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Abstract

The formation of Primordial Black Holes is a robust prediction of
several gravitational theories. Whereas the creation of PBHs was very
active in the remote past, such process seem to be very negligible at the
present epoch.

In this work, we estimate the effects from the radiation surrounding
PBHs due to the absorption term in the equations that describe how
their masses depend on time. The Hawking radiation contributes with
mass loss and the absorption term contributes with gain, but a interesting
competition between these terms is analysed.

These effects are included in the equations describing PBHs and its
mass density as the universe evolves in time and the model is able to
describes the evolution of the numerical density of PBHs and the mass
evolution and comparisons with cosmological constraints set upper limits
in their abundances.

We evaluate the effect of this accretion onto PBHs and we get some
corrections for the initial masses that indicates some deviations from de-
fault values for the time scale for evaporation. The scale time of the PBHs
in the early universe is modified due to the energy accretion and we can
estimate how these contributions may alter the standard model of PBHs.

1 Introduction

Black holes are solutions to Einstein’s equations, but the mechanism for
their formation may be more generic than simply the final phase of stellar
lives. The very early universe would be very turbulent and great fluctua-
tions of the metric (at small scales) may be responsible for the origin of
black holes, whose nature is different from that black holes formed by the
stellar collapse. These black holes are named Primordial Black Holes, and
these objects may compose a fraction of dark matter that exists today.
However, the behaviour of PBHs is complicated by the fact of these objects
evolve with time: the numerical density and mass density is dependent of
the scale factor of expansion and the mass of each PBH is dependent on
time due to accretion of energy and irradiation (due to quantum effects).
Fluctuations of order unity are responsible for PBH formation, and some
models predict a spectrum with several possibilities. The B.Carr’s work is
one of the first to note that some kind of fluctuations give rise to spectrum
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with power law behaviour, i.e. the numerical density is proportional to a
power in mass [1]. Our general conclusions in this work do not depend on
these details, and if we consider a collection of PBHs as a dilute gas, the
evolution of each PBH is independent on other PBH (unless when two
PBHs collide). In other work, B.Carr et al did consider the possibility
that PBHs and wormholes could be growing as fast as the universe in the
remote past [2].

Classically, black holes contain a singularity involved by a horizon
(named event horizon) that serves as an one-way membrane, splitting
the universe in two causally separated regions. The event horizon for
Schwarschild black holes (that black holes described by mass)is not a solid
surface: any form of matter and energy can be absorbed, simply crossing
this surface. The light cone points to singularity when a particle crosses
the event horizon, therefore, any form of energy and matter that enters
on a black hole contributes to accretion of mass and the black hole mass
rises. In other work, P.S.Custodio and J.E.Horvath did prove that in the
most general conditions (quintessence and radiation), PBHs could not be
growing as fast as the universe since these conditions are very particular
and improbable, moreover, a simple analysis of the equations showed that
the general solutions did not show this behaviour, [3] and [4]. This work
show the general analysis and indicates the numerical approximations that
support these conclusions, and we show some corrections to the time scale
for evaporation if we consider the mass-energy that is absorbed by black
holes.

2 Quantum evaporation and absorption
of energy

Black holes are not eternal (they have a origin in the past) a subtly anal-
ysis made by S.Hawking [5] showed that these objects emit radiation and
particles. The mare effects of the gravitational field are able to split the
vacuum into particles and anti-particles and the black hole absorbs parti-
cles with negative energy at expenses of the emission of the same quantity
of positive energy that reaches the observer at infinity.

The details of this discovery: black holes emit thermal radiation at
temperature given by its mass. The quantum effects at the event horizon
are responsible by created particles, and the temperature is proportional
to surface gravity. Numerically, this effect is given by

T =
h̄c3

8πkBGM
∼ 6× 10−8K

(M/M�)
(1)

If we consider all details, the particle multiplicity must be taken ac-
count, since for higher temperatures this effect can create other particles.
As consequence, the object loss mass, and this effect is proportional to area
and the flux of particles. Since the spectrum is thermal, we consider the
fourth power of the temperature (Stefan-Boltzmann’s law): Φ(T ) = σT 4.
Inserting this relation (energy flux through the black hole surface) and
converting by the factor c2, we get

dM

dt
= −σT

4

c2
S (2)

where the area is given by S = 4πrg
2. Since the radius is given by

rg = 2GM
c2

, then, inserting these relations into equations above we get
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dM

dt
= − A

M2
(3)

Here, A = 4σh̄4c8

84π4kB
4G2 = 2.65× 1021g3s−1.

