A Proof of the Erdös-Straus Conjecture

Zhang Tianshu

Emails: chinazhangtianshu@126.com; xinshijizhang@hotmail.com
Zhanjiang city, Guangdong province, China

Abstract

In this article, we classify positive integers step by step, and use the formulation to represent a certain class therein until all classes.

First, divide all integers ≥ 2 into 8 kinds, and formulate each of 7 kinds therein into a sum of 3 unit fractions.

For the unsolved kind, again divide it into 3 genera, and formulate each of 2 genera therein into a sum of 3 unit fractions.

For the unsolved genus, further divide it into 5 sorts, and formulate each of 3 sorts therein into a sum of 3 unit fractions.

For two unsolved sorts $\frac{4}{49+120c}$ and $\frac{4}{121+120c}$ where c \geq 0, we use an unit fraction plus a proper fraction to replace each of them, then take out

the unit fraction as $\frac{1}{X}$. After that, we take out an unit fraction from the

proper fraction and regard the unit fraction as $\frac{1}{Y}$, and finally, prove that

the remainder can be identically converted to $\frac{1}{Z}$.

AMS subject classification: 11D72; 11D45; 11P81

Keywords: Erdös-Straus conjecture; Diophantine equation; unit fraction

1. Introduction

The Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer n≥2, there are

invariably
$$\frac{4}{n} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$$
, where x, y and z are positive integers; [1].

Later, Ernst G. Straus further conjectured that x, y and z satisfy $x\neq y$, $y\neq z$ and $z\neq x$, because there are the convertible formulas

$$\frac{1}{2r} + \frac{1}{2r} = \frac{1}{r+1} + \frac{1}{r(r+1)} \text{ and } \frac{1}{2r+1} + \frac{1}{2r+1} = \frac{1}{r+1} + \frac{1}{(r+1)(2r+1)} \text{ where } r \ge 1; [2].$$

Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively.

As a general rule, the Erdös-Straus conjecture states that for every integer

n≥2, there are positive integers x, y and z, such that
$$\frac{4}{n} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$$
.

Yet it remains a conjecture that has neither is proved nor disproved; [3].

2. Divide integers≥2 into 8 kinds and formulate 7 kinds therein

First, divide integers ≥ 2 into 8 kinds, i.e. 8k+1with k ≥ 1 , and 8k+2, 8k+3, 8k+4, 8k+5, 8k+6, 8k+7, 8k+8, where k ≥ 0 , and arrange them as follows:

$$K\n: 8k+1, 8k+2, 8k+3, 8k+4, 8k+5, 8k+6, 8k+7, 8k+8$$

- 2, 17, 18, 19, 20, 21, 22, 23, 24,
- 3, 25, 26, 27, 28, 29, 30, 31, 32,
- ..., ..., ..., ..., ..., ..., ...,

Excepting n=8k+1, formulate each of other 7 kinds into $\frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$:

(1) For n=8k+2, there are
$$\frac{4}{8k+2} = \frac{1}{4k+1} + \frac{1}{4k+2} + \frac{1}{(4k+1)(4k+2)}$$
;

(2) For n=8k+3, there are
$$\frac{4}{8k+3} = \frac{1}{2k+2} + \frac{1}{(2k+1)(2k+2)} + \frac{1}{(2k+1)(8k+3)}$$
;

(3) For n=8k+4, there are
$$\frac{4}{8k+4} = \frac{1}{2k+3} + \frac{1}{(2k+2)(2k+3)} + \frac{1}{(2k+1)(2k+2)}$$
;

(4) For n=8k+5, there are
$$\frac{4}{8k+5} = \frac{1}{2k+2} + \frac{1}{(8k+5)(2k+2)} + \frac{1}{(8k+5)(k+1)}$$
;

(5) For n=8k+6, there are
$$\frac{4}{8k+6} = \frac{1}{4k+3} + \frac{1}{4k+4} + \frac{1}{(4k+3)(4k+4)}$$
;

(6) For n=8k+7, there are
$$\frac{4}{8k+7} = \frac{1}{2k+3} + \frac{1}{(2k+2)(2k+3)} + \frac{1}{(2k+2)(8k+7)}$$
;

(7) For n=8k+8, there are
$$\frac{4}{8k+8} = \frac{1}{2k+4} + \frac{1}{(2k+2)(2k+3)} + \frac{1}{(2k+3)(2k+4)}$$
.

