A Proof of the Erdös-Straus Conjecture

Zhang Tianshu

Emails: chinazhangtianshu@126.com; xinshijizhang@hotmail.com
Zhanjiang city, Guangdong province, China

Abstract

In this article, we classify positive integers step by step, and use the formulation to represent a certain class therein until all classes.

First, divide all integers ≥ 2 into 8 kinds, and formulate each of 7 kinds therein into a sum of 3 unit fractions.

For the unsolved kind, again divide it into 3 genera, and formulate each of 2 genera therein into a sum of 3 unit fractions.

For the unsolved genus, further divide it into 5 sorts, and formulate each of 3 sorts therein into a sum of 3 unit fractions.

For two unsolved sorts $\frac{4}{49+120 c}$ and $\frac{4}{121+120 c}$ where $c \geq 0$, we use an unit fraction plus a proper fraction to replace each of them, then take out the unit fraction as $\frac{1}{X}$. After that, we take out an unit fraction from the proper fraction and regard the unit fraction as $\frac{1}{Y}$, and finally, prove that the remainder can be identically converted to $\frac{1}{Z}$.

AMS subject classification: 11D72; 11D45; 11P81

Keywords: Erdös-Straus conjecture; Diophantine equation; unit fraction

1. Introduction

The Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer $n \geq 2$, there are invariably $\frac{4}{\mathrm{n}}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$, where x, y and z are positive integers; [1]. Later, Ernst G. Straus further conjectured that x, y and z satisfy $\mathrm{x} \neq \mathrm{y}, \mathrm{y} \neq \mathrm{z}$ and $\mathrm{z} \neq \mathrm{x}$, because there are the convertible formulas $\frac{1}{2 r}+\frac{1}{2 r}=\frac{1}{r+1}+\frac{1}{r(r+1)}$ and $\frac{1}{2 r+1}+\frac{1}{2 r+1}=\frac{1}{r+1}+\frac{1}{(r+1)(2 r+1)}$ where $\mathrm{r} \geq 1 ;$ [2]. Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively. As a general rule, the Erdös-Straus conjecture states that for every integer $\mathrm{n} \geq 2$, there are positive integers x , y and z , such that $\frac{4}{\mathrm{n}}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$.

Yet it remains a conjecture that has neither is proved nor disproved; [3].

2. Divide integers ≥ 2 into 8 kinds and formulate 7
 kinds therein

First, divide integers ≥ 2 into 8 kinds, i.e. $8 \mathrm{k}+1$ with $\mathrm{k} \geq 1$, and $8 \mathrm{k}+2,8 \mathrm{k}+3$, $8 k+4,8 k+5,8 k+6,8 k+7,8 k+8$, where $k \geq 0$, and arrange them as follows:
$\mathrm{K} \backslash \mathrm{n}: 8 \mathrm{k}+1, \quad 8 \mathrm{k}+2, \quad 8 \mathrm{k}+3, \quad 8 \mathrm{k}+4, \quad 8 \mathrm{k}+5, \quad 8 \mathrm{k}+6, \quad 8 \mathrm{k}+7, \quad 8 \mathrm{k}+8$
$0, \quad(1) \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8$,
$1, \quad 9, \quad 10, \quad 11, \quad 12,13,14,15,16$,

$$
\begin{array}{lllllllll}
2, & 17, & 18, & 19, & 20, & 21, & 22, & 23, & 24, \\
3, & 25, & 26, & 27, & 28, & 29, & 30, & 31, & 32,
\end{array}
$$