It is very easy solve the eq.(3) in terms of the initial mass Mi and
time, and we get

M(t) = Mi(1− (t/tevap))
1/3 (4)

where tevap(Mi) = M3
i /3A is the time scale for complete evaporation.

Figure 1: A PBH evaporating

However, the universe is filled with a thermal radiation whose origin is
primordial. This energy will be absorbed as it crosses through the black
hole horizon. This gain is proportional to area of the black hole and the
flux, which is determined by the temperature Tback. Note that as the
universe expands, it cools and its temperature falls, therefore the flux is
dependent on the cosmological situation. In the Fig. 1 we can see the
evolution of the PBH mass as function of time.

Therefore, the product of the black hole area and this flux is the pos-
itive term responsible for accretion of energy:

dM

dt
= 4πrg

2 σTback
4

c2
(5)

where the temperature is given by the background and depends on the
scale factor of expansion, Tback = Tback(t).

The total mass variation is given by summing both terms above(
dM

dt

)
total

=

(
σS

c2

)
(Tbh

4 − Tback4) (6)

dM

dt
= − A

M2
+ λM2T 4 (7)

with λ = 5.4 × 10−81gs−1 if mass and temperature are measured in
g and Kelvin, respectively. This equation predicts that the equilibrium
between black holes and the radiation is determined by the temperature
of the background (critical mass) and it is numerically given by
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Mc(T ) ∼ 2.62× 1025g

(Tback/K)
(8)

Figure 2: Critical Mass(T)

Therefore, stellar black holes (i.e. those black holes arising the death
of stars) have masses very above this limit, and the Hawking evaporation
is completely negligible for these objects. In fact, the second term, for
M = 5M� and T ∼ 2.7K is responsible for the gain at rate Ṁabs ∼
2.86× 10−11gs−1 and the Hawking evaporation term, for this object is
numerically Ṁevap ∼ −2.65× 10−47gs−1, or several orders of magnitude
smaller than the classical absorption. Any black hole above the critical
mass must be described only by the second term, the absorption term,
since the evaporation term decays very quickly for big black holes.

Now, in the next section, we must consider how one black hole evolves
as the thermal radiation is considered when the universe was hotter than
today.

In order to solve this dynamics we must know the cosmological initial
data, and some simplifications are assumed.

3 Primordial Black Holes in the Radia-
tion Era

The Hawking radiation describes how a PBH with initial mass loss energy
as the time goes on. We do not know if this effect allows a remnant with
mass close to the Planck scale since we do not have a quantum gravity
theory yet, therefore we do not include this discussion here.

The absorption term written as a function of temperature can be ex-
pressed as

dM

dt
= 4πrg

2F (T ) =
16πG2σ

c4
M2T 4 (9)

But is more useful to represent it in terms of radiation density. Since
F (T ) = c

4
%rad(T ) we shall write it as

dM

dt
=

16πG2

c3
M2%rad(T ) (10)

Now, if we consider that a PBH was formed within the radiation era,
the object will be immersed in a thermal bath, and it can absorbs the
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energy from the background. The complete evolution of this object may

be described by the equation (B = 16πG2

c3
∼ 8.36× 10−46g−2cm3s−1).

dM

dt
= − A

M2
+BM2%rad(T ) (11)

the second term describes the energy that crosses the event horizon,
and it is proportional to area, therefore it is proportional to mass at second
power. Here λ = aB as it was defined above.

Now, we can evaluate the equilibrium situation: the black hole mass
that yields dM

dt
= 0. This situation is a local and instantaneous equilibrium

since the universe expands. Then, we can estimate the critical mass: the
mas for which the black hole temperature = background temperature.
At this moment, there is a equilibrium between the evaporation and the
absorption term.

Solving dM
dt

= 0 yields the critical mass as a function of %rad(t).

Mc(t) =

[
A

B%rad(t)

]1/4

∼ 4.2× 1016g%rad(T )−1/4 (12)

with %rad measured in gcm−3 as it should be.
The radiation era was very important in the very early universe. In

this stage, the universe was filled with a thermal bath with density given
by %rad(t) = ag∗T

4. g∗ counts for the relativistic freedom degrees in
particles at that moment, and a = 7.56× 10−15ergcm−3K−4.

This era begins at the end of Inflation and it ends when the universe is
matter-dominated. From this stage, the radiation is decoupled from the
thermal equilibrium that existed previously.

The existence of PBHs in the early universe launches several con-
straints and astrophysical consequences. If the Hawking radiation is taken
into account, then the smaller PBHs formed within the radiation era can
be exploding today. Several considerations rise up the possibility that
some GRB events tracks their behaviour, see D.Cline and W.Hong [6].
The radiation surrounding PBHs may be absorbed by these objects and
the original prevision of PBHs with 1015g exploding today must be mod-
ified by the energy absorbed in that period.

