A Sieve for the Twin Primes

H.L. Mitchell

H. L. Mitchell

hlmitchell88@yahoo.com

CUNY-The City College

160 Convent avenue New York, NY 10031

Abstract. We introduce a sieve for the number of twin primes less than N by sieving through the

set $\{k \in \mathbb{Z}^+ \mid 6k < N\}$. We derive formula accordingly using the Euler product and the Brun.

Sieve.

We then use the Prime Number Theorem and Mertens' Theorem.

The main results are:

1) A sieve for the twin primes similar to the sieve of Eratosthenes for primes involving only the

values of k, the indices of the multiples of 6, ranging over k = p, $5 \le p < \sqrt{N}$

2) A formula for the approximate number of twin primes less than N in terms of the number of

primes less than N

3) The asymptotic formula for the number of twin primes less than N verifying the Hardy

Littlewood Conjecture.

1. Introduction

The main result of this paper is a sieve for the twin primes akin to the sieve of Eratosthenes for primes. It is applied twice to the set of all natural numbers k where $\{k\}$ is the *index* for all multiples of 6 and the range for the primes is p = 5 to $p < N^{1/2}$.

We consider the set of all pairs (6k-1, 6k+1) which are less than N and delete the values of k such that 6k-1 is composite. This leaves us with the pairs for which 6k-1 is prime. From these we delete the values of k such that 6k+1 is composite and that leaves us with the twin primes less than N.

Using the Euler product formula, The Brun Sieve, The Prime number theorem and Mertens' 3rd Theorem, we derive a formula for the approximation of $\pi_2(N)$ in terms of π (N) (the number of primes less than N) and the asymptotic formula for π_2 (N) to verify the Hardy Littlewood Conjecture.

2. Deriving the formula and some set theory

All the twin primes except $\{3, 5\}$ are of the form $\{6k-1, 6k+1\}$

Let
$$T = \{(6k-1, 6k+1) \mid k = 1, 2, 3...\}$$

Let
$$u_k = 6k - 1$$
 and let $v_k = 6k + 1$

And define $t_k = (u_k, v_k)$

Listed below are the first few members of the set T. (the composite numbers are underlined)

 $k \equiv \pm 1 \mod 5 \Leftrightarrow t_k$ contains a multiple of 5 and is therefore not a pair of twin primes.

Let S_p = { $t_k \mid t_k$ contains a multiple of prime p}

 $T_p = T \setminus S_p = \{t_k \mid t_k \text{ does not contain a multiple of prime } p\}$

$$S_5 = \{t_4, t_6, t_9, t_{11}, t_{14}, t_{16}, t_{19}, \dots\} = \{(23, 25), (35, 37), (53, 55), (65, 67), \dots\}$$

$$T_5 = \{t_1, t_2, t_3, t_5, t_7, t_8, t_{10}, t_{12...}\}$$

The values of k in $S_5 = \{4, 6, 9, 11, 14, 16, 19, 21...\} = \{k \in \mathbb{Z} \mid k \equiv \pm 1 \mod 5\}$

The values of k in $T_5 = \{1,2,3,5,7,8,10,12,13,15,17,18,20,22,23,25,27,28,30...\}$

 $k \equiv \pm 1 \mod 7 \Rightarrow t_k \text{ contains a multiple of } 7$

The values of k in $S_7 = \{6, 8, 13.15, 20, 22, 27, 29, 36, 38...\} = \{k \in \mathbb{Z}^+ \mid k \equiv \pm 1 \mod 7\}$

The values of k in $T_7 = \{1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19 ...\}$

Since 6(2) - 1 = 11, $k \equiv \pm 2 \mod 11 \Rightarrow t_k$ contains a multiple of 11

The values of k in $S_{11} = \{9, 13, 20, 24, 31, 35, 42, 46 \dots\} = \{k \in \mathbb{Z}^+ \mid k \equiv \pm 2 \mod 11\}$

The values of k in $T_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25...\}$

If p is prime and $p = 6a \pm 1$, t_k contains a multiple of $p \Leftrightarrow k \equiv \pm a \mod p$

Let P= the set of all primes

Let
$$T_w = \{ t_k = (u_k, v_k) \mid u_k \in \mathbb{P} \text{ and } v_k \in \mathbb{P}, k \in \mathbb{Z}^+ \}$$

$$T_w = T \setminus \bigcup_{p \ge 5} S_p$$
; by De Morgan's Law $T_w = \bigcap_{p \ge 5} T_p$

Lemma 1:

Define k_p as the value of k for primes p = 6k + 1 or p = 6k - 1.

and T_w as the set of all twin prime pairs.

