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Abstract: In this work, we discuss the possibility to investigate the cosmological evolution
using a covariant Ricci flow. Even though we have focused on the evolution of large-scale
structures, the results obtained can be applied equally to microscopic structures of quantum
particles.

Based on observations from the observable universe, the cosmological evolution can be
investigated by assuming the cosmological principle, the Weyl’s postulate and Einstein’s
field equations of general relativity [1]. The cosmological principle states that at large scale
the spatial component of the observable universe at any given cosmic time is homogeneous
and isotropic. The Weyl’s postulate requires that the geodesics of the fluid substance are
orthogonal to a family of spacelike hypersurfaces and there is only one geodesic passing
through each point of spacetime with a unique velocity, therefore the fluid substance is a
perfect fluid. Einstein’s field equations of general relativity are given as [2]
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With these assumptions, it is shown that the cosmological evolution can be described by the

Robertson-Walker metric [3,4,5]
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with the energy-momentum tensor of the form
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While Newton’s theory of gravity uses only the gravitational potential ¢p(r) to describe the
gravitational field via Poisson’s equation V2¢(r) = 4mGp, the gravitational field in general
relativity is described by the ten components of the metric tensor g,z. However, as in the
case of the metric given by the line element in Equation (2), there is only one unknown
function, which is a(t), it seems more reasonable that the evolution should be formulated in
terms of one equation. Furthermore, as shown in our previous works [6], a classical potential
can be identified with the Ricci scalar, therefore the most appropriate equation would be an
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equation that involves only the Ricci scalar. By contracting Einstein’s field equations with the
inverse metric tensor g%#, we obtain

8nG
—R — 4A = C_ZT (4)
If we apply Einstein’s field equations given by Equation (1) with the metric given by
Equation (2) and the energy-momentum tensor given by Equation (3) then, from the results in
the appendix 1, we obtain the following evolution equations
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However, if we apply Equation (4) for the Ricci scalar with the metric given by Equation (2)
and the energy-momentum tensor given by Equation (3) then we obtain the following single
evolution equation
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Now, as shown in our works on the Ricci flow [7,8], the cosmological evolution can be
described by the evolution equation of the Ricci flow [9]. It was shown that by applying the
Lie differentiation with respect to a vector field X*, we may propose the following tensor
equation a covariant Ricci flow
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where k is a dimensional constant. With the Lie derivative of the metric tensor given by the
relation Lygqp = X*0,9ap + 9uaOpX* + gup0.X*, Equation (8) can also be written as
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Applying Weyl’s postulate by introducing comoving synchronous coordinate systems, the
covariant Ricci flow given by Equation (9) is reduced to the evolution equation
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As discussed above, in the case when the metric depends only on one function, the
cosmological evolution should be described by an evolution equation that involves the Ricci
scalar. By contracting Equation (10), we obtain
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Using the results in the appendix 1 for the line element given in Equation (2), we arrive at the
following evolution equation
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It is possible to speculate that the evolution of the universe may be more subtle than those
that can be observed and restricted by the cosmological principle. As a generalised line
element of the Robertson-Walker metric, we may assume a cosmological evolution with a
line element of the form

ds? = D(cdt)? — A(x, v,z t)((dx)? + (dy)? + (dx)?) (13)

where D is constant. Using the equation given by Equation (11) above and Equation (12) in
the appendix 2, we obtain the following evolution equation
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As a further remark, we would like to mention here that even though our work has been
focused on the evolution of large-scale structures, the results obtained can be applied equally
to microscopic structures of quantum particles.

Appendix 1

With the line element given in Equation (2) we have
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Using the affine connection defined in terms of the metric tensor
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the non-zero components of the affine connection are found as [4,5]
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With the components of the affine connection given in Equation (3), using the Ricci
curvature tensor defined in terms of the affine connection
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we obtain the following non-zero components
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The Ricci scalar is obtained as
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Appendix 2

With the line element given in Equations (13), we have
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The non-zero components of the affine connection are
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The non-zero components of the Ricci curvature tensor are
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Using the relation R = g°°Ry, + g''R11 + g%%R,, + g33R33 We obtain
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