However, in this article we analyse the equations carefully, in order to
split the approximations and we will show that some simplifications are
very well justified in order to estimate the initial masses of the PBHs that
may be exploding today. We can apply these ideas in order to evaluate
the radiation that is injected in the medium if a PBH population was
formed. Here we consider a model with PBHs with the same initial mass
but this does not constitutes a loss of generality because we can integrate
easily the results over the mass spectrum.

4 The Critical Mass and its Time Evolu-
tion

The radiation and temperature in the Radiation Era are given by ρrad(t) =
π2

30
g∗( T

2.75K
)
4

and T (t) ∼ 1MeV (t/s)−1/2. We can combine these expres-
sions to obtain ρrad(t).

The Critical Mass is a very important parameter since it splits those
PBHs that are cold Tpbh < Trad, and they are absorbing energy (they
are emitting too, but the second term dominates) from those hot PBHs
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Tpbh > Trad(t). This PBH population injects radiation in the cosmic
medium, and the contribution is proportional to mass, the time and a
comparison between the temperatures: Trad(t) versus Tpbh.

Therefore, with the expressions above, the Radiation Era had ρrad(t) ∼
2.5× 10−19(t/s)−2gcm−3, therefore the Critical Mass grows in time as

Mc(t) ∼ 1015g(t/1s)1/2 (13)

Figure 3: Critical Mass(T) at Radiation Era

For comparison effects, the Critical Mass at matter era depends on
time as

Mc(t) ∼ 1026g(t/t0)8/3 (14)

Figure 4: Critical Mass(T) at Matter Era

and t0 ∼ 13.8Gyr. Therefore, black holes formed by the stellar deaths
are very cold. With the definition above we cast the eq.(11) in a most
suggestive form

dM

dt
=

A

M2

[
(M/Mc)

4 − 1

]
(15)

this relation is very useful since those black holes above the critical
mass will be very cold, and these objects do not evaporate (the evaporation
exists but the absorption term dominates the first term: M > 10 ∗Mc

implies dM
dt

>> 0).
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And, those PBHs satisfying M < Mc/10 will be very hot, and the
evaporation is 104 most effective than the absorption. But it is equivalent
to consider that the radiation is constant within the time scale for evap-
oration. Now, it is interesting to note that only those PBHs close to the
Critical Mass will have both terms numerically closer.

But in this case, the absorption and evaporation will lead to dM
dt
∼ 0,

for PBHs where Mc/10 < M < 10Mc. Therefore, it is enough analyse the
comparison between the terms in eq.(15) above.

In the same way, those PBHs above the 10Mc will be very cold, and
the absorption is very relevant here. Then, only the PBHs whose initial
mass falls within the interval Mc/10 < M < 10Mc must be analysed
solving both terms in the differential equation given by the eq.(15). But
we note that this initial condition is a coincidence. In order to proceed,
let us consider the Critical Mass in details, in order to estimate when we
can use useful approximations.

5 Radiation Era and Critical Mass: which
PBHs were able to arise at t = ti?

The dynamics of the early universe must be solved before we analyse the
Critical Mass, the PBH formation and the Horizon Mass. The fluctuations
of the metric can induce the formation of PBHs if the scalar amplitude is
greater then 1/3 as it is proven in B.Carr [1].

We know that the very early universe was very flat, therefore our
approximations take into account that Ω = 1 when the universe was very
hot and dense. These fluctuations form PBHs with a mass spectrum, i.e.
there is a probability of formation of PBHs as a mass dependence, and a
invariant scale spectrum yields a PBH mass spectrum with Γ(m) ∝ m−2/3

as B.Carr showed in [1].
Now, our question is: how the radiation density will affect the time

scale for complete evaporation if the Hawking mechanism dominates for
those PBHs below the Critical Mass?

We consider three situations: a) PBHs form with M > 10Mc at t = ti,
b) PBHs form with M ∼ Mc at t = ti and M < Mc/10 at t = ti. The
cases a) and c) are very interesting because there is bigger intervals for
mass, but the case b) occurs with special conditions since the temperature
of the cosmic radiation and the mass scale where this object form are
independent.

First: In the cases above we will suppose that these objects are non-
relativistic matter, therefore the mass density in PBHs is given by ρPBH =
mnPBH where nPBH is the numerical density in PBHs.

