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Abstract

Frankl’s Conjecture, from 1979, states that any finite union-closed
family, containing at least one non-empty member set, must have an el-
ement which belongs to at least half of the member-sets. In this paper
we list out some properties of the hypothetical minimal counter-example
to this conjecture. In particular, we discuss the frequency of 3 distinct
elements in the minimal counter-example. We also apply these findings
to finite bipartite graphs.

1 Introduction

A family of sets A is said to be union-closed if the union of any two member
sets is also a member of A. Peter Frankl’s conjecture (or the union-closed sets
conjecture) states that if A is finite, then some element must belong to at least
half of the sets in A, provided at least one member set is non-empty. A detailed
discussion and current standing of the conjecture can be found in [1].

One approach to the proof of this conjecture is to directly attack its minimal
counter-example as in [3]. The main result (Lemma 3) that we prove here in this
direction is the following: if the cardinality of minimal counter-example family
be 2n+1, then there must exist at least 3 distinct elements belonging to exactly
n sets. We also construct an augmentation technique and attempt to classify
the union-closed families based on their cardinalities. Finally we translate the
main result to the field of graph theory (Lemma 5).

2 Main results

We call a family A as not Frankl’s if it violates the union-closed sets conjecture.

We define the frequency of an element x as the number of member sets in A
that x belongs to.
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2.1 An augmentation technique

In this section we develop a technique to augment a union-closed family by
exactly one set, while preserving the union-closed property. The significance of
this method is that the augmented family contains only one set different from
the original family.

Lemma 1: Any union closed family A with |A| = n can be augmented to
generate a new union-closed family A′ with |A′| = n + 1.

Proof: We inject a new set X in the family A. This new set may be con-
structed as following:

X = {{∪A} ∪ {x} : x /∈ {∪A}}
The frequencies of each element in this new family A′ = A ∪ {X} gets

increased by 1.

We use the above technique to attempt the classification of union-closed
families based on their cardinalities.

Definition 1: We construct a set C ⊂ N as C := {y ∈ N : ∃ A with |A| =
y and A is not Frankl’s}. We set E := N \ C.

Theorem 1: For n ∈ N, if 2n ∈ C, then 2n + 1 ∈ C.

Proof: We prove this by contradiction. As 2n ∈ C, ∃ a union-closed A with
|A| = 2n and is not Frankl’s. The maximum frequency of any element can
therefore be n−1. We augment A to A′ using the method in Lemma 1. As |A′|
= 2n + 1 and frequency of any element in A′ cannot be more than (n− 1) + 1
= n, hence A′ is not Frankl’s. Therefore 2n + 1 ∈ C.

2.2 Properties of the minimal counter-example

We now explore the properties of the minimal counter-example. We formally
define the minimal counter-example as follows:

Definition 2: We call a union-closed family A a minimal counter-example
if it is not Frankl’s and |A| = inf C

We define the basis sets of a union-closed family:

Definition 3: A set B ∈ A (A being union-closed) is called a basis if there
are no sets X,Y ∈ A [X 6= Y and, X or Y 6= ∅] such that X ∪ Y = B.

Note: We observe that removing a basis set from a union-closed family
generates a new family which is also union-closed.

To prove our main lemma, we must safely remove 3 basis sets from a union-
closed A. Hence, we prove the following lemma first:

Lemma 2: If A is a minimal counter-example, then it must contain at least
6 basis sets.
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Proof: From [4], we know that the minimal counter-example A must contain
51 sets. Let b be the number of basis sets of A. All the sets of A are formed by
the union of 2 or more basis sets, hence the maximum cardinality of A can be(
b
1

)
+

(
b
2

)
+ ... +

(
b
b

)
= 2b. But, |A| = 51. Therefore, 2b ≥ 51, or b > 5.

Theorem 2: The integer inf C must be odd.

Proof: We prove this using contradiction. Let inf C = 2n (note that inf C ∈
C), n being a natural number. Then there exists a family A with |A| = 2n and
is not Frankl’s. We derive a new union-closed family A′ by removing a basis
set from A. As |A′| = 2n − 1 < 2n, so |A′| ∈ E. Thus, A′ must be Frankl’s.
Therefore, A′ must contain an element with frequency n. As, the same element
has frequency n in A, hence A must also be Frankl’s. Therefore, we reach a
contradiction.

We now proceed to the main lemma of this article.

Lemma 3: If A be a minimal counter-example with |A| = 2n + 1, then A
must contain at least 3 distinct elements with frequency exactly equal to n.

Proof: By Lemma 2, A must contain at least 6 basis sets. If we remove a
basis set B, we get a new union-closed family AB with |AB | = 2n. As 2n ∈ E,
there must exist an element x1 in at least n sets of AB . The frequency of x1

cannot be greater than n as it will render A Frankl’s (a contradiction). Hence,
frequency of x1 must be n.

