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We propose a simple partition function that unifies a surprisingly large
amount of physical laws. The partition function is constructed from
two conjugate-pairs: 1) an entropic-force conjugated to a thermal-
length and 2) an entropic-power conjugated to a thermal-time. From
its equation of state, we derive the Schrödinger equation, the Dirac
equation, special relativity, general relativity, dark energy, Newton’s
law of gravitation, and Newton’s law of inertia and show that its La-
grange multipliers are the Planck units. We also propose a solution
to the problem of the arrow of time as a natural consequence of the
construction.

Contents

1 Introduction 2
1.1 Statistical physics . . . . . . . . . . . . . . . . . . . . . . . 2

2 First proposed partition function: Time and Space 3
2.1 Regimes and cycles . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Special relativity . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Light cones as thermodynamic cycles . . . . . . . . . . . 5

2.4 Lorentz’s transformation . . . . . . . . . . . . . . . . . . . 6

2.5 Inertial mass . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Second proposed partition function: Time and generalized length 8
3.1 Taylor expansion of dl . . . . . . . . . . . . . . . . . . . . 9

3.2 Gravitational constant . . . . . . . . . . . . . . . . . . . . 11

3.3 Wave energy equation . . . . . . . . . . . . . . . . . . . . 12

3.4 Planck units . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 General relativity . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Discussion - Arrow of time 16
4.1 Negative power . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 The second law of thermodynamics as an opposition to neg-
ative power . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Arrow of time . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 The physics of future alternatives . . . . . . . . . . . . . . 20

4.5 Limiting relations . . . . . . . . . . . . . . . . . . . . . . . 21

5 Thermal space-time 23



the world constructed as a simple partition function 2

5.1 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . 24

5.2 Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Conclusion 27

1 Introduction

As the Planck units are allegedly constant throughout the universe,
we had the idea to construct a partition function of statistical physics
such that the Lagrange multipliers are the Planck units. Furthermore,
we injected as thermodynamics conjugate-pairs the two quantities
that we felt were the most fundamental: time and space. To recover
the units of energy, time must be multiplied by a power and length
(space) must be multiplied by a force; thus, the partition function
describes arbitrary micro-states in terms of both space and time. Due
to the simplicity and generality of the construction, it is perhaps re-
assuring that special relativity, general relativity, and dark energy
are provable solutions of its equation of state. Furthermore, ther-
mal fluctuations along the time and space quantities produce the
Schrödinger and Dirac equations as thermo-statistical extensions to
classical analogues. Thus, the construction suggests that both general
relativity and the quantum world emerge from a more fundamental
thermo-statistical world.

1.1 Statistical physics

We will provide a brief recap of statistical physics. In statistical
physics, we are interested in the distribution that maximizes entropy,

S = −kB ∑
x∈X

p(x) ln p(x) (1.1)

subject to the fixed macroscopic quantities. The solution for this is
the Gibbs ensemble. Typical thermodynamic quantities are:

quantity name units type

T = 1/(kBβ) temperature K intensive (1.2)

E energy J extensive (1.3)

p = γ/β pressure J/m3 intensive (1.4)

V volume m3 extensive (1.5)

µ = δ/β chemical potential J/kg intensive (1.6)

N number of particles kg extensive (1.7)

Taking these quantities as examples, the partition function be-
comes:
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Z = ∑
x∈X

e−βE(x)−γV(x)−δN(x) (1.8)

The probability of occupation of a micro-state is:

p(x) =
1
Z

e−βE(x)−γV(x)−δN(x) (1.9)

The average values and their variance for the quantities are:

E = ∑
x∈X

p(x)E(x) E =
−∂ ln Z

∂β
(∆E)2 =

∂2 ln Z
∂β2 (1.10)

V = ∑
x∈X

p(x)V(x) V =
−∂ ln Z

∂γ
(∆V)2 =

∂2 ln Z
∂γ2 (1.11)

N = ∑
x∈X

p(x)N(x) N =
−∂ ln Z

∂δ
(∆N)2 =

∂2 ln Z
∂δ2 (1.12)