Second: ρrad >> ρPBH . This condition may be relaxed in models
where the very early universe is filled with PBHs and no radiation. In these
models, as discussed in Smolin [7], exist a primordial phase dominated
by PBH matter and these objects decay very quickly, give rising to the
radiation era. The radiation may be originated in the Hawking radiation
in these exotic models!

5.1 PBHs sub-critical at ti

For those PBHs formed in this phase where m(ti) < 0.1 ∗Mc(ti) the time
scale for evaporation is very smaller than the variation in the radiation
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due to the cosmic expansion (within the same period), remember that
ρrad ∝ a−4(t).

Therefore, we can suppose Mc ∼ cte since the PBH sees a background
with the same radiation density if compared to its time scale for mass
loss.

In this way, we can write for the eq.(15)

M2

A[(M/Mc)4 − 1]
dM = dt (16)

We can integrate this equation for estimate the effect of the radiation
in the Hawking and how the radiation affects the life time for these objects.

Solving both sides above we get

tevap(M,Mc) = ti +
1

3A

∫ 0

Mi

3M2dM

A[(M/Mc)4 − 1]
(17)

In the limit: ρrad = 0 we get Mc →∞ and we get the know time scale
for evaporation: t ∝ M3 that it would be. Then, this formula is useful
for estimate the initial mass Mi that is important for those PBHs that
evaporate today, and these objects may be some kind of GRBs as its has
been analysed in D.B.Cline et al in [6].

The right side may be written as

Mi
3

3A

∫ 1

0

3µ2dµ

1− Cµ4
(18)

where we have µ = M
Mi

and C = (Mi
Mc

)
4
.

The integral above can be expanded in a Taylor series. The integrand
is expanded as a function of C, then we get

3x2

1− Cx4
= 3x2 + 3Cx6 + 3C2x10 +O(C3) (19)

Inserting this term in the integral above we will get

tevap(Mi, ρ) = ti +
Mi

3

3A

[
1 +

3C

7
+

3C2

11
+ ...

]
(20)

Substituting C back into eq.(20) yields

tevap(Mi, ρ) = ti +
Mi

3

3A
+

Mi
7

7AM4
c

+ ... (21)

Finally, inserting this expression in terms of ρ we have an approxima-
tion for the time scale for evaporation

tevap(Mi, ρrad) ∼ ti +
Mi

3

3A
+
M7
i

7A2
Bρrad (22)

Note that we recover the Hawking time scale for evaporation if ρrad =
0. In terms of the Critical Mass, we may define it as (use ti = 0)

tevap(Mi, ρrad) ∼
Mi

3

3A

[
1 +

3

7

(
Mi

Mc

)4]
(23)

which holds only if Mi < Mc(t), where t means the formation time of

the PBH and we remember that Mc(t) ∼ 1015g(t/s)1/2.
Now, we may investigate how the dense and hot medium contributes

to some gain of mass, and therefore, that PBHs with initial mass of order
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M∗ ∼ 5× 1014g may not be exploding now. Let us define the scale of
mass for PBHs that evaporates today (without consider the classical term
of absorption). In this case we have the time scale as

t0 ∼
M∗

3

3A
∼ 13.8Gyr (24)

The constraint: Mi < M∗ holds, because those PBHs with initial mass
bigger than this value will be living today (Mi ≥ M∗) considering or not
the existence of the thermal background!

Then, let us suppose that some PBH with initial mass Mi explodes
today. We may simplify the expression eq.(23) above taking tevap ∼ t0

and scaling this term as M∗
3

3A
. Therefore, this equation becomes

M3
∗

3A
=
Mi

3

3A

[
1 +

3

7

(
Mi

Mc

)4]
(25)

If we define

Yi =

(
M∗

Mi

)
(26)

and substituting the eq.(13) for the Critical Mass as function of time
(at Radiation Era), we can write eq.(25) as

Yi
7 − Yi4 − 0.026(t/s)−2 = 0 (27)

Now, we can solve this equation numerically, for some choices of the
initial time of PBH formation, taking into account that t > 1s because
the Critical Mas must be greater than M∗ in that moment, in the other
hand the object is colder than the environment.

Solving the eq.(26) above we get a table of values. This table is in-
teresting: we can choice some values for the formation time t that enters
in the right side. For t = 0.001s we get easily Yi = 4.298 which implies
Mi = M∗/4.298.

For t = 0.01s we get Yi = 2.251 and Yi approaches to 1 rapidly as
t >> 1. In the case t = 1000s we have Yi = 1.000000009. The results
are not difficult to understand: only that PBHs formed very before than
t ∼ 1s had gain mass in order to avoid the complete disintegration at
t = t0. Those PBHs formed after t = 1s will find a medium rarefied, and
the energy that these objects could be able to absorb is very small. For
these cases, the default prevision Mi = M∗ ∼ 1015g holds and these PBHs
will evaporate today, billions of years after the formation.