Excepting $\mathrm{n}=8 \mathrm{k}+1$, formulate each of other 7 kinds into $\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$:
(1) For $\mathrm{n}=8 \mathrm{k}+2$, there are $\frac{4}{8 k+2}=\frac{1}{4 k+1}+\frac{1}{4 k+2}+\frac{1}{(4 k+1)(4 k+2)}$;
(2) For $\mathrm{n}=8 \mathrm{k}+3$, there are $\frac{4}{8 k+3}=\frac{1}{2 k+2}+\frac{1}{(2 k+1)(2 k+2)}+\frac{1}{(2 k+1)(8 k+3)}$;
(3) For $\mathrm{n}=8 \mathrm{k}+4$, there are $\frac{4}{8 k+4}=\frac{1}{2 k+3}+\frac{1}{(2 k+2)(2 k+3)}+\frac{1}{(2 k+1)(2 k+2)}$;
(4) For $n=8 k+5$, there are $\frac{4}{8 k+5}=\frac{1}{2 k+2}+\frac{1}{(8 k+5)(2 k+2)}+\frac{1}{(8 k+5)(k+1)}$;
(5) For $\mathrm{n}=8 \mathrm{k}+6$, there are $\frac{4}{8 k+6}=\frac{1}{4 k+3}+\frac{1}{4 k+4}+\frac{1}{(4 k+3)(4 k+4)}$;
(6) For $\mathrm{n}=8 \mathrm{k}+7$, there are $\frac{4}{8 k+7}=\frac{1}{2 k+3}+\frac{1}{(2 k+2)(2 k+3)}+\frac{1}{(2 k+2)(8 k+7)}$;
(7) For $\mathrm{n}=8 \mathrm{k}+8$, there are $\frac{4}{8 k+8}=\frac{1}{2 k+4}+\frac{1}{(2 k+2)(2 k+3)}+\frac{1}{(2 k+3)(2 k+4)}$.

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind into 3 genera and formulate 2 genera therein

For the unsolved kind $\mathrm{n}=8 \mathrm{k}+1$ with $\mathrm{k} \geq 1$, divide it by 3 and get 3 genera:
(1) the remainder is 0 when $\mathrm{k}=1+3 \mathrm{t}$; (2) the remainder is 2 when $\mathrm{k}=2+3 \mathrm{t}$;
(3) the remainder is 1 when $\mathrm{k}=3+3 \mathrm{t}$, where $\mathrm{t} \geq 0$, and ut infra.
k :

$$
1,2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad 10,11,12, \quad 13,14, \quad 15, \ldots
$$

$8 \mathrm{k}+1: \quad 9,17,25, \quad 33,41,49, \quad 57,65,73, \quad 81,89,97, \quad 105,113,121, \ldots$

The remainder: $0,2,1, \quad 0,2,1, \quad 0,2,1,0,2,1, \quad 0,2,1, \ldots$
Excepting the genus (3), we formulate other 2 genera as follows:
(8) For $\frac{8 k+3}{3}$ where the remainder is equal to 0 , there are $\frac{4}{8 k+1}=\frac{1}{\frac{8 k+1}{3}}+\frac{1}{8 k+2}+\frac{1}{(8 k+1)(8 k+2)}$.

Due to $\mathrm{k}=1+3 \mathrm{t}$ and $\mathrm{t} \geq 0$, there are $\frac{8 k+1}{3}=8 t+3$, so we confirm that $\frac{8 k+1}{3}$ in the preceding equation is an integer.
(9) For $\frac{8 k+3}{3}$ where the remainder is equal to 2 , there are $\frac{4}{8 k+1}=\frac{1}{\frac{8 k+2}{3}}+\frac{1}{8 k+1}+\frac{1}{\frac{(8 k+1)(8 k+2)}{3}}$.

Due to $k=2+3 t$ and $t \geq 0$, there are $\frac{8 k+2}{3}=8 t+6$, so we confirm that $\frac{8 k+2}{3}$ and $\frac{(8 k+1)(8 k+2)}{3}$ in the preceding equation are two integers.

4. Divide the unsolved genus into 5 sorts and formulate 3 sorts therein

For the unsolved genus $\frac{8 k+1}{3}$ where the remainder is equal to 1 when $\mathrm{k}=3+3 \mathrm{t}$ and $\mathrm{t} \geq 0$, then there are $8 \mathrm{k}+1=25,49,73,97,121$ etc. So we divide
them into 5 sorts: $25+120 \mathrm{c}, 49+120 \mathrm{c}, 73+120 \mathrm{c}, 97+120 \mathrm{c}$ and $121+120 \mathrm{c}$ where $\mathrm{c} \geq 0$, and ut infra.