Given a large integer N and 6k + 1 < N,

$$t_k \notin T_w \Leftrightarrow k \equiv \pm k_p \pmod{p}$$
 for some prime $p, 5 \leq p < \sqrt{N}$.

As in the sieve of Eratosthenes, we delete $\{k \mid k = np \pm k_p \text{ for primes } p = 6k_p \pm 1\}$

$$n = \{1, 2, 3...\} \forall p \ni 5 \le p < N$$

Consider the set $K = \{k \in \mathbb{Z}^+ | k < 6N\}$.

In every interval $I \in K$ such that $I = \{np, (n+1) p\}, n \in \mathbb{Z}^+ \text{ and } p \text{ is prime, } 5 \le p < \sqrt{N} \}$

 \exists exactly 2 values of k, (i.e. $k = np + k_p$ and $k = (n+1)p - k_p$), such that t_k contains a multiple of p

Let $\pi_2(N)$ = the number of primes p less than N such that p+2 is also prime.

By the Brun Sieve we have:

(1)
$$\pi_2(N) = \frac{N}{6} \prod_{p=0}^{V} (1 - 2/p) + R_p \text{ where } R_p \text{ is the error term}$$

and V= maximum prime $p < \sqrt{N}$

Example 1:

$$N = 529, V=19$$

$$\pi_2(N) \approx \frac{529}{6} \prod_{5}^{19} (1 - 2/p) = 20.6521...$$

Actually,
$$\pi_2(N) = 25$$
 so $R_p \approx 4.3$

Let π_2 (N) = the number of primes p less than N such that p + 2 is also prime.

Where V is maximum prime $p < \sqrt{N}$

Table 1 $(\pi_2(N))$ compared to the formula

N	$\pi_2(N)$	$\frac{N}{6} \prod_{5}^{V} (1 - \frac{2}{p})$
529	25	Approx.
1000	35	31
2500	72	64
5000	126	111
7500	169	150
10000	205	191
15000	272	261
20000	342	328
25000	408	394
30000	467	456
35000	539	520
40000	591	570
50000	705	700
75000	958	968

This estimate exceeds the actual number of twin prime pairs for large values of N because for some primes p and interval $\{1, \frac{N}{6}\}$, the number of multiples of p in each of the sets $\{k: p \mid 6k - 1\}$ and $\{k: p \mid 6k + 1\} = \lfloor \frac{N}{6p} + 1 \rfloor$ where $\lfloor \rfloor$ is the greatest function, therefore some composites will not be sifted out by the product formula given above. The formula can be refined by rewriting it as a two-part sieve formula that represents the application of Eratosthenes' Sieve first to 6k-1 type numbers then to the 6k+1 types.

See equation (2).

3. Assessing $\pi_2(N)$ as N goes to infinity

We will consider Mertens 3rd Theorem and The Prime Number Theorem

Mertens' 3rd theorem

$$\lim_{n\to\infty} \ln n \prod_{p\le n} (1-\frac{1}{p}) = e^{-\gamma}$$
, where γ is the Euler - Mascheroni constant $\gamma=0.5772156649...$, $e^{\gamma}=1.7810724...$ and $e^{-\gamma}=0.5611459...$ (Lagarias [2])

The Prime Number Theorem

The Prime Number Theorem gives an asymptotic formula for the number of primes less than N as $\pi(n) \sim n/\ln n$ and for a better approximation $\pi(n) \sim \int_2^n 1/\ln t \ dt$ which is the logarithmic integral li(n).

We take note of the identity:

$$1 - \frac{2}{p} = \frac{p(p-2)}{(p-1)^2} (1 - \frac{1}{p})^2$$

where the first factor on the right is used in \mathcal{C}_2 , the twin prime constant.

$$C_2 = \prod_{p \ge 3} \left(1 - \frac{1}{(p-1)^2} \right) \approx 0.6601618158468...$$

Except for 3, all lesser twin primes are of the form 6k-1.

Consider the set $\{u_k \mid u_k = 6k - 1, k \in \square^+\}$.

Lemma 2:

Given $u_k < N$, $u_k \notin T_w \Leftrightarrow k \equiv \pm k_p \pmod{p}$ for some prime $p, 5 \le p < \sqrt{N}$.

i.e. (u_k, v_k) is not a pair of twin primes $\Leftrightarrow k \equiv \pm k_p \pmod{p}$ for some prime p, $5 \le p < \sqrt{N}$.

Out of every p elements in the set $\{u_k\}$, $(p \text{ prime and } p \ge 5)$,

exactly one is a multiple of p and one precedes a 6k+1 multiple of p.