In the next section we show that the energetic conditions for a sub-
stantial growing require that the energy density at the formation of the
PBH must be very higher. This conclusions are very robust and ruled out
PBHs as possible candidate for the seeds for the AGNs.

5.2 PBHs super-critical at ti will became super-
massive?

This case is very interesting because these PBHs will be growing until
these objects cross the Critical Mass at t. This time depends on the
initial conditions (PBH mass and the temperature of radiation when this
object arises.

Since the Critical Mass is the inverse of cosmic temperature,then there
is a period when even very small PBHs can gain some mass and survive
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Figure 5: Mass critical as function time

against quantum effects. These objects will be evaporating after they
have crossed the Critical Mass. We can evaluate these relations (time,
masses, etc) in order to investigate what portion of PBHs can survive as
dark matter today.

Now, the equation that describes the PBH evolution is very easy to
solve in this limit. We will consider that dM

dt
∼ 0 for all those PBHs whose

initial mass isMi > 10Mc at t = ti. We know that the PBH mass when the
mass is close to Critical Mass will be almost constant. From this point, the
object will be at an instantaneous equilibrium with the temperature. The
universe, however, continues to be expanding and the Critical Mass will be
different. Now, the PBH is hotter than the environment and the Hawking
mechanism starts to gain the battle against the classical absorption term.

The differential equation describing the PBHs above the Critical Mass
is

dM

dt
= BM2ρrad(t) (28)

and this approximation is excellent while the PBH mass is above the
Critical Mass.

The solution is very simply

1

Mi
− 1

M(t)
= B

∫ t

ti

ρrad(t)dt (29)

whose solution can be expressed as

M(t) =
Mi

[1−BMi

∫ t
ti
ρrad(t)dt]

(30)

The Critical Mass Mc(t) grows as Mc(t) ∝ t1/2 if and only if ρrad >>
ρPBH + ρmatter, i.e. in the Radiation Era.

Substituting %rad(t) = %rad(ti)t
−2 into integral above and imposing

that the mass is positive we get

%rad(ti)

(
1

ti
− 1

t

)
<

(
1

MiB

)
(31)

But, in later times the second term is negligible, therefore the causal
constraint is written as
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%rad(ti)

(
1

ti

)
<

(
1

MiB

)
(32)

This means that a PBH with mass bigger must not be described by
the equations above, and it is not clear how to formulate the accretion
into very big PBHs. A comparison with the cosmological horizon may
launch some light into this question.

The ineq.(32) above can be written as

Mi <

[
ti

B%rad(ti)

]
∼ 4.7× 1063g(ti/s)

3 (33)

But this value must be smaller than the mass contained within the
cosmic horizon, and we expect that this causal constraint must be obeyed.
The horizon mass Mhor(t) depends on time, and we can compare these
values now. The horizon mass is of orderMhor ∼ 1042g(t/s), then a simply
comparison of these expressions lead us to conclude that the formation
time for PBHs above the critical mass is given by Mi < Mhor(t) which
gives

ti < 1.45× 10−11s (34)

Now, an interesting question arises. Is there some possibility for a
small PBH became super massive? It is very known that AGNs are driven
by immense black holes lurked in the centre of these galaxies. Let us sup-
pose that some PBH (satisfying the causality constraints at its formation)
arises at the moment ti, where the radiation density can be estimated. The
formula above can be inverted in order to estimate what radiation density
is required in order to obtain a immense black hole that grows from the
thermal flux around it.

In a test, let us suppose the following data: initial mass Mi ∼ 1020g
and the final mass at t is M(t) ∼ 106M�.

Solving the differential equation above, considering that %rad(t) ∝ t−2,
i.e. Radiation Era, we get

%rad(ti) >

[
(1− 0.5× 10−19)ti

B × 1020

]
(35)

where 0.5 × 10−19 is the inverse of the ratio M/Mi. Inserting the
numerical value of B we deduce that the requirement for %rad(ti) is im-
probable or physically rare, given the conditions of temperature, pressures
and cosmological data involved. In this way, the cosmological radiation
that fills the universe (or even the cosmological constant) was not enough
in order to feed the growing of PBHs to super massive black holes that
exist in the AGNs. The only possibility is that these objects formed by
the fusion from smaller black holes.

