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Abstract. We introduce a sieve for the number of twin primes less than N by sieving through the 

set {k ∊  ℤ + | 6k < N}. We derive formula accordingly using the Euler product and the Brun. 

Sieve.  

We then use the Prime Number Theorem and Mertens’ Theorem. 

The main results are: 

1) A sieve for the twin primes similar to the sieve of Eratosthenes for primes involving only the  

values of k, the indices of  the multiples of 6, ranging over k = p ,5 ≤ p <√𝑁 

2) A formula for the approximate number of twin primes less than N in terms of the number of  

primes less than N 

3) The asymptotic formula for the number of twin primes less than N verifying the Hardy  

Littlewood Conjecture. 
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                                1.  Introduction 

 

The main result of this paper is a sieve for the twin primes akin to the sieve of Eratosthenes for   

primes. It is applied twice to the set of all natural numbers k where {k} is the index for all  

multiples of 6 and  the range for the primes is  p = 5 to  p <  𝑁1/2. 

We consider the set of all pairs (6k −1, 6k +1) which are less than N and delete the values of k  

such that 6k-1 is composite . This leaves us with the pairs for which 6k-1 is prime. From these  

we delete the values of k such that 6k+1 is composite and that  leaves us  with the twin primes  

less than N. 

Using the Euler product formula, The Brun Sieve, The Prime number theorem and Mertens’  

3rd Theorem, we derive a formula for the approximation of 𝜋2(N) in terms of π (N) ( the number  

of primes less than N ) and the asymptotic formula for 𝜋2 (N) to  verify the Hardy Littlewood  

Conjecture. 

                                  

   

 

 

 

 

                                 

 

 

 



  

   

    2. Deriving the formula and some set theory 

All the twin primes except {3, 5} are of the form {6k –1, 6k+1}  

Let T = {(6k−1, 6k+1) | k = 1, 2, 3…} 

 Let 𝑢𝑘= 6k − 1 and    let 𝑣𝑘= 6k + 1 

And define 𝑡𝑘= (𝑢𝑘,𝑣𝑘)  

Listed below are the first few members of the set T. (the composite numbers are underlined) 

5,7  11,13  17,19  23,25  29,31  35,37  41,43  47,49  53,55  59,61 65,67  71,73 77,79  83,85 

89, 91 95, 97 101,103 107,109 113,115 119,121 125,127 131,133 137,139 143,145 149,151  

k ≡ ± 1 mod 5 ⇨  𝑡𝑘contains a multiple of 5 and is therefore not a pair of twin primes. 

Let S p = {𝑡𝑘  | 𝑡𝑘 contains a multiple of prime p} 

T p = T ∖ S p = {t k | t k does not contain a multiple of prime p} 

S5 = {t4, t6, t9, t11, t 14, t16, t19 …} = {(23, 25), (35, 37), (53, 55), (65, 67)…} 

T5 = {t1, t2, t3, t5, t7, t8,  𝑡10 , 𝑡12…} 

The values of k in S5 = {4, 6, 9, 11, 14, 16, 19, 21…} = {k∊  ℤ + | k≡ ± 1 mod 5} 

The values of k in T5 = {1,2,3,5,7,8,10,12,13,15,17,18,20,22,23,25,27,28,30…} 

k ≡ ± 1 mod 7⇨ t k contains a multiple of 7 

The values of k in S7 = {6, 8, 13.15, 20, 22, 27, 29, 36, 38…} = {k∊ ℤ+ | k≡ ± 1 mod 7} 

The values of k in T7 = {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19 …} 

Since 6(2) – 1= 11, k ≡ ± 2 mod 11 ⇒ t k contains a multiple of 11 

The values of k in S11 = {9, 13, 20, 24, 31, 35, 42, 46 …} = {k∊ ℤ+ | k≡ ± 2 mod 11} 

The values of k in T11 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25…} 

 



  

If p is prime and p = 6a ± 1, 𝒕𝒌 contains a multiple of p ⇔ k ≡ ± a mod p 

Let ℙ = the set of all primes  

Let Tw   = {𝑡𝑘  = (𝑢𝑘,𝑣𝑘 ) | 𝑢𝑘∊ ℙ and 𝑣𝑘∊ ℙ, k ∊ ℤ+} 

Tw = T \ ⋃ S𝑝𝑝≥5    ; by De Morgan’s Law T w = ⋂ T𝑝𝑝≥5  

Lemma 1: 

Define 𝑘𝑝 as the value of k for primes p = 6 k + 1  or  p = 6k −1. 

and 𝑇𝑤 as the set of all twin prime pairs. 