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind into 3 genera and formulate 2 genera therein

For the unsolved kind n=8k+1 with $k\ge 1$, divide it by 3 and get 3 genera:

- (1) the remainder is 0 when k=1+3t; (2) the remainder is 2 when k=2+3t;
- (3) the remainder is 1 when k=3+3t, where $t\geq 0$, and ut infra.

k: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...

8k+1: 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, ...

The remainder: 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, ...

Excepting the genus (3), we formulate other 2 genera as follows:

(8) For $\frac{8k+3}{3}$ where the remainder is equal to 0, there are

$$\frac{4}{8k+1} = \frac{1}{8k+1} + \frac{1}{8k+2} + \frac{1}{(8k+1)(8k+2)}$$

Due to k=1+3t and t ≥ 0 , there are $\frac{8k+1}{3} = 8t+3$, so we confirm that $\frac{8k+1}{3}$ in the preceding equation is an integer.

(9) For $\frac{8k+3}{3}$ where the remainder is equal to 2, there are

$$\frac{4}{8k+1} = \frac{1}{8k+2} + \frac{1}{8k+1} + \frac{1}{(8k+1)(8k+2)}$$

Due to k=2+3t and t ≥ 0 , there are $\frac{8k+2}{3} = 8t+6$, so we confirm that $\frac{8k+2}{3}$

and $\frac{(8k+1)(8k+2)}{3}$ in the preceding equation are two integers.

4. Divide the unsolved genus into 5 sorts and formulate 3 sorts therein

For the unsolved genus $\frac{8k+1}{3}$ where the remainder is equal to 1 when k=3+3t and $t\geq 0$, then there are 8k+1=25, 49, 73, 97, 121 etc. So we divide

them into 5 sorts: 25+120c, 49+120c, 73+120c, 97+120c and 121+120c where $c \ge 0$, and *ut infra*.

Excepting n=49+120c and n=121+120c, formulate other 3 sorts, they are:

(10) For n=25+120c, there are
$$\frac{4}{25+120c} = \frac{1}{25+120c} + \frac{1}{50+240c} + \frac{1}{10+48c}$$
;

(11) For n=73+120c, there are
$$\frac{4}{73+120c} = \frac{1}{(73+120c)(10+15c)} + \frac{1}{20+30c} + \frac{1}{(73+120c)(4+6c)}.$$

(12) For n=97+120c, there are
$$\frac{4}{97+120c} = \frac{1}{25+30c} + \frac{1}{(97+120c)(50+60c)} + \frac{1}{(97+120c)(10+12c)}$$

For each of listed above 12 equations which express $\frac{4}{n} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$, please each reader self to make a check respectively.

5. Prove the sort
$$\frac{4}{49+120c} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$$

For a proof of the sort $\frac{4}{49+120c}$, it means that when c is equal to each of positive integers plus 0, there always are $\frac{4}{49+120c} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$.

After c is given any value, $\overline{49+120c}$ can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below:

$$\frac{4}{49+120c}$$

$$= \frac{1}{13+30c} + \frac{3}{(13+30c)(49+120c)}$$

$$= \frac{1}{14+30c} + \frac{7}{(14+30c)(49+120c)}$$

$$= \frac{1}{15+30c} + \frac{11}{(15+30c)(49+120c)}$$

. . .

$$= \frac{1}{13 + \alpha + 30c} + \frac{3 + 4\alpha}{(13 + \alpha + 30c)(49 + 120c)}, \text{ where } \alpha \ge 0 \text{ and } c \ge 0$$

. . .

As listed above, we can first let $\frac{1}{13+\alpha+30c} = \frac{1}{X}$, then go to prove $\frac{3+4\alpha}{(13+\alpha+30c)(49+120c)} = \frac{1}{Y} + \frac{1}{Z}$ where c\ge 0 and $\alpha \ge 0$, ut infra.

Proof• First, we analyse $3+4\alpha$ on the place of numerator, it is not hard to see, except $3+4\alpha$ as one numerator, it can also be expressed as the sum of an even number plus an odd number to act as two numerators, i.e. $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ...

If there are two addends on the place of numerator, then these two

addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and φ , also there is $\psi > \varphi$.

In numerators with the same denominator, largest ψ is denoted as ψ_1 . It is obvious that ψ_1 matches with smallest φ , when ψ_1 =4 α +2, smallest φ =1.