C\n: $\quad 25+120 c, \quad 49+120 c, \quad 73+120 c, \quad 97+120 c, \quad 121+120 c$,

0,	25,	49,	73,	97,	121,
1,	145,	169,	193,	217,	241,
2,	265,	289,	313,	337,	361,
\ldots,	\ldots,	\ldots,	\ldots,	\ldots,	\ldots,

Excepting $\mathrm{n}=49+120 \mathrm{c}$ and $\mathrm{n}=121+120 \mathrm{c}$, formulate other 3 sorts, they are:
(10) For $\mathrm{n}=25+120 \mathrm{c}$, there are $\frac{4}{25+120 c}=\frac{1}{25+120 c}+\frac{1}{50+240 c}+\frac{1}{10+48 c}$;
(11) For $n=73+120 \mathrm{c}$, there are $\frac{4}{73+120 c}=\frac{1}{(73+120 c)(10+15 c)}+\frac{1}{20+30 c}+\frac{1}{(73+120 c)(4+6 c)} ;$
(12) For $n=97+120 \mathrm{c}$, are $\frac{4}{97+120 c}=\frac{1}{25+30 c}+\frac{1}{(97+120 c)(50+60 c)}+\frac{1}{(97+120 c)(10+12 c)}$.

For each of listed above 12 equations which express $\frac{4}{\mathrm{n}}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$, please each reader self to make a check respectively.
5. Prove the sort $\frac{4}{49+120 c}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$

For a proof of the sort $\frac{4}{49+120 c}$, it means that when c is equal to each of positive integers plus 0 , there always are $\frac{4}{49+120 c}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$.

After c is given any value, $\frac{4}{49+120 c}$ can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below:

$$
\begin{aligned}
& \frac{4}{49+120 c} \\
& =\frac{1}{13+30 c}+\frac{3}{(13+30 c)(49+120 c)} \\
& =\frac{1}{14+30 c}+\frac{7}{(14+30 c)(49+120 c)} \\
& =\frac{1}{15+30 c}+\frac{11}{(15+30 c)(49+120 c)} \\
& \cdots \\
& =\frac{1}{13+\alpha+30 c}+\frac{3+4 \alpha}{(13+\alpha+30 c)(49+120 c)}, \text { where } \alpha \geq 0 \text { and } \mathrm{c} \geq 0
\end{aligned}
$$

As listed above, we can first let $\frac{1}{13+\alpha+30 c}=\frac{1}{X}$, then go to prove $\frac{3+4 \alpha}{(13+\alpha+30 c)(49+120 c)}=\frac{1}{Y}+\frac{1}{Z} \quad$ where $\mathrm{c} \geq 0$ and $\alpha \geq 0$, ut infra.

Proof. First, we analyse $3+4 \alpha$ on the place of numerator, it is not hard to see, except $3+4 \alpha$ as one numerator, it can also be expressed as the sum of an even number plus an odd number to act as two numerators, i.e. $(4 \alpha+3)$, $(4 \alpha+2)+1,(4 \alpha+1)+2,(4 \alpha)+3,(4 \alpha-1)+4,(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$

If there are two addends on the place of numerator, then these two
addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and φ, also there is $\psi>\varphi$.

In numerators with the same denominator, largest ψ is denoted as ψ_{1}. It is obvious that ψ_{1} matches with smallest φ, when $\psi_{1}=4 \alpha+2$, smallest $\varphi=1$.

And then, let us think about the denominator $(13+\alpha+30 c)(49+120 c)$, actually just $13+\alpha+30 \mathrm{c}$ is enough, while reserve $49+120 \mathrm{c}$ for later.