In fact we can invert the ineq.(33) above to get the energy density
enough to obtain very big PBHs:

%rad(ti) > 1.2× 1025(ti/s)gcm
−3 (36)

where we did substitute B,M,Mi in the numerical example above.
These PBHs were able to grow only if they formed before

ti < 5.71× 10−14s (37)

inverting the inequalities above.
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The inequalities (34) and (37) are very important: let us summarise:
(1) the ineq.(34) sets an upper limit for those PBHs that would be formed
above the critical mass, and therefore in growing regime. In the other
hand, (2) the ineq.(37) sets an upper limit for those PBHs that formed
above the critical mass and moreover were in conditions to gain very much
mass. These restrictions appear due the fact of the critical mass grows
in time. But we can estimate the initial mass of these PBHs now. In
fact, these PBHs must be smaller than the horizon, therefore the initial
mass of PBHs in that conditions is given by solving the inequality: Mi =
Mhor(t ∼ ti), with ti ∼ 5.71× 10−14s. This relation lead us to conclude
that only PBHs smaller than

Mi < 5.71× 1028g (38)

may be formed in the very early universe in conditions to get some
considerable mass.

This result ruled out the possibility of we get super-massive black
holes, unless we choice very extremal conditions: the ti very close to the
Planck epoch, but this condition is delicate because the universe could be
in an inflationary state and the scale factor and the temperature of the
radiation is very different (compared to the Radiation Era of the standard
model of cosmology).

We must observe the causal constraint that the horizon sets because
the fluctuations may form PBHs whose PBH mass is contained within
the horizon. Then, the formula that describes the PBH mass given by the
eq.(29) has a limited range since we must consider cosmological constraints
and all approximations used.

The estimates evaluated above are general and this study deserves
interest, because their study may place constraints on the physics, even if
these objects never existed [7].

The evaluations made above do not alter even we consider the accretion
effect from the background energy, the mass-energy that one black hole
can absorb due its gravity.

The models of accretion taking into account quintessence lead to the
same conclusions, as can be seen in P.S.Custodio and J.E.Horvath [3]: in
this case, small PBHs could not be very massive (absorbing the energy
from quintessence) and their final masses are similar to the initial values.

Now, we can show that PBHs above the Critical Mass does not gain
much more mass even at t >> ti. If we consider that the formation time
satisfies t < 1.25×10−44/3s, the horizon mass was Mhor ∼ 1042g(t/s) and
the PBHs had mass close to the horizon mass, we can insert these values
into equations above and solving the relation that describes the mass of
PBH that was super-critical at its formation time. In this way we get the
following equation:

M(t) ∼ 2.5× 1027g[
1− 5.2× 10−37

(
1
ti
− 1

t

)] (39)

Since t >> ti ∼ 1.25× 10−44/3s we can write it as

M(t) ∼ 2.5× 1027g

1− 5.2× 10−22.3
(40)

or, the gain was very small even in the most reasonable circumstances!
Note that we do not need integrate the complete eq.(15) because the
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accretion term is bigger than the evaporation term. In this case the ratio
of both terms is given by the expression: ( M

Mc
)
4
>> 1. There is a fine-

tuning here: these PBHs were super-critical and they were very above
the Critical Mass, soon, the Hawking process is completely negligible. In
the other hand, the medium is not hot and dense enough to feed these
objects in a rate that leads these PBHs to achieve great masses at the
end of Radiation Era! These objects remain with the same mass as they
born, with a very small accretion over that period.

The mass of PBHs that were formed early and were super-critical was
almost constant. Therefore, these objects will cross the Critical Mass in
the future. This interval of time is given by

tcross(Mi) ∼ 1s

(
Mi

1015g

)2

(41)

Figure 6: Lapse for a PBH achieve equilibrium, R.E.

in the Radiation Era and it is given by

tcross(Mi) ∼ t0
(

Mi

1026g

)3/8

(42)

in the Matter Era.
From these values, the PBH crosses the Critical Mass and become

hotter than the environment, the Hawking process begins to dominate.
It is interesting to estimate the lapse when PBHs satisfying the physical
requirements given by eq.(38) holds above the critical mass. If we insert
the upper limit Mi ∼ 5.71× 1028g into eq.(41) above, we get tcross ∼
3.2× 1027s. During these long period these PBHs gain mass but in a very
slow rate.

6 Primordial Black Holes and Cosmol-
ogy

In order to get the complete behaviour of PBHs we must consider the scale
factor a(t). The radiation that falls onto the surface of a PBH is driven by
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Figure 7: Lapse for a PBH achieve equilibrium, M.E.

the expansion of the universe, and therefore, the curvature is important.
Now, the evolution of PBHs depends on some hypothesis: first, we will
consider that ρrad >> ρpbh. This hypothesis is very reasonable, mainly
in the radiation era (by definition). Second, the dynamics of the universe
was very well described by the Friedmann’s equations, therefore, the scale
factor will not be affected by the disintegration of PBHs due to quantum
effects or its growing as the time goes on.