And then, let us think about the denominator $(13+\alpha+30c)(49+120c)$, actually just $13+\alpha+30c$ is enough, while reserve 49+120c for later.

In the fraction $\frac{3+4\alpha}{13+\alpha+30c}$, let each α be assigned a value for each time, according to the order $\alpha=0, 1, 2, 3,...$ So the denominator $13+\alpha+30c$ can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When α =0, 1, 2, 3 and otherwise, these denominators of 13+ α +30c and their numerators 4 α +3, ψ and φ are listed below.

$$13+\alpha+30c$$
, α , $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ... $13+30c$, 0 , 3 , $2+1$, $1+2$ $14+30c$, 1 , 7 , $6+1$, $5+2$, $4+3$, $3+4$, $2+5$, $1+6$ $15+30c$, 2 , 11 , $10+1$, $9+2$, $8+3$, $7+4$, $6+5$, $5+6$, ... $16+30c$, 3 , 15 , $14+1$, $13+2$, $12+3$, $11+4$, $10+5$, $9+6$, ...

..., ..., ..., ..., ..., ..., ..., ..., ...

16+3,

15+4,

14+5,

13+6,...

17+2

17+30c,

4, 19,

18+1,

As can be seen from the list above, every denominator $13+\alpha+30c$ corresponds with two special matching numerators ψ_1 and 1, from this,

we get the unit fraction $\frac{1}{13 + \alpha + 30c}$

For the unit fraction $\frac{1}{13+\alpha+30c}$, multiply its denominator by 49+120c reserved, then we get the unit fraction $\frac{1}{(13+\alpha+30c)(49+120c)}$, and let $\frac{1}{(13+\alpha+30c)(49+120c)} = \frac{1}{Y}$

After that, let us prove that $\frac{\psi_1}{13+\alpha+30c}$ i.e. $\frac{4\alpha+2}{13+\alpha+30c}$ is an unit fraction. Since the numerator $4\alpha+2$ is an even number, such that the denominator $13+\alpha+30c$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $13+\alpha+30c$ is only an odd number.

After α is assigned to odd numbers 1, 3, 5 and otherwise, and the fraction

$$\frac{4\alpha+2}{13+\alpha+30c}$$
 after the values assignment divided by 2, then the fraction $\frac{4\alpha+2}{13+\alpha+30c}$ is turned into the fraction $\frac{3+4t}{k+15c}$ identically, where c \geq 0, t \geq 0 and k \geq 7.

The point above is that 3+4t and k+15c after the values assignment make up a fraction, they are on the same order of taking values of t and k, according to the order from small to large, i.e. $\frac{3+4t}{k+15c} = \frac{3}{7+15c}, \frac{7}{8+15c},$

$$\frac{11}{9+15c}$$
, ...

Such being the case, let the numerator and denominator of the fraction

 $\frac{3+4t}{k+15c}$ divided by 3+4t, then we get a temporary indeterminate unit

fraction, and its denominator is $\frac{k+15c}{3+4t}$, and its numerator is 1.

Thus, we are necessary to prove that the denominator $\frac{k+15c}{3+4t}$ is able to become a positive integer in the case where t ≥ 0 , k ≥ 7 and c ≥ 0 .

In the fraction $\frac{k+15c}{3+4t}$, due to $k \ge 7$, the numerator k+15c after the values assignment are infinite more consecutive positive integers, while the denominator 3+4t=3, 7, 11 and otherwise positive odd numbers.

The key above is that each value of 3+4t after the values assignment can seek its integral multiples within infinite more consecutive positive integers of k+15c, in the case where $t\geq 0$, $k\geq 7$ and $c\geq 0$.

As is known to all, there is a positive integer that contains the odd factor 2n+1 within 2n+1 consecutive positive integers, where n=1, 2, 3, ...

Like that, there is a positive integer that contains the odd factor 3+4t within 3+4t consecutive positive integers of k+15c, no matter which odd number that 3+4t is equal to, where $t\ge 0$, $k\ge 7$ and $c\ge 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and 3+4t as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

$$k+15c$$

That is to say, $\overline{3+4t}$ as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive

integer is represented by μ , and thus in this case the fraction $\frac{3+4t}{k+15c}$ is exactly $\frac{1}{\mu}$.

