is generated by the version of the quaternionic number 

system, that the Hilbert spaces use to define their inner product. The differences in 

ordering symmetry between parameter spaces give rise to symmetry-related charges. 

These charges locate at the geometrical centers of the platforms and produce symmetry-

related fields. 



The elementary modules inherit the properties of the platforms on which they reside. In 

this way, a range of different elementary modules exist 

Modules and spectral binding  

Together the elementary modules constitute all other modules and the modules 

constitute modular systems. 

Also, the footprints of modules are generated by stochastic processes that own a 

characteristic function. Therefore, the modules also move as a single unit. 

The characteristic function of the module equals the superposition of the characteristic 

functions of the components of the module. The superposition coefficients determine the 

internal locations of the components. These coefficients may oscillate. 

The superposition installs a very strong kind of spectral binding. 

Gravity and attractive symmetry-related charges may add to the effect of spectral 

binding. 

History 
The solutions of the wave equation are known for more than two and a half centuries [1]. In those 

times physicists where not aware of the quantization of space, but some awareness was growing 

about the quantization of wave packages. The shock fronts are not waves. They do not feature a 

frequency. Wave packages disperse when they move. Shock fronts do not disperse. It is strange that 

during the development of quantum physics the shock fronts escaped the attention of the early 

quantum physicists. Otherwise, quantum field theory would have become a straight forward part of 

quantum theory. 

Mathematics 

Partial quaternionic differential equations that apply the quaternionic nabla ∇ describe the interaction 
between a field and a point-like artifact [2]. 

∇ ≡ {∂/∂τ, ∂/∂x, ∂/∂y, ∂/∂z} 

∇ ≡ {∂/∂x, ∂/∂y, ∂/∂z} 

∇ᵣ ≡ ∂/∂τ 

τ is progression or proper time. 

In the quaternionic differential calculus, differentiation with the quaternionic nabla is a 

quaternionic multiplication operation: 

c = cᵣ + c= ab ≡ (aᵣ + a) (bᵣ + b) = aᵣbᵣ − 〈a,b〉 + abᵣ + aᵣb ± a×b 
 
Here the real part gets subscript ᵣ and the imaginary part is written in bold face. 
 
The right side covers five different terms. 
〈a,b〉 is the inner product. 
a×b is the external product. 



± indicates the choice between right and left handedness. 

Now the partial differential equation that describes the first order behavior of a 

continuum is given by: 

 

Φ = ϕᵣ + Φ = ∇ψ ≡ (∇ᵣ +∇) (ψᵣ + ψ) = ∇ᵣψᵣ − 〈∇, ψ 〉 + ∇ψᵣ + ∇ᵣ ψ ± ∇× ψ 

ϕᵣ = ∇ᵣψᵣ − 〈∇, ψ 〉 

Φ =∇ψᵣ + ∇ᵣ ψ ± ∇× ψ 

〈∇, ψ 〉 is the divergence of ψ 

∇ψᵣ is the gradient of ψᵣ 

∇× ψ is the curl of ψ 

E=−∇ψᵣ−∇ᵣ ψ 

B=∇× ψ 

Double differentiation leads to the second order partial differential equation: 

ρ = ∇*ϕ = (∇ᵣ−∇) (∇ᵣ+∇) (ψᵣ+ ψ) = (∇ᵣ∇ᵣ+〈∇, ∇〉) (ψᵣ+ ψ)=ρᵣ+J 

This equation splits into two first order partial differential equations Φ = ∇ψ and ρ = ∇*ϕ. 

ρᵣ=〈∇,E〉 

J =∇× B −∇ᵣE 

∇ᵣ B =−∇×E 

Two quite similar second order partial differential operators exist. The first is described 

above. 

(∇ᵣ∇ᵣ + 〈∇, ∇〉) ψ = ρ 

This is still a nameless equation.  

The second is the quaternionic equivalent of d’Alembert’s operator (∇ᵣ∇ᵣ − 〈∇, ∇〉). It 
defines the quaternionic equivalent of the well-known wave equation. 

(∇ᵣ∇ᵣ − 〈∇, ∇〉) ψ = φ  

Both second order partial differential operators are Hermitian differential operators.  

Solutions 

Waves 
f (τ, x)=a exp (i ω(cτ-|x-x' |)); c=±1 

solves ∇ᵣ∇ᵣ f = 〈∇, ∇〉 f = −ω² f 



Warps 
ψ =g(x i±τ) 

Clamps 
ψ =g(r i±τ)/r 
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