The laws of thermodynamics can be recovered by taking the fol-
lowing derivatives

∂S
∂E

∣∣∣∣
V,N

=
1
T

∂S
∂V

∣∣∣∣
E,N

=
p
T

∂S
∂N

∣∣∣∣
E,V

= − µ

T
(1.13)

, which can be summarized as

dE = TdS− pdV + µdN (1.14)

This is known as the equation of state of the thermodynamic sys-
tem. The entropy can be recovered from the partition function and is
given by:

S = kB
(
ln Z + βE + γV + δN

)
(1.15)

2 First proposed partition function: Time and Space

We propose the following partition function, constructed as a Gibbs
ensemble:

Z(β,S , F) = ∑
q∈Q

e−β[E(q)−S f (q)−Fx(q)] (2.1)

where
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quantity name units type

T = 1/(kBβ) temperature K intensive (2.2)

S entropic action Js intensive (2.3)

F entropic force J/m intensive (2.4)

E(q) energy J extensive (2.5)

f (q) thermal frequency 1/s extensive (2.6)

x(q) thermal space m extensive (2.7)

The partition function includes the familiar entropic force and the
unfamiliar entropic action. Its equation of state is:

TdS = dE + Sd f + Fdx (2.8)

We can convert it to a more intuitive representation by converting
the frequency to a time and the action to a power. Let us do that now.

TdS = dE + Sd f + Fdx (2.9)

TdS = dE + Sd(t−1
) + Fdx [ f := 1/t] (2.10)

TdS = dE− S t−2dt + Fdx
[
d(t−1) = −t−2dt

]
(2.11)

TdS = dE− Pdt + Fdx
[

P := S t−2
]

(2.12)

This representation introduces two new quantities, defined as:

quantity name units type

P entropic power J/s intensive (2.13)

t(q) thermal time s extensive (2.14)

Thus, the equation of state admits these two formulations:

TdS = dE + Sd f + Fdx action-frequency formulation (2.15)

TdS = dE− Pdt + Fdx power-time formulation (2.16)

which we will refer to throughout the paper.

2.1 Regimes and cycles

We will derive the familiar laws of physics by studying the equation
of state in terms of its regimes. To do so, we will fix some derivatives
(e.g. dS = 0) and analyse what happens when we let the others vary.
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2.2 Special relativity

Here, we use the power-time formulation and pose dS = 0 and
dE = 0. We obtain the fundamental relation of special relativity
linking space to time.

0 = −Pdt + Fdx (2.17)

Fdx = Pdt (2.18)

dx =
P
F

dt (2.19)

As the power P and the force F are Lagrange multipliers of the
partition function, they are constant throughout the system. There-
fore, their quotient is also a constant.

c :=
P
F

(2.20)

Therefore,

dx = cdt (2.21)

As the units of P/F are meters per second, c will be our working
definition of the speed of light.

Remark: When P is the Planck power and F is the Planck force, we
do indeed recover the speed of light:

P
(

1
F

)
=

c5

G

(
G
c4

)
= c (2.22)

2.3 Light cones as thermodynamic cycles

In this section, we look at the thermodynamic cycle of the system
transiting through time and space starting at O to A to B and back
to O, as illustrated on Figure 1. During the transitions and to keep
the energy constant, tradeoffs must be made between time, distance
and entropy. This cycle is reminiscent of other thermodynamic cycles,
such as those involving pressure and volume. Interestingly, the cycles
can also be interpreted as light cones.

O A

B

x'=
P/
F

t

x

Figure 1: A "thermodynamic cycle"
through space and time.

O to A: As O is translated forward in time to A while keeping the
distance constant (dx = 0), the entropy decreases over time.

(
TdS = Fdx− Pdt

∣∣
dx=0 (2.23)

=⇒ dS
dt

= −P
T

(2.24)
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A to B: As A is translated forward in space to B while keeping the
time constant (dt = 0), the entropy increases over the distance.

(
TdS = Fdx− Pdt

∣∣
dt=0 (2.25)

=⇒ dS
dx

=
F
T

(2.26)

O to B: As O is translated forward both in time and in space to B
while keeping the entropy constant (dS = 0), the system has a speed
of c.