Given a large integer N and 6k +1 < N,  

 𝑡𝑘 ∉  𝑇𝑤 ⇔ k ≡ ± 𝑘𝑝  (mod p) for some prime p, 5 ≤   p < √N. 

As in the sieve of Eratosthenes, we delete {k | k = np ± k p   for primes p = 6kp ± 1} 

n = {1, 2, 3…} ∀p ∍  5 ≤   p < N 

Consider the set K = {k∊  ℤ+| k < 6N}. 

In every interval I∊K such that I = {np, (n+1) p}, n∊ ℤ+ and p is prime, 5 ≤ p <√N  

 ∃ exactly 2 values of k ,(i.e. k = np+ 𝑘𝑝 and  k = (n+1)p −  𝑘𝑝) ,such that 𝑡𝑘 contains a multiple 

of p 

Let 𝜋2(N) = the number of primes p less than N such that p + 2 is also prime. 

By the Brun Sieve we have: 

(1)                 𝜋2(N) = 
N

6
  ∏ (1 −V

5  2/𝑝) + 𝑅𝑝  where 𝑅𝑝 is the error term  

 and V= maximum prime p <√N 

Example 1: 

N = 529, V=19 

 𝝅𝟐(N) ≈  
 529

6
 ∏ (1 −19

5  2/𝑝) = 20.6521… 

Actually, 𝜋2(N) = 25   so 𝑅𝑝 ≈ 4.3 



  

 

 

Let 𝜋2 (N) = the number of primes p less than N such that p + 2 is also prime.  

 Where V is maximum prime p < √𝑁 

 

 Table 1    (𝜋2 (N) compared to the formula) 

           N      𝝅𝟐(N) 𝑵

𝟔
∏ (𝟏 −

𝟐

𝒑

𝑽

𝟓
) 

 Approx. 

529 25 21 

1000 35 31 

2500 72 64 

5000 126 111 

7500 169 150 

10000 205 191 

15000 272 261 

20000 342 328 

25000 408 394 

30000 467 456 

35000 539 520 

40000 591 570 

50000 705 700 
 

75000 958 968 
 

 

 

This estimate exceeds the actual number of twin prime pairs for large values of N because for some 

primes p and interval {1,
𝑁

6
}, the number of multiples of p in each of the sets {k: p| 6k −1} and {k: 

p | 6k +1} = ⌊  
𝑁

6𝑝
 + 1⌋  where ⌊  ⌋  is the greatest function, therefore some composites will not be 

sifted out by the product formula   given above. The formula  can be refined by rewriting it as a 

two-part sieve formula that represents the application of  Eratosthenes’ Sieve first to 6k-1 type 

numbers  then to the 6k+1 types . 

See equation (2). 



  

 

3. Assessing 𝝅𝟐(N) as N goes to infinity 

 

We will consider Mertens 3rd  Theorem and The Prime Number Theorem  

 

Mertens’ 3rd theorem 

lim
𝑛→∞

ln 𝑛 ∏ (1 −
1

𝑝𝑝≤𝑛  )  =  𝑒−𝛾 , where γ is the Euler - Mascheroni constant  

γ = 0.5772156649…,  

𝑒𝛾 = 1.7810724...   and 𝑒−𝛾 = 0. 5611459...       ( Lagarias [2]) 

 

The Prime Number Theorem 

The Prime Number Theorem gives an asymptotic formula for the number of primes less than N 

as π(n) ~ n/ ln n and for a better approximation π (n) ~ ∫ 1/ ln 𝑡
𝑛

2
  dt     which is the logarithmic 

integral li(n)  .  

 

 

We take note of the identity:  

 1 − 
2

𝑝
 = 

𝑝(𝑝−2)

(𝑝−1)2
  (1 −

1

𝑝
 )2    

where the first factor on the right is used in 𝐶2 , the twin prime constant. 

𝐶2 =  ∏  ( 1–
1

(𝑝−1)2𝑝≥3  ) ≈ 0.6601618158468… 

 

 

 

 



  

 

Except for 3, all lesser twin primes are of the form 6k −1. 

Consider the set {𝑢𝑘 | 𝑢𝑘 = 6k – 1, k ∊  ℤ
 +

}. 

 

Lemma 2: 

Given 𝑢𝑘< N,  𝑢𝑘 ∉  𝑇𝑤 ⇔ k ≡ ± 𝑘𝑝(mod p) for some prime p, 5 ≤ p <√N.    

 i.e. (𝑢𝑘 ,𝑣𝑘) is not a pair of twin primes ⇔ k ≡ ± 𝑘𝑝 (mod p) for some prime p, 5 ≤ p <√N.     