Then, the scale factor a(t) satisfies the Friedmann’s equations

H2 =
8πG

3
ρ− K

a2
(43)

and (
ä

a

)2

= −4πG

3
(ρ+ 3P ) (44)

Here ρ = ρrad + ρpbh ∼ ρrad and P = ρrad
3

.
Now, we know that PBHs compose non-relativistic matter, and its

mass density is given by ρPBH = nPBHm, with nPBH stands for the
numerical density. The pressure for this matter is zero, and we shall
consider that K = 0, because the universe was very flat in the beginning.

6.1 Monochromatic spectrum: all PBHs had the
same mass!

This formula is very useful if we consider that the PBHs have a monochro-
matic spectrum, i.e. all they have same mass. The case mi < Mc(t = ti)
is solved analytically. The time derivative of ρ is (let us remove the index
PBH from now)

ρ̇ = ṅm+ nṁ (45)

But we know that ṁ = −Am−2, then if we develop the right side we
get
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ρ̇ = −
(

3H +
A

m3

)
nm (46)

or

dρ

ρ
= −

(
3H +

A

m3

)
dt (47)

Solving this simply equation yields

ρ(t) = ρ(ti)a(t)−3exp−
[
A

∫ t

ti

m−3(t)dt

]
(48)

with m3(t) = m3
i

[
1− t

tevap(mi)

]
.

Solving the integral above yields the result

ρ(t) = ρ(ti)a(t)−3

[
t− tevap(mi)

ti − tevap(mi)

]
(49)

which holds for t < tevap(mi) as it should be. Since the spectrum is
monochromatic, for t > tevap we get ρ = 0 (some theories consider that
the evaporation is not complete, leaving a relic at the Planck scale).

We summarize all these results in a formula

ρ(t) = ρ(ti)a(t)−3

[
t− tevap(mi)

ti − tevap(mi)

]
Γ(t, tevap) (50)

where Γ(t, tevap) = 0 for t > tevap(mi).
Note that the initial conditions are satisfied: a(ti) = 1, Γ(t = ti, tevap) =

1, since the PBH begins to evaporate from this epoch. This formula was
able to decouple the dilution due to the cosmological expansion and the
quantum disintegration of these objects in a closed form. We can pro-
ceed to evaluate the mass density for those PBHs that formed above the
Critical Mass at ti in a similar way.

The case mi > Mc yields a similar formula, in this case, we can ignore
the evaporation and the PBH mass density is given by ρ(t) will be given
by

ρ(t) = ρ(ti)a(t)−3exp

[
B

∫ t

ti

m(t)ρrad(t)dt

]
(51)

This function holds only if ρpbh << ρrad, or the radiation of the PBHs
will alter the global dynamics and the radiation density also.

6.2 Integrating the monochromatic spectrum

In fact, the formula given by the eq.(47) is specified at the each initial
mass mi.

Here, there is some source of unknown parameters and details because
the very early universe is not known at all of its details. In fact we may
speculate that the initial parameter ρ(ti) is independent on the mass, but
the term tevap = tevap(mi) depends on the mass. If this case is valid, the
eq.(47) must be integrated over the mass, but these integration depends
on the choice of the mass spectrum. In some models all PBHs appear at
the beginning with mass dependent on the time and constrained by the
cosmological mass horizon:
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Mhor(t) =
c3

G
t ∼ 1042(t/s)g (52)

If we contrast with the eq.(13) we have that PBHs formed close to
t ∼ 1s were very above the Critical Mass (that mass was ∼ 1015g). These
PBHs were in accretion regime and they will achieve the equilibrium only
much later. If we consider the expressions above, only PBHs formed before
t < 6 × 10−56s were sub-critical necessarily. From these evaluations, we
can estimate the lapse for a PBH that crosses the Critical Mass in the
future, much later than it was formed by the pressure fluctuations. It is
clear that before the Planck time, tpl ∼ 10−43s, any evaluation is very
imprecise and speculative.

Moreover, the constraints that were used in the Literature in order to
put some stringent limits to the PBHs are useful only in a limited range
of PBH masses, because there is a big interval for PBHs that did not
emit radiation, since Mhor(t) >> Mc(t) and PBHs arise with M ∼Mhor.
Other mechanisms could be responsible to PBH formation in a very broad
range of mass different from eq.(43) above, as collisions between cosmic
strings, inflationary fluctuations and more.