(
TdS = Fdx− Pdt

∣∣
dS=0 (2.27)

=⇒ dx
dt

=
P
F
= c (2.28)

We conclude that an object travelling at speed c is neither encour-
aged nor discouraged by entropy. The speed of light represents an
inflexion point in the rate of entropy production over time. We will
return to that notion in the section on the arrow of time.

2.4 Lorentz’s transformation

To recover the Lorentz’s factor γ, let us consider figure 2. Two ob-
servers start at the origin S and travel in space-time respectively to O
and O′. We regard O′ as traveling at speed |v| in the reference frame
of O. From standard trigonometry, we derive the following values for
the length of the segment;

θS

O

O'

L

L cosθ

L
si
nθ

t

x

t ′

x ′

Figure 2: The spacetime intervals
between two observers. Here O′ travels
at speed |v| in O’s reference frame.

Segment Length

|SO| L (2.29)

|SO′| L cos θ (2.30)

|O′O| L sin θ (2.31)

From the Pythagorean theorem and solving for cos θ, we obtain:

|SO|2 = |SO′|2 + |O′O|2 (2.32)

L2 = (L cos θ)2 + (L sin θ)2 (2.33)

1 = (cos θ)2 + (sin θ)2 (2.34)√
1− (sin θ)2 = cos θ (2.35)

We consider that the distance between two observers moving at
constant speed is simply vt. Hence, |O′O| = vt. Solving for sin θ, we
obtain:
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|O′O| = vt = L sin θ (2.36)

=⇒ sin θ =
vt
L

(2.37)

From equation (2.35) and (2.37), we get the reciprocal of the
Lorentz factor:

√
1− v2t2

L2 = cos θ = γ−1 (2.38)

=⇒ γ =
1√

1− v2t2

L2

(2.39)

Finally, we consider that L is the distance travelled by O in the
reference frame of O′ such that the entropy of O is constant over
time. According to the relation dx = cdt, for this to be the case, the
speed of O must be c. Thus, the distance travelled by O during time t
is L = ct. We obtain:

γ =
1√

1− v2

c2

(2.40)

which is the well-known Lorentz factor and is the multiplication
constant connecting |SO| to |SO′|.

2.5 Inertial mass

In this section, we will need to use the Unruh temperature1. As can 1 Stephen A. Fulling. Nonunique-
ness of canonical field quantization in
riemannian space-time. Phys. Rev.
D, 7:2850–2862, May 1973. doi:
10.1103/PhysRevD.7.2850. URL
https://link.aps.org/doi/10.1103/

PhysRevD.7.2850; P C W Davies.
Scalar production in schwarzschild
and rindler metrics. Journal of Physics
A: Mathematical and General, 8(4):
609, 1975. URL http://stacks.iop.

org/0305-4470/8/i=4/a=022; W. G.
Unruh. Notes on black-hole evapo-
ration. Phys. Rev. D, 14:870–892, Aug
1976. doi: 10.1103/PhysRevD.14.870.
URL https://link.aps.org/doi/10.

1103/PhysRevD.14.870; and Erik P.
Verlinde. On the origin of gravity
and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

be reviewed in the citations provided, the Unruh temperature is
an exact result obtained from special relativity. The Unruh effect is
the prediction that an accelerating observer will observe blackbody
radiation (at the Unruh temperature), whereas an inertial observer
would observe none. The Unruh temperature is:

T =
h̄a

2πckB
(2.41)

The Unruh temperature connects acceleration to the temperature.
We will use it here to convert an entropic force expressed in terms of
a temperature to an entropic force expressed in terms of acceleration.