If we list the elements of $\{u_k | u_k = 6k - 1, k \in \mathbb{Z}^+ \}$ and delete every u_k in which $k \equiv \pm 1 \pmod{5}$ or $\pm 1 \pmod{7}$ or $\pm 2 \pmod{11}$ or $\pm 2 \pmod{13}$ or $k \equiv \pm 3 \pmod{17}$ or $\pm 3 \pmod{19}$... $\pm k_p \pmod{p}$ up to $p < \sqrt{N}$

The remaining terms are all twin primes.

We use this method to find twin primes in the table below by deleting all $k \equiv \pm 1 \mod 5$

or $\pm 1 \mod 7$, $\pm 2 \mod 11$ or $\pm 2 \mod 13$, since $13 = \max p < \sqrt{179}$

Table 2 (Values of k (not deleted) such that 6k-1 is a lesser twin prime)

k	1	2	3	-4	5	6	7	8	9	10
u_k	5	11	17	23	29	35	41	47	53	59
k	11	12	1 3	-14	-15	-16	17	18	19	20
u_k	65	71	77	83	89	95	101	107	113	119
k	-21	22	23	<u>24</u>	25	-26	-27	-28	29	30
u_k	125	131	137	143	149	155	161	167	173	179

The u_k 's that correspond to the undeleted values of k are the lesser of twin primes

i.e.: 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179

We can demonstrate this sieve method by the following procedure:

first we cross out all values of k such that $k \equiv k_p \mod p$, if $p \equiv -1 \mod 6$, i.e. $p = 6k_p - 1$ and all values of k such that $k \equiv -k_p \mod p$, if $p \equiv 1 \mod 6$, i.e. $p = 6k_p + 1$ up to $p < \sqrt{N}$ so that we are left with the set $\{k \in \mathbb{Z} + | k < \frac{N}{6} \pmod (6k-1) \text{ is prime}\}$.

-		_					_		0	1.0
k	I	2	3	4	5	-6	7	8	9	10
u_k	5	11	17	23	29	35	41	47	53	59
k	-11	12	13	14	15	16	17	18	19	20
u_k	65	71	77	83	89	95	101	107	113	119
k	21	22	23	24	25	26	27	28	29	30
u_{i}	125	131	137	143	149	155	161	167	173	179

Table 3 Values of k such that 6k-1 is a prime (not deleted)

We then cross out the elements of the set $\{(k \in \mathbb{Z}^+ \mid k < \frac{N}{6} \text{ and } (6k+1) \text{ is composite}\}\ \text{i.e.}$

 $\{k \mid k \equiv -k_p \mod p \text{ if } p \equiv -1 \mod 6\} \cup \{k \mid k \equiv k_p \mod p \text{ if } p \equiv 1 \mod 6\}.$ This leaves us with the set of all twin primes less than N. (see Table 2)

This can be expressed mathematically as

(2)
$$\pi_2(N) \approx \frac{N}{6} \prod_{5}^{V} \frac{p-1}{n} \prod_{5}^{V} \frac{p-2}{n-1} \approx \frac{\pi(N)}{2} \prod_{5}^{V} \frac{p(p-2)}{(p-1)^2} \frac{p-1}{n}$$
, $V = \max p < \sqrt{N}$

By the Prime Number Theorem, $\pi(N) \sim \frac{N}{\ln N}$ and by Mertens' Theorem,

$$\prod_{2}^{V} \frac{p-1}{n} \sim \frac{2e^{-\gamma}}{\ln N} = \frac{1.122...}{\ln N} \text{ which overestimates the true ratio } \frac{\pi(N)}{N}. \quad [4] \text{ (Polya)}$$

By using $\frac{1}{\ln N}$, which is a lower bound for $\frac{\pi(N)}{N}$ [5] (Rosser and Schoenfeld)

and a little bit of algebra, we obtain

$$\pi_2(N) \sim \frac{N}{2 \ln N} \times \frac{4}{3} C_2 \times 3 \times \frac{1}{\ln N}$$

(3)
$$\pi_2(N) \sim 2C_2 \frac{N}{(\ln N)^2}$$

Hardy and Littlewood [2] conjectured a better approximation

(4)
$$\pi_2(N) \sim 2C_2 \int_2^N \frac{1}{(\ln t)^2} dt$$
, also based on PNT

Formula (4) is naturally equivalent to (3) but

and the second factor on the right hand side is (*for the values of n that we have to consider*) far from negligible. [2] (Hardy and Wright)

This suggests $2C_2 \frac{N}{(\ln N)^2} < \pi_2(N)$, for large enough values of N

From equation (2) and the fact that $\frac{N}{6} \prod_{5}^{V} \frac{p-1}{p}$ is an over approximation of $\frac{\pi(N)}{2}$,