In the fraction $\frac{3+4 \alpha}{13+\alpha+30 c}$, let each α be assigned a value for each time, according to the order $\alpha=0,1,2,3, \ldots$ So the denominator $13+\alpha+30$ c can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When $\alpha=0,1,2,3$ and otherwise, these denominators of $13+\alpha+30 \mathrm{c}$ and their numerators $4 \alpha+3, \psi$ and φ are listed below.

$13+\alpha+30 c$,	α,	$(4 \alpha+3)$,	$(4 \alpha+2)+1$,	$(4 \alpha+1)+2$,	$(4 \alpha)+3$,	$(4 \alpha-1)+4$,	$(4 \alpha-2)+5$,
$13+30 c$,	0,	3,	$2+1$,	$1+2$			
$14+30 c$,	1,	7,	$6+1$,	$5+2$,	$4+3$,	$3+4$,	$2+5$,
$15+30 c$,	2,	11,	$10+1$,	$9+2$,	$8+3$,	$7+4$,	$6+5$,
$16+30 c$,	3,	15,	$14+1$,	$13+2$,	$12+3$,	$11+4$,	$10+5$,
$17+30 c$,	4,	19,	$18+1$,	$17+2$,	$16+3$,	$15+4$,	$14+5$,

As can be seen from the list above, every denominator $13+\alpha+30$ c corresponds with two special matching numerators ψ_{1} and 1 , from this,
we get the unit fraction $\frac{1}{13+\alpha+30 c}$.

For the unit fraction $\frac{1}{13+\alpha+30 c}$, multiply its denominator by $49+120$ c reserved, then we get the unit fraction $\frac{1}{(13+\alpha+30 c)(49+120 c)}$, and let $\frac{1}{(13+\alpha+30 c)(49+120 c)}=\frac{1}{Y}$.

After that, let us prove that $\frac{\psi_{1}}{13+\alpha+30 c}$ i.e. $\frac{4 \alpha+2}{13+\alpha+30 c}$ is an unit fraction.

Since the numerator $4 \alpha+2$ is an even number, such that the denominator $13+\alpha+30 \mathrm{c}$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $13+\alpha+30 \mathrm{c}$ is only an odd number.

After α is assigned to odd numbers 1, 3, 5 and otherwise, and the fraction $\frac{4 \alpha+2}{13+\alpha+30 c}$ after the values assignment divided by 2 , then the fraction $\frac{4 \alpha+2}{13+\alpha+30 c}$ is turned into the fraction $\frac{3+4 t}{k+15 c}$ identically, where $\mathrm{c} \geq 0, \mathrm{t} \geq 0$ and $\mathrm{k} \geq 7$.

The point above is that $3+4 \mathrm{t}$ and $\mathrm{k}+15 \mathrm{c}$ after the values assignment make up a fraction, they are on the same order of taking values of t and k, according to the order from small to large, i.e. $\frac{3+4 t}{k+15 c}=\frac{3}{7+15 c}, \frac{7}{8+15 c}$, $\frac{11}{9+15 c}, \ldots$

Such being the case, let the numerator and denominator of the fraction
$\frac{3+4 t}{k+15 c}$ divided by $3+4 t$, then we get a temporary indeterminate unit fraction, and its denominator is $\frac{k+15 c}{3+4 t}$, and its numerator is 1 .

Thus, we are necessary to prove that the denominator $\frac{k+15 c}{3+4 t}$ is able to become a positive integer in the case where $t \geq 0, \mathrm{k} \geq 7$ and $\mathrm{c} \geq 0$.

In the fraction $\frac{k+15 c}{3+4 t}$, due to $\mathrm{k} \geq 7$, the numerator $\mathrm{k}+15 \mathrm{c}$ after the values assignment are infinite more consecutive positive integers, while the denominator $3+4 t=3,7,11$ and otherwise positive odd numbers.