 Out of every p elements in the set {𝑢𝑘}, (p prime and p ≥5), 

 exactly one is a multiple of p and one precedes a  6k+1 multiple of p.  

If we list the elements of {𝑢𝑘| 𝑢𝑘= 6k −1, k ∈ ℤ + } and delete every  𝑢𝑘 in which k ≡ ±1(mod 5) 

or ±1(mod 7) or ±2(mod 11) or ±2(mod 13) or k≡ ±3(mod 17) or ±3(mod 19)   … ± 𝑘𝑝(mod p)up 

to p < √N 

 The remaining terms are all twin primes. 

We use this method to find twin primes in the table below by deleting all k ≡ ±1 mod 5  

or ±1 mod 7, ±2 mod 11 or ± 2 mod 13, since 13 = max p < √179 

                                                              

                            Table 2    (Values of k (not deleted) such that 6k-1 is a lesser twin prime) 

k       1      2     3     4     5      6     7    8    9    10 

𝑢𝑘       5     11    17    23   29   35    41   47    53    59 

k      11   12    13     14    15   16   17    18   19   20 

𝑢𝑘     65    71    77    83    89     95    101    107    113    119 

k      21    22   23   24   25   26   27    28   29   30 

𝑢𝑘     125    131    137    143   149    155    161    167   173   179 

 

The 𝑢𝑘‘s that correspond to the undeleted values of k are the lesser of twin primes  

i.e.: 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179  

 



  

 

We can demonstrate this sieve method by the following procedure:  

first we cross out all values of k such that k ≡ 𝑘𝑝 mod p, if p ≡ −1 mod 6, i.e. p = 6𝑘𝑝 – 1 and  

all values of k such that k ≡ − 𝑘𝑝 mod p, if p ≡ 1 mod 6, i.e. p = 6𝑘𝑝+ 1 up to p < √N 

 so that we are left with the set {k ∊ ℤ+ | k < 
𝑁

6
 and (6k-1) is prime}.   

                                    Table 3   Values of k such that 6k-1 is a prime (not deleted) 

  k      1     2      3     4      5   6    7      8     9     10 

 𝑢𝑘       5      11      17     23     29     35     41     47     53      59 

   k      11     12      13        14     15      16      17      18      19      20 

𝑢𝑘      65      71     77      83     89    95    101     107     113   119 

   k      21     22      23      24     25       26     27      28      29     30 

𝑢𝑘    125     131     137     143    149     155     161     167 173   179 

 

We then cross out the elements of the set {(k ∊ ℤ+ | k <  
𝑁

6  
  and (6k+1) is composite} i.e.  

{k | k ≡ −𝑘𝑝 mod p if p ≡ − 1 mod 6} ∪ {k | k ≡ 𝑘𝑝 mod p if p ≡ 1 mod 6}. This leaves us with 

the set of all twin primes less than N .  (see Table 2) 

This can be expressed mathematically as 

(2)        𝜋2(N) ≈  
𝑁

6
 ∏

𝑝−1

𝑝

𝑉
5  ∏

𝑝−2

𝑝−1

𝑉
5  ≈  

𝜋(𝑁)

2
  ∏

𝑝(𝑝−2)

(𝑝−1)2
𝑉
5   

𝑝−1

𝑝
  , V= max p < √N 

     By the Prime Number Theorem, π (N) ~ 
𝑁

ln 𝑁
 and by Mertens’ Theorem, 

∏
𝑝−1

𝑝

𝑉
2  ~ 

2𝑒−𝛾

ln 𝑁
 =  

1.122…

ln𝑁
   which overestimates the true ratio  

𝜋(𝑁)

𝑁
 .   [4] ( Polya ) 

By using  
1

ln 𝑁
  , which is a lower bound for  

𝜋(𝑁)

𝑁
                [5] ( Rosser and Schoenfeld )   

and a little bit of algebra , we obtain 

                    𝜋2 (N) ~ 
𝑁

2 ln 𝑁
  × 

4

3
  𝐶2 × 3 × 

1

ln 𝑁
                 

 (3)                    𝜋2(N) ~ 2𝐶2  
𝑁

(ln 𝑁)2
                                                                               



  

Hardy and Littlewood [2] conjectured a better approximation  

(4)                     𝜋2 (N) ~ 2𝐶2 ∫
1

(ln 𝑡)2

𝑁

2
  dt, also   based on PNT                       

Formula (4) is naturally equivalent to (3) but 

(5)                         ∫
1

(ln 𝑡)2

𝑛

2
  dt =   

𝑛

(ln 𝑛)2
  (1 +  

2! 

ln 𝑛
 + 

3!