Furthermore, we start from the power-time formulation and pose
dt = 0 and dE = 0. As originally done by Eric Verldinde2, from these

2 Erik P. Verlinde. On the origin of
gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

starting points, we can derive F = ma as follows:

https://link.aps.org/doi/10.1103/PhysRevD.7.2850
https://link.aps.org/doi/10.1103/PhysRevD.7.2850
http://stacks.iop.org/0305-4470/8/i=4/a=022
http://stacks.iop.org/0305-4470/8/i=4/a=022
https://link.aps.org/doi/10.1103/PhysRevD.14.870
https://link.aps.org/doi/10.1103/PhysRevD.14.870
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
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TdS = Fdx (2.42)

F = T
dS
dx

(2.43)

F =

(
h̄a

2πckB

)
dS
dx

(2.44)

F =

(
h̄

2πckB

dS
dx

)
a (2.45)

This equation corresponds to F = ma provided that
(

h̄
2πckB

dS
dx

)
=

m. How reasonable is that? Well, for it to be the mass, it suffices
that dS/dx is the inverse of the reduced Compton wavelength multi-
plied by a constant. Recall that the reduced Compton wavelength is
h̄/(mc). Let us investigate:

h̄
2πckB

dS
dx

= m =⇒ dS
dx

= 2πkB

(mc
h̄

)
(2.46)

We obtain a relation between entropy and x. What could this
mean? It means two things.

1. The further away an object is from the origin, the higher its posi-
tional entropy.

2. The more massive an object is, the higher its positional entropy.

Why then the factor 2π? The presence of π suggest a connection
between a line and a circle. Therefore, a possible interpretation is
that the entropy associated with positional entropy is scaled pro-
portionally to the curvature of a circle (we can think of it as a one-
dimensional case of the holographic principle). Then, as an object
with a small Compton wavelength that can be more finely located, it
requires more positional entropy to describe its position than an ob-
ject with a large Compton wavelength. Why then the factor kB? The
factor kB converts the reduced Compton wavelength to the units of
entropy/length (joules per kelvin per meter).

3 Second proposed partition function: Time and generalized length

The first partition function we proposed was constructed with an
entropic-force conjugated with a thermal-length. The length was,
of course, linear and expressed by x. In this section, however, we
extend the representation to consider a thermal-length described by
an arbitrary function; after all, the mass of the universe is not linearly
distributed with clockwork precision. To achieve this, we consider an
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arbitrary function l(q) : q → R used to express the lengths of the
micro-states. We will study such function via a Taylor expansion. A
Taylor expansion requires that Q as in q ∈ Q be uncountable. As l(q)
is an arbitrary length with meter units, it will still be conjugated with
the entropic-force. The Taylor expansion of Fl(q) is:

Fl(q) = Fl(0) + Fl′(0)q +
Fl′′(0)

2
q2 +

Fl′′′(0)
6

q3 + O(q4) (3.1)

and its derivative with respect to q is:

Fdl(q) = Fl′(0)dq + Fl′′(0)qdq +
Fl′′′(0)

2
q2dq + 4O(q3)dq (3.2)

As the micro-states q ∈ Q must be uncountable for the Taylor
expansion of l(q) to be well defined, the partition function must be
continuous. Therefore, it becomes:

Z =
1
h

∫
e−β[E(q)+S f (q)+Fl(q)]dq (3.3)

and is integrated over Q. Likewise, its equation of state is

TdS = dE + Sd f + Fdl action-frequency formulation (3.4)

TdS = dE− Pdt + Fdl power-time formulation (3.5)

3.1 Taylor expansion of dl

We convert the term dl of the power-time formulation into its Tay-
lor expansion. The first change we will do is rename q := x. The
multiplication term 4 in 4O(x3) can be absorbed in to O(x3).

Fdl(x) = Fl′(0)dx + Fl′′(0)xdx +
Fl′′′(0)

2
x2dx + O(x3)dx (3.6)

Then, injecting it into the power-time formulation, we obtain:

TdS = dE− Pdt + Fdl (3.7)

TdS = dE− Pdt + Fl′(0)dx + Fl′′(0)xdx +
Fl′′′(0)

2
x2dx + O(x3)dx

(3.8)

Something interesting appends with the units of the Taylor expan-
sion. Let us investigate:
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Taylor term quantity units

Fl′(0)dx F N (3.9)

” l′(0) @ (3.10)

” dx m (3.11)

Fl′′(0)xdx F N (3.12)

” l′′(0) 1/m (3.13)

” xdx m2 (3.14)

Fl′′′(0)x2dx F N (3.15)

” l′′′(0) 1/m2 (3.16)

” x2dx m3 (3.17)

...
...