Now, as x1 must belong to at least one basis set B1, we remove B1 from A
to get AB1 with |AB1 | = 2n. Again AB1 must be Frankl’s with x1 occurring
in n − 1 sets. Hence, there must exist another element x2 present in exactly n
sets of AB1

. Also, x2 /∈ B1, otherwise frequency of x2 in A will become n + 1
making it Frankl’s (a contradiction). Let x2 ∈ B2 (a basis) where B1 6= B2.

Next, we remove both B1 and B2 from A to get a new family AB1B2
. The

frequency of x1 in AB1B2
becomes n−1 [when x1 /∈ B2] or n−2 [when x1 ∈ B2].

x2 has a frequency of n−1 in AB1B2 . As |AB1B2 | = 2n−1, it is Frankl’s. Hence,
we must have another element x3, distinct from x1 and x2, with a frequency n
in AB1B2

. x3 cannot be an element of B1 or B2, else A would be Frankl’s.

Therefore, we have at least 3 distinct elements, namely x1, x2 and x3 with
an exact frequency of n.

2.3 Translation to Graph Theory

It is well known that the union-closed sets conjecture is equivalent to the
intersection-closed sets conjecture. We state the intersection-closed sets con-
jecture here:

Conjecture 1: For any intersection-closed family of sets that contains more
than one set, there exists an element that belongs to at most half of the sets in
the family.
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We do not repeat the proof of equivalence of the two conjectures here, but
highlight the key ideas, which will help us to smoothly transfer our results to
the field of graph theory.

For every union-closed A we can construct A′, with |A′| = |A|, where, if A
∈ A then the complement of A, i.e. {∪A} \ A ∈ A′. It is easy to see that this
family of complement sets A′ is intersection-closed. Next, for any element x we
define the frequency of x in A as |Ax|. The number of sets which do not contain
x is defined as |Ax|.

Therefore, for a union-closed A and its corresponding intersection-closed A′,
we have |A′

x| = |Ax| for any element x in A′. Also, the fact that |Ax| = |A|
- |Ax| is trivial. With these ideas we are in a position to state Lemma 3 for
intersection-closed minimal counter-example.

Lemma 4: If the minimal counter-example A′ to the intersection-closed
conjecture contain 2n + 1 sets, then there must be 3 distinct elements in A′

contained in exactly n + 1 sets.

Proof: Let A be the union-closed family containing the complement sets of
A′, then from Lemma 3 we have 3 distinct elements x1, x2 and x3 contained in
exactly n sets of A. As |A′

x1
| = |Ax1

|, therefore |A′
x1
| = |A| - |Ax1

| = (2n+1)−n
= n + 1. Similarly, |Ax2

| = n + 1 and |Ax3
| = n + 1.

The graph theory equivalent of intersection-closed sets conjecture is de-
scribed in [2]:

Conjecture 2: Let G be a finite bipartite graph with at least one edge.
Then each of the two bipartition classes contains a vertex belonging to at most
half of the maximal stable sets.

We can then translate the findings of Lemma 4 to the context of graph
theory to prove the following lemma:

Lemma 5: Let the minimal counter-example bipartite graph G to Conjec-
ture 2 contain 2n + 1 maximal stable sets. Then each bipartition class, X, Y
of G, must contain 3 distinct vertices present in exactly n + 1 maximal stable
sets of G.

Proof: Let S be the family of maximal stable sets of G. It is shown in [2],
that the family X := {X ∩ S: S ∈ S} is intersection-closed. Same holds true
for the family Y := {Y ∩ S: S ∈ S}. Thus, from Lemma 4 we have 3 vertices in
each partition X and Y occurring in exactly n+ 1 sets of X and Y respectively.

3 Remarks and a Hypothesis

The result proved in Theorem 1 is a weak one. Ideally we would like to prove
the stronger result, sup E + 1 = inf C. Theorem 1 only proves one half of this.
The other half would be to show that if 2n − 1 ∈ C, then 2n ∈ C. We need a
better augmentation technique than that in Lemma 1 to prove the other half.
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In the article [3], the author has defined the set Ca as ∪Aa. The family
containing all such Ca is C. If |∪A| = q, then |C| = q − 1. Also, we have |Ax1

|
= |Ax2

| = |Ax3
| = n + 1. Therefore, there exists an element p in at least half

the sets of Ax1
, as Ax1

is Frankl’s. Again, from [3], we have that C \ Cx1
⊂

Ax1 , C \ Cp ⊂ Ap and {∪A} ∈ Ap. Therefore |Ax1 ∩ Ap| ≥ q − 1. Now, if we
can show that there exist k sets each containing p, but is not a member of C
∪ Ax1

∪ {∪A}, then we have the inequality ((n + 1)/2)+q − 1 + k ≤ n, which
yields |A| ≥ 4q−1 + 4k. We intuit that k > 0, but a better estimate of k eludes
us. Currently, we know k ≥ 0, but the results in this paper may help to find a
better lower bound for k.
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