Bagadi, R. (2017). Theory Of Universal Evolution Along Prime Basis (Time Like) {Version 2}. ISSN 1751-3030. *PHILICA.COM Article number 1150*. http://philica.com/display_article.php?article_id=1150

Theory Of Universal Evolution Along Prime Basis (Time Like) {Version 2}

ISSN 1751-3030

Authored By Ramesh Chandra Bagadi Data Scientist INSOFE (International School Of Engineering) Gachibowli, Hyderabad, Telengana State, India Email: rameshcbagadi@uwalumni.com Telephone: +91 9440032711

Abstract

In this research investigation, the author has detailed the Theory Of Evolution.

Theory

Considering any Positive Number a we can define the Evolution of a as follows:

- 1. If a is prime and is specifically some k^{th} Primes, then the One Step Evolution of a is the $(k+1)^{th}$ Prime. That is, $E^1\{(k)^{th} \text{ Prime}\} = (k+1)^{th}$ Prime
- 2. If a is not Prime, we write a as $a = b_1 + \delta_1$ where b_1 is the Prime nearest to a and less than a. Furthermore, we write δ_1 as

 $\delta_1 = b_2 + \delta_2$ where b_2 is the Prime nearest to δ_1 and less than δ_1

and so on so forth, till we can express any number in terms of Primes and possibly 1 as well as the additive terms.

For example, considering the number 24 we can write it as (23+1), considering the number 27, we can write it as (23+4) which can be further written as (23+3+1), considering the number 34, we can write it as (31+3).

Then, One Step Evolution of a is the Sum of the One Step Evolution of the terms (as detailed above) that sum to it, with Evolution of 1 taken as 2.

For Example, taking the number 24 we can write it as (23+1), hence its One Step Evolution is (29+2) = 31. Considering the number 27, we can write it as (23+4) which can be further written as (23+3+1), its One Step Evolution being (29+5+2) = 36. Considering the number 34, we can write it as (31+3), its One Step Evolution being (37+5) = 42.

- 3. $E^{1}\{l+m\} = E^{1}\{l\} + E^{1}\{m\}$ where l and m are some Positive Numbers and E^{1} represents the One Step Evolution Operator.
- 4. $E^{1}\left\{\frac{c}{d}\right\} = \frac{E^{1}(c)}{E^{1}(d)}$ where c and d are some Positive Numbers and E^{1} represents the One Step Evolution Operator

Step Evolution Operator.

Bagadi, R. (2017). Theory Of Universal Evolution Along Prime Basis (Time Like) {Version 2}. ISSN 1751-3030. *PHILICA.COM Article number 1150*. http://philica.com/display_article.php?article_id=1150

5. $E^{1}\{p-q\} = E^{1}\{p\} - E^{1}\{q\}$ with p > q, where p and q are some Positive Numbers and E^{1} represents the One Step Evolution Operator.

References

- 1. http://vixra.org/author/ramesh_chandra_bagadi
- 2. http://philica.com/advancedsearch.php?author=12897