The key above is that each value of $3+4 t$ after the values assignment can seek its integral multiples within infinite more consecutive positive integers of $\mathrm{k}+15 \mathrm{c}$, in the case where $\mathrm{t} \geq 0, \mathrm{k} \geq 7$ and $\mathrm{c} \geq 0$.

As is known to all, there is a positive integer that contains the odd factor $2 \mathrm{n}+1$ within $2 \mathrm{n}+1$ consecutive positive integers, where $\mathrm{n}=1,2,3, \ldots$

Like that, there is a positive integer that contains the odd factor $3+4$ t within $3+4 \mathrm{t}$ consecutive positive integers of $\mathrm{k}+15 \mathrm{c}$, no matter which odd number that $3+4 \mathrm{t}$ is equal to, where $\mathrm{t} \geq 0, \mathrm{k} \geq 7$ and $\mathrm{c} \geq 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and $3+4 t$ as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, $\frac{k+15 c}{3+4 t}$ as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive integer is represented by μ, and thus in this case the fraction $\frac{3+4 t}{k+15 c}$ is exactly $\frac{1}{\mu}$.

For the unit fraction $\frac{1}{\mu}$, multiply its denominator by $49+120 \mathrm{c}$ reserved, then we get the unit fraction $\frac{1}{\mu(49+120 c)}$, and let $\frac{1}{\mu(49+120 c)}=\frac{1}{Z}$. If $3+4 \alpha$ serve as one numerator such that $\frac{3+4 \alpha}{(13+\alpha+30 c)(49+120 c)}=\frac{1}{Y}$, then we can multiply the denominator Y by 2 to make a sum of two identical unit fractions, then again, convert them into the sum of two each other's distinct unit fractions by the formula $\frac{1}{2 \mathrm{r}}+\frac{1}{2 r}=\frac{1}{r+1}+\frac{1}{r(r+1)}$.

Thus it can be seen, the fraction $\frac{3+4 \alpha}{(13+\alpha+30 c)(49+120 c)}$ is surely able to be expressed into a sum of two each other's -distinct unit fractions in the case where $c \geq 0$ and $\alpha \geq 0$. To sum up, there are $\frac{4}{49+120 c}=\frac{1}{13+\alpha+30 c}+\frac{1}{(13+\alpha+30 c)(49+120 c)}+\frac{1}{\mu(49+120 c)} \quad$ where $\alpha \geq 0, \mu$ is an integer and $\mu=\frac{k+15 c}{3+4 t}, \mathrm{t} \geq 0, \mathrm{k} \geq 7$ and $\mathrm{c} \geq 0$.

In other words, we have proved $\frac{4}{49+120 c}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$.

6. Prove the sort $\frac{4}{121+120 c}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$

The proof in this section is exactly similar to that in the section 5 . Namely, for a proof of the sort $\frac{4}{121+120 c}$, it means that when c is equal to each of positive integers plus 0 , there always are $\frac{4}{121+120 c}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$.

After c is given any value, $\frac{4}{121+120 c}$ can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below.

$$
\begin{aligned}
& \frac{4}{121+120 c} \\
& =\frac{1}{31+30 c}+\frac{3}{(31+30 c)(121+120 c)} \\
& =\frac{1}{32+30 c}+\frac{7}{(32+30 c)(121+120 c)} \\
& =\frac{1}{33+30 c}+\frac{11}{(33+30 c)(121+120 c)} \\
& \cdots \\
& =\frac{1}{31+\alpha+30 c}+\frac{3+4 \alpha}{(31+\alpha+30 c)(121+120 c)}, \text { where } \alpha \geq 0 \text { and } \mathrm{c} \geq 0 .
\end{aligned}
$$

As listed above, we can first let $\frac{1}{31+\alpha+30 c}=\frac{1}{X}$, then go to prove
$\frac{3+4 \alpha}{(31+\alpha+30 c)(121+120 c)}=\frac{1}{Y}+\frac{1}{Z} \quad$ where $\mathrm{c} \geq 0$ and $\alpha \geq 0$, ut infra.
Proof. First, we analyse $3+4 \alpha$ on the place of numerator, it is not hard to see, except $3+4 \alpha$ as one numerator, it can also be expressed as the sum of an even number and an odd number to act as two numerators, i.e. $(4 \alpha+3)$, $(4 \alpha+2)+1,(4 \alpha+1)+2,(4 \alpha)+3,(4 \alpha-1)+4,(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$

If there are two addends on the place of numerator, then these two addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and φ, also there is $\psi>\varphi$.