For the unit fraction $\frac{1}{\mu}$, multiply its denominator by 49+120c reserved, then we get the unit fraction $\frac{1}{\mu(49+120c)}$, and let $\frac{1}{\mu(49+120c)} = \frac{1}{Z}$.

If $3+4\alpha$ serve as one numerator such that $\frac{3+4\alpha}{(13+\alpha+30c)(49+120c)} = \frac{1}{Y}$, then we can multiply the denominator Y by 2 to make a sum of two identical unit fractions, then again, convert them into the sum of two each other's -

distinct unit fractions by the formula $\frac{1}{2r} + \frac{1}{2r} = \frac{1}{r+1} + \frac{1}{r(r+1)}.$

Thus it can be seen, the fraction $\frac{3+4\alpha}{(13+\alpha+30c)(49+120c)}$ is surely able to be expressed into a sum of two each other's -distinct unit fractions in the case where c ≥ 0 and $\alpha \geq 0$. To sum up, there are $\frac{4}{49+120c} = \frac{1}{13+\alpha+30c} + \frac{1}{(13+\alpha+30c)(49+120c)} + \frac{1}{\mu(49+120c)}$ where $\alpha \geq 0$, μ

is an integer and $\mu = \frac{k+15c}{3+4t}$, t\ge 0, k\ge 7 and c\ge 0.

In other words, we have proved $\frac{4}{49+120c} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$.

6. Prove the sort
$$\frac{4}{121+120c} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$$

The proof in this section is exactly similar to that in the section 5. Namely,

for a proof of the sort $\frac{4}{121+120c}$, it means that when c is equal to each of 4 1, 1, 1

positive integers plus 0, there always are $\frac{4}{121+120c} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$.

After c is given any value, $\frac{4}{121+120c}$ can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below.

$$\frac{4}{121+120c}$$

$$= \frac{1}{31+30c} + \frac{3}{(31+30c)(121+120c)}$$

$$= \frac{1}{32+30c} + \frac{7}{(32+30c)(121+120c)}$$

$$= \frac{1}{33+30c} + \frac{11}{(33+30c)(121+120c)}$$

. . .

$$= \frac{1}{31 + \alpha + 30c} + \frac{3 + 4\alpha}{(31 + \alpha + 30c)(121 + 120c)}, \text{ where } \alpha \ge 0 \text{ and } c \ge 0.$$

. . .

As listed above, we can first let $\frac{1}{31+\alpha+30c} = \frac{1}{X}$, then go to prove

$$\frac{3+4\alpha}{(31+\alpha+30c)(121+120c)} = \frac{1}{Y} + \frac{1}{Z}$$
 where c\ge 0 and \alpha\ge 0, ut infra.

Proof• First, we analyse $3+4\alpha$ on the place of numerator, it is not hard to see, except $3+4\alpha$ as one numerator, it can also be expressed as the sum of an even number and an odd number to act as two numerators, i.e. $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ...

If there are two addends on the place of numerator, then these two addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and φ , also there is $\psi > \varphi$.

In numerators with the same denominator, largest ψ is denoted as ψ_1 . It is obvious that ψ_1 matches with smallest φ , when ψ_1 =4 α +2, smallest φ =1.

And then, let us think about the denominator $(31+\alpha+30c)(121+120c)$, actually just $31+\alpha+30c$ is enough, while reserve 121+120c for later.

In the fraction $\frac{3+4\alpha}{31+\alpha+30c}$, let each α be assigned a value for each time, according to the order $\alpha=0, 1, 2, 3$, ...So the denominator $31+\alpha+30c$ can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly, numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When α =0, 1, 2, 3 and otherwise, these denominators of 31+ α +30c and their numerators 4α +3, ψ and φ are listed below.

$$31+\alpha+30c$$
, α , $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ... $31+30c$, 0 , 3 , $2+1$, $1+2$

As can be seen from the list above, every denominator of $31+\alpha+30c$ corresponds with two special matching numerators ψ_1 and 1, from this,

we get the unit fraction $\frac{1}{31+\alpha+30c}$.

For the unit fraction $\frac{1}{31+\alpha+30c}$, multiply its denominator by 121+120c reserved, then we get the unit fraction $\frac{1}{(31+\alpha+30c)(121+120c)}$, and let $\frac{1}{(31+\alpha+30c)(121+120c)} = \frac{1}{Y}$

After that, let us prove that $\frac{\psi_1}{31+\alpha+30c}$ i.e. $\frac{4\alpha+2}{31+\alpha+30c}$ is an unit fraction. Since the numerator $4\alpha+2$ is an even number, such that the denominator $31+\alpha+30c$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $31+\alpha+30c$ is only an odd number.