All results written in the sections above are valid only in the approx-
imation ρrad >> ρpbh in whose case the analytical solutions could be
described.

The system is very complicated if the approximation above does not
hold. In principle a gas of PBHs can inject much energy and the radiation
density may be altered by the evaporation. A simply scenario consists in
a dilute gas of PBHs that evaporates and leads radiation as a relic: in
this case, we can estimate the numerical density or the mass density in
small PBHs that give rise to the radiation filling the universe. Moreover,
small fluctuations in the PBH distribution may lead to the corresponding
fluctuations in the background radiation when these objects evaporate.

A collection of PBHs plus radiation in the early universe may be de-
scribed by the set of equations (considering a homogeneous universe in
the average)

H2 =
8πG

3
(ρrad + ρpbh)− K

a2
(53)(

ä

a

)2

= −4πG

3
(ρ+ 3P ) (54)

dM

dt
= − A

M2
+BρradM

2 (55)

and the energy conservation law may be written as

ρ̇rad + 4Hρrad = −ρ̇pbh (56)

with

ρ̇pbh = ρpbh

[
mBρrad −

A

M3
+
ṅ

n

]
(57)

In the other hand, the numerical density n depends on the mass, energy
and the cosmic time, defining the distribution function f(E,M, t). Here,
the details of evaporation and absorption are relevant also.

The numerical density in PBHs is given by
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n(M, t) =
g

(2π)3

∫
dEf(E,M, t) (58)

The complete set of equations depends on micro-physical details given
by the kinetic theory of a black hole gas and at present we do not have
all details yet. Remember that each particle depends on time, due to the
evaporation effects and the absorption of energy. The usual kinetic theory
of particles is simpler: the particles are created or destroyed in collisions
but they do not depend on time explicitly. The eq.(15) that describes
the behaviour of PBHs is valid in the approximation Mpl < M < Mhor.
The lower limit sets the quantum effects that are unknown yet, and the
upper limit sets the causal constraint determined by the universe itself.
The metric that describes a black hole makes sense only if the space-time
is flat far away from the PBH.

7 Conclusions

The most primitive eras in the very early universe may be prolific for
PBH-formation.

If some PBHs survive against quantum effects of evaporation, the very
hot phase of the early universe was able to set these objects with mass
derivative positive, therefore with gain of energy. Some PBHs may survive
against the evaporation due to this initial mass, but some gain of energy
may be responsible for a longer duration. Black holes with stellar mass
will be above the Critical Mass, therefore the Hawking effect is negligible
for a long time. If PBHs formed with mass close to the horizon mass,
they were in the accretion regime, because the conditions for evaporate
happen very below that scale Mc << Mhor. But we could show that in
these conditions, the Hawking evaporation term is negligible, therefore,
those PBHs will be absorbing energy for a long time.

However, the energy density was not enough for a rapid growing regime,
and we could demonstrate that PBHs will not be very massive at the final
phase of growing.

A PBH with mass M ∼M� does not become a super-massive black
hole energizing some AGN. In this work we consider some cosmological
situations.

The background is responsible to determine the energy that is ab-
sorbed, and the behaviour of the PBHs is dependent on the cosmological
constraints.

Primordial Black Holes that formed below the Critical Mass were hot-
ter than the environment and we can obtain a new estimate for the dura-
tion of these objects different from the usual formulae because there was
a energy accretion onto these PBHs. This effect deviates the usual nu-
merical values for PBHs that explode today compared to the initial mass
around M ∼ 1015g. We could show that very small PBHs may be formed
before t ∼ 1s since the background was very hot and some gain of energy
was able to alter the time scale for evaporation. This result is interesting
because if very small PBHs formed at t << 1s they were able to survive
until now! These objects may comprise some fraction of the dark matter.

In flat or open models, the future of PBHs is uncertain, but if the
universe is closed, the Hawking evaporation does not affects these objects
until the universe contracts to a point again. We conclude that these
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objects will survive in closed universes. If quantum effects lead to stable
Planck relics is a open question, and this is a plausible alternative.

We can put strong constraints to the initial abundance of PBHs from
the present data: we know that the dark matter component is of or-
der 0.30, and PBHs are a natural candidate for dark matter (cold) al-
though they were not classified as barionic dark matter. The PBHs
that could grow with a very strong rate could be formed only before
t ∼ 1.25×10−44/3s, therefore, if these PBHs had the mass of horizon,
these PBHs must have mass Mpbh ∼ 2.5× 1027g, and these objects would
be very cold until the present epoch.
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