In numerators with the same denominator, largest ψ is denoted as ψ_{1}. It is obvious that ψ_{1} matches with smallest φ, when $\psi_{1}=4 \alpha+2$, smallest $\varphi=1$. And then, let us think about the denominator $(31+\alpha+30 c)(121+120 c)$, actually just $31+\alpha+30 \mathrm{c}$ is enough, while reserve $121+120 \mathrm{c}$ for later.

In the fraction $\frac{3+4 \alpha}{31+\alpha+30 c}$, let each α be assigned a value for each time, according to the order $\alpha=0,1,2,3, \ldots$ So the denominator $31+\alpha+30$ c can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly, numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When $\alpha=0,1,2,3$ and otherwise, these denominators of $31+\alpha+30 \mathrm{c}$ and their numerators $4 \alpha+3, \psi$ and φ are listed below.
$31+\alpha+30 \mathrm{c}, \alpha,(4 \alpha+3),(4 \alpha+2)+1,(4 \alpha+1)+2,(4 \alpha)+3,(4 \alpha-1)+4,(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$
$31+30 \mathrm{c}, \quad 0, \quad 3, \quad 2+1, \quad 1+2$

$32+30 c$,	1,	7,	$6+1$,	$5+2$,	$4+3$,	$3+4$,	$2+5$,	$1+6$
$33+30 c$	2,	11,	$10+1$,	$9+2$,	$8+3$,	$7+4$,	$6+5$,	$5+6, \ldots$
$34+30 \mathrm{c}$,	3,	15,	$14+1$,	$13+2$,	$12+3$,	$11+4$,	$10+5$,	$9+6, \ldots$
$35+30 \mathrm{c}$,	4,	19,	$18+1$,	$17+2$,	$16+3$,	$15+4$,	$14+5$,	$13+6, \ldots$
\ldots,								

As can be seen from the list above, every denominator of $31+\alpha+30$ c corresponds with two special matching numerators ψ_{1} and 1 , from this, we get the unit fraction $\frac{1}{31+\alpha+30 c}$.

For the unit fraction $\frac{1}{31+\alpha+30 c}$, multiply its denominator by $121+120 \mathrm{c}$ reserved, then we get the unit fraction $\frac{1}{(31+\alpha+30 c)(121+120 c)}$, and let $\frac{1}{(31+\alpha+30 c)(121+120 c)}=\frac{1}{Y}$.

After that, let us prove that $\frac{\psi_{1}}{31+\alpha+30 c}$ i.e. $\frac{4 \alpha+2}{31+\alpha+30 c}$ is an unit fraction. Since the numerator $4 \alpha+2$ is an even number, such that the denominator $31+\alpha+30 \mathrm{c}$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $31+\alpha+30$ c is only an odd number.

After α is assigned to odd numbers 1,3,5 and otherwise, and the fraction $\frac{4 \alpha+2}{31+\alpha+30 c}$ after the values assignment divided by 2 , then the fraction $\frac{4 \alpha+2}{31+\alpha+30 c}$ is turned into the fraction $\frac{3+4 t}{m+15 c}$ identically, where $\mathrm{c} \geq 0, \mathrm{t} \geq 0$
and $\mathrm{m} \geq 16$.
The point above is that $3+4 \mathrm{t}$ and $\mathrm{m}+15 \mathrm{c}$ after the values assignment make up a fraction, they are on the same order of taking values of t and m , according to the order from small to large, i.e. $\frac{3+4 t}{m+15 c}=\frac{3}{16+15 c}, \frac{7}{17+15 c}$, $\frac{11}{18+15 c}, \ldots$

Such being the case, let the numerator and denominator of the fraction $\frac{3+4 t}{m+15 c}$ divided by $3+4 \mathrm{t}$, then we get a temporary indeterminate unit fraction, and its denominator is $\frac{m+15 c}{3+4 t}$, and its numerator is 1 .