(ln 𝑛)2
 + ∙∙∙),              

and the second factor on the right hand side is (for the values of n that we have to  

consider) far from negligible.   [2] (Hardy and Wright ) 

This suggests 2𝐶2 
𝑁

(ln 𝑁)2
  < 𝜋2 (N), for large enough values of N 

From equation (2) and the fact that 
𝑁

6
 ∏

𝑝−1

𝑝

𝑉
5  is an over approximation of  

𝜋 (𝑁) 

2
 ,  

(because for some values of  p  , 5≤p≤√𝑁| ,|{k such that p ∤(6k+1)}| = [ 
𝑁

6
  ( 

𝑝−1

𝑝
 − 

6

𝑁
)] and 

likewise for {k such that p ∤(6k− 1) } ) ,  

We obtain a better approximation for 𝜋2(N) after multiplying the right side of equation (2) 

by  
𝑁

6
  and  

6

𝑁
 : 

(7)                   𝜋2 (N) ≈ 
𝜋(𝑁)

2
  ⋅  

4

3
  𝐶𝑁 ⋅ 

6

𝑁
 ⋅ 

𝜋(𝑁)

2
   where  𝐶𝑁 = ∏

𝑝(𝑝−2)

(𝑝−1)22<𝑝<√𝑁   

which includes   lim  ( 
𝑁(𝑝−2)−6𝑝

𝑁(𝑝−1)
) (

𝑁𝑝

𝑁(𝑝−1)−6𝑝
 ) for some primes p ≥5. 

  (8)                        𝜋2(N) ≈ 2𝐶𝑁 
[𝜋(𝑁)]2

𝑁
  .      

lim
𝑁→∞

𝐶𝑁 = 𝐶2   ∧   π (N) ~ 
𝑁

ln 𝑁
   ⇒ 

 (9)                   𝜋2(N) ~ 2𝐶2 
𝑁

(ln 𝑁)2  

 As shown by Rosser and Schoenfeld   [5],  

(10)                  
𝑁

ln 𝑁
 < π ( N )   ∀ N ≥ 17 ⇒ 

(11)                     2𝐶2 
𝑁

(ln 𝑁)2
  < 2𝐶2 

[𝜋(𝑁)]2

𝑁
     for large enough values of N. 



  

 

                     

 

 

 

 

                                                              Table 4  

             (Values of 𝜋2(N) compared to logarithmic integral and ratio formulas) [1] (Caldwell) 

  N          𝜋2 (N)       2𝐶2 li2(N)      2𝐶2 
𝑁

(ln 𝑁)2 

106             8169   8248            6917 

107            58980  58754           50822 

108           440312  440368          389107 

109          3424506   3425308         3074425 

1010         27412679           27411417         24902848 

1011        224376048          224368865         205808661 

1012       1870585220          1870559867        1729364449 

1013     15834664872        15834598305      14735413063 

1014    135780321665      135780264894    127055347335 

1015  1177209242304    1177208491861   1106793247903 

 

 

 

 

 

                                             

   

  

 

 



  

 

Let W (N) = 2𝐶2 
[𝜋(𝑁)]2

𝑁
  

                                                     

                                                                         Table 5    

                                        (limit   
𝑊(𝑁)

𝜋2(𝑁)
  approaching 1 as N increases)                                                                

 N                      

              π (N) 

                W(N) 

 

 

𝑾(𝑵)

𝝅𝟐(𝑵)
 

106             78498                  8136       0.9959603… 

107            664579                 58314       0.99251114… 

108           5761455                438273       0.995242615… 

109          50847534               3413659       0.9968325… 

1010          455052511    27340309       0.99735998… 

1011         4118054813 223905433       0.99790256… 

1012        37607912018  1867406346       0.998300599… 

1013       346065536839   15812374441       0.99859230168… 

1014     3204941750802   135619040528       0.99881219… 

1015    29844570422669          1176010096499       0.998981365… 

   

 

Let 𝑡𝑘 = (6k − 1, 6k + 1) and 𝑇𝑤 = the set of all twin prime pairs. 

The occurrence of twin primes may be summarized by the following statement: 

 ∀k > 3 and primes p, 

 𝑡𝑘 ∈ 𝑇𝑤⇔ k ≡ 0, 2 or 3 (mod 5) ∧ k ≢ ± 𝑘𝑝(mod p) ∀p > 5  

Where 𝑘𝑝 is the value of k for the primes p = 6k +1 or p = 6k −1 
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