(because for some values of p, $5 \le p \le \sqrt{N} |$, $|\{k \text{ such that } p \nmid (6k+1)\}| = [\frac{N}{6} (\frac{p-1}{p} - \frac{6}{N})]$ and likewise for $\{k \text{ such that } p \nmid (6k-1)\}$),

We obtain a better approximation for $\pi_2(N)$ after multiplying the right side of equation (2)

by
$$\frac{N}{6}$$
 and $\frac{6}{N}$:

(7)
$$\pi_2(N) \approx \frac{\pi(N)}{2} \cdot \frac{4}{3} C_N \cdot \frac{6}{N} \cdot \frac{\pi(N)}{2} \text{ where } C_N = \prod_{2$$

which includes $\lim \left(\frac{N(p-2)-6p}{N(p-1)}\right)\left(\frac{Np}{N(p-1)-6p}\right)$ for some primes $p \ge 5$.

(8)
$$\pi_2(N) \approx 2C_N \frac{[\pi(N)]^2}{N}$$
.

$$\lim_{N\to\infty} C_N = C_2 \wedge \pi(N) \sim \frac{N}{\ln N} \Rightarrow$$

(9)
$$\pi_2(N) \sim 2C_2 \frac{N}{(\ln N)^2}$$

As shown by Rosser and Schoenfeld [5],

(10)
$$\frac{N}{\ln N} < \pi (N) \quad \forall N \ge 17 \Rightarrow$$

(11)
$$2C_2 \frac{N}{(\ln N)^2} < 2C_2 \frac{[\pi(N)]^2}{N} \quad \text{for large enough values of } N.$$

Table 4 $(Values of \ \pi_2(N) \ compared \ to \ logarithmic \ integral \ and \ ratio \ formulas) \ [1] \ (Caldwell)$

N	$\pi_2(N)$	$2C_2 \operatorname{li}_2(N)$	$2C_2 \frac{N}{(\ln N)^2}$
10 ⁶	8169	8248	6917
10^{7}	58980	58754	50822
10^{8}	440312	440368	389107
10 ⁹	3424506	3425308	3074425
10^{10}	27412679	27411417	24902848
10^{11}	224376048	224368865	205808661
10^{12}	1870585220	1870559867	1729364449
10^{13}	15834664872	15834598305	14735413063
1014	135780321665	135780264894	127055347335
10^{15}	1177209242304	1177208491861	1106793247903

Let
$$W(N) = 2C_2 \frac{[\pi(N)]^2}{N}$$

Table 5

(limit $\frac{W(N)}{\pi_2(N)}$ approaching 1 as N increases)

N		W(N)	W(N)
	π (N)		$\overline{\pi_2(N)}$
10 ⁶	78498	8136	0.9959603
10 ⁷	664579	58314	0.99251114
10 ⁸	5761455	438273	0.995242615
10 ⁹	50847534	3413659	0.9968325
10^{10}	455052511	27340309	0.99735998
10^{11}	4118054813	223905433	0.99790256
10^{12}	37607912018	1867406346	0.998300599
10 ¹³	346065536839	15812374441	0.99859230168
10^{14}	3204941750802	135619040528	0.99881219
10^{15}	29844570422669	1176010096499	0.998981365

Let $t_k = (6k - 1, 6k + 1)$ and $T_w =$ the set of all twin prime pairs.

The occurrence of twin primes may be summarized by the following statement:

 $\forall k > 3 \text{ and primes } p$,

$$t_k \in T_w \Leftrightarrow k \equiv 0, 2 \text{ or } 3 \pmod{5} \land k \not\equiv \pm k_p \pmod{p} \ \forall p > 5$$

Where k_p is the value of k for the primes p = 6k + 1 or p = 6k - 1

References:

- 1.Caldwell, C.: An Amazing Prime Heuristic utm.edu/staff/caldwell/preprints/Heuristics.pdf
- 2. Halberstam, H., Richert, H. E.: Sieve Methods. Academic Press (1974)
- 3. Hardy, G. H., Littlewood, J. E.: Some Problems of 'Partitio Numerorum' III: On the Expression of a Number as a Sum of Primes. Acta Mathematica **44**, (1923) pp.42–44
- 4. Lagarias, J.: Euler's Constant: Euler's Work and Modern Developments. Bulletin of the American Mathematical Society **50** (4), (2013) pp.527-628
- 5. Polya, G.: Heuristic Reasoning in the Theory of Numbers. The American Mathematical Monthly **66** (5), (1959) p. 383
- 6. Rosser, J. Barkley, Schoenfeld, Lowell: Approximate formulas for some functions of prime numbers. Illinois J. Math. **6**, (1962) p. 69
- 7. M Wolf: Some Conjectures on the Gaps between Consecutive Primes

www.researchgate.net/publication/2252793 (1998) p.5