Thus, we are necessary to prove that the denominator $\frac{m+15 c}{3+4 t}$ is able to become a positive integer in the case where $\mathrm{t} \geq 0, \mathrm{~m} \geq 16$ and $\mathrm{c} \geq 0$.

In the fraction $\frac{m+15 c}{3+4 t}$, due to $m \geq 16$, the numerator $\mathrm{m}+15 \mathrm{c}$ after the values assignment are infinite more consecutive positive integers, while the denominator $3+4 t=3,7,11$ and otherwise positive odd numbers.

The key above is that each value of $3+4 \mathrm{t}$ after the values assignment can seek its integral multiples within infinite more consecutive positive integers of $\mathrm{m}+15 \mathrm{c}$ in the case where $\mathrm{t} \geq 0, \mathrm{~m} \geq 16$ and $\mathrm{c} \geq 0$.

As is known to all, there is a positive integer that contains the odd factor $2 \mathrm{n}+1$ within $2 \mathrm{n}+1$ consecutive positive integers, where $\mathrm{n}=1,2,3, \ldots$

Like that, there is a positive integer that contains the odd factor $3+4$ t within $3+4 \mathrm{t}$ consecutive positive integers of $\mathrm{m}+15 \mathrm{c}$, no matter which odd number that $3+4 \mathrm{t}$ is equal to, where $\mathrm{t} \geq 0, \mathrm{~m} \geq 16$ and $\mathrm{c} \geq 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and $3+4 t$ as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, $\frac{m+15 c}{3+4 t}$ as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive integer is represented by λ, and thus in this case, the fraction $\frac{3+4 t}{m+15 c}$ is exactly $\frac{1}{\lambda}$.

For the unit fraction $\frac{1}{\lambda}$, multiply its denominator by $121+120$ c reserved, then we get the unit fraction $\frac{1}{\lambda(121+120 c)}$, and let $\frac{1}{\lambda(121+120 c)}=\frac{1}{Z}$.

If $3+4 \alpha$ serve as one numerator such that $\frac{3+4 \alpha}{(31+\alpha+30 c)(121+120 c)}=\frac{1}{Y}$, then we can multiply the denominator Y by 2 to make a sum of two identical unit fractions, then again, convert them into the sum of two each other's -distinct unit fractions by the formula $\frac{1}{2 r}+\frac{1}{2 r}=\frac{1}{r+1}+\frac{1}{r(r+1)}$.

Thus it can be seen, the fraction $\frac{3+4 \alpha}{(31+\alpha+30 c)(121+120 c)}$ is surely able to be expressed into a sum of two each other's -distinct unit fractions in the case where $c \geq 0$ and $\alpha \geq 0$. To sum up, there are $\frac{4}{121+120 c}=\frac{1}{31+\alpha+30 c}+\frac{1}{(31+\alpha+30 c)(121+120 c)}+\frac{1}{\lambda(121+120 c)}$ where λ is an integer and $\lambda=\frac{m+15 c}{3+4 t}, \mathrm{t} \geq 0, \mathrm{~m} \geq 16$, and $\mathrm{c} \geq 0$.

In other words, we have proved $\frac{4}{121+120 c}=\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$.
The proof was thus brought to a close. As a consequence, the ErdösStraus conjecture is tenable.

References

[1] J. W. Sander, On $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136; https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via\%3Dihub [2] Wolfram Math world, the web's most extensive mathematics resource;
https://mathworld.wolfram.com/Erdos-StrausConjecture.html
[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine equation $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, n>$ or $=2$; $\operatorname{arXiv:~0912.2458;~}$