After α is assigned to odd numbers 1, 3, 5 and otherwise, and the fraction

$$\frac{4\alpha + 2}{31 + \alpha + 30c}$$
 after the values assignment divided by 2, then the fraction $\frac{4\alpha + 2}{31 + \alpha + 30c}$ is turned into the fraction $\frac{3 + 4t}{m + 15c}$ identically, where c>0, t>0

and m \geq 16.

The point above is that 3+4t and m+15c after the values assignment make up a fraction, they are on the same order of taking values of t and m,

according to the order from small to large, i.e. $\frac{3+4t}{m+15c} = \frac{3}{16+15c}, \frac{7}{17+15c},$

$$\frac{11}{18+15c}, \dots$$

Such being the case, let the numerator and denominator of the fraction

$$\frac{3+4t}{m+15c}$$
 divided by 3+4t, then we get a temporary indeterminate unit

fraction, and its denominator is $\frac{m+15c}{3+4t}$, and its numerator is 1.

Thus, we are necessary to prove that the denominator $\frac{m+15c}{3+4t}$ is able to become a positive integer in the case where t ≥ 0 , m ≥ 16 and c ≥ 0 .

In the fraction $\frac{m+15c}{3+4t}$, due to m \geq 16, the numerator m+15c after the values assignment are infinite more consecutive positive integers, while the denominator 3+4t=3, 7, 11 and otherwise positive odd numbers.

The key above is that each value of 3+4t after the values assignment can seek its integral multiples within infinite more consecutive positive integers of m+15c in the case where $t\geq 0$, $m\geq 16$ and $c\geq 0$.

As is known to all, there is a positive integer that contains the odd factor 2n+1 within 2n+1 consecutive positive integers, where n=1, 2, 3, ...

Like that, there is a positive integer that contains the odd factor 3+4t within 3+4t consecutive positive integers of m+15c, no matter which odd number that 3+4t is equal to, where $t\ge 0$, $m\ge 16$ and $c\ge 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and 3+4t as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, $\frac{m+13c}{3+4t}$ as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive

integer is represented by λ , and thus in this case, the fraction $\frac{3+4t}{m+15c}$ is exactly $\frac{1}{\lambda}$

For the unit fraction $\frac{1}{\lambda}$, multiply its denominator by 121+120c reserved, then we get the unit fraction $\frac{1}{\lambda(121+120c)}$, and let $\frac{1}{\lambda(121+120c)} = \frac{1}{Z}$.

If $3+4\alpha$ serve as one numerator such that $\frac{3+4\alpha}{(31+\alpha+30c)(121+120c)} = \frac{1}{Y}$, then we can multiply the denominator Y by 2 to make a sum of two identical unit fractions, then again, convert them into the sum of two each

other's -distinct unit fractions by the formula $\frac{1}{2r} + \frac{1}{2r} = \frac{1}{r+1} + \frac{1}{r(r+1)}$.

Thus it can be seen, the fraction $\frac{3+4\alpha}{(31+\alpha+30c)(121+120c)}$ is surely able to be expressed into a sum of two each other's -distinct unit fractions in the where c > 0To case and $\alpha > 0$. up, there sum are $\frac{4}{121+120c} = \frac{1}{31+\alpha+30c} + \frac{1}{(31+\alpha+30c)(121+120c)} + \frac{1}{\lambda(121+120c)}$ where λ is

$$\frac{4}{121+120c} = \frac{1}{31+\alpha+30c} + \frac{1}{(31+\alpha+30c)(121+120c)} + \frac{1}{\lambda(121+120c)}$$
 where λ is

an integer and $\lambda = \frac{m+15c}{3+4t}$, t\ge 0, m\ge 16, and c\ge 0.

In other words, we have proved $\frac{4}{121+120c} = \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z}$

The proof was thus brought to a close. As a consequence, the Erdös-Straus conjecture is tenable.

References

[1] J. W. Sander, On $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136; https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via%3Dihub [2] Wolfram Math world, the web's most extensive mathematics resource; https://mathworld.wolfram.com/Erdos-StrausConjecture.html

[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine

 $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ equation $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$, n > or = 2; arXiv: 0912.2458;