...

Since xdx has units m2 and x2dx has units m3, we pose γdA := xdx
and αdV := x2dx. Furthermore, as l′(0) has no units, we define it as
the baseline l′(0) := 1 and we define l′′(0) := lA/L and l′′′(0) :=
lV/A as they respectively have units m−1 and m−2. For empirical
reasons (e.g., the observable universe is a sphere), we consider that
γdA describes the surface of a sphere and that αdV describes the
volume of a sphere. Therefore, to properly link γdA to xdx, the factor
γ must be 1/(4π) and the factor α must be 3/(4π). Introducing these
replacements, the equation of state becomes:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + lV

3F
8πA

dV + O(x3)dx (3.18)

where lA and lV are leftovers of the Taylor coefficients. We can
recover three relations by varying the intensity of the Taylor approxi-
mation.

TdS = dE− Pdt + Fdx + O(x)dx (3.19)

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + O(x2)dx (3.20)

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + lV

3F
8πA

dV + O(x3)dx (3.21)

With the first relation, and by posing O(x)dx → 0, we recover the
first proposed partition function:

TdS = dE− Pdt + Fdx (3.22)

Thus, the results derived with the previous partition function are
importable into this more general equation of state.
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3.2 Gravitational constant

To find a suitable definition for G, we must derive Newton’s law of
gravitation from the equation of states. A derivation of Newton’s law
of gravitation from the entropic perspective has been done before3. 3 Erik P. Verlinde. On the origin of

gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

To obtain it, we start from the power-time formulation expanded
with two Taylor terms:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + O(x2)dx (3.23)

Then, we pose dE = 0, dt = 0 and O(x2)dx → 0. We obtain:

TdS = Fdx + lA
F

4πL
dA (3.24)

We notice that the term dx grows linearly as the term dA grows
quadratically. Thus, as x is increased, there will be a point where
dA� dx (recall that dA = xdx). The approximation yields:

TdS = lA
F

4πL
dA (3.25)

This regime contains the holographic principle and, as a result,
the entropy of the system grows proportional to x2, an area law. To
recover Newton’s law of gravity, and consistent with the holographic
principle, we further pose the assumption that an entropy is associ-
ated to this area law and is given by bits occupying a small area L2

on the surface of a sphere. In this case, the total number of bits on
the surface is given by:

N =
4πx2

L2 holographic assumption (3.26)

The term xdx of the equation of state is associated to x2/2 in the
partition function. As a result of the equipartition theorem, which
applies to quadratic energy terms, the average energy will be E =

kBT/2. Multiplying E by N, we get the total energy associated with
xdx:

E =
1
2

(
4πx2

L2

)
kBT (3.27)

=⇒ T =
L2

2πkB

E
x2 (3.28)

https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
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Consistent with thermodynamic equilibrium, we obtain a tempera-
ture T. As our goal is to recover the gravitational force, we inject this
temperature in the entropic force relation.

Fdx = TdS entropic force (3.29)

Fdx =

(
L2

2πkB

E
x2

)
dS derived temperature (3.30)

F =

(
L2

2πkB

E
x2

)
dS
dx

(3.31)

What then is dS/dx? Recall equation 2.46; the connection between the
reduced Compton wavelength and the distance entropy.

F =

(
L2

2πkB

E
x2

)(
2πkB

mc
h̄

)
Compton wavelength (3.32)

F =

(
L2c
h̄

)
Em
x2 clean up (3.33)

We then convert E to its rest mass via E = mc2.

F =

(
L2c3

h̄

)
Mm
x2 (3.34)

We obtain the Newton’s law of gravitation along with a definition for
G.

F = G
Mm
x2 (3.35)

=⇒ G :=
L2c3

h̄
(3.36)

which further implies that

L =

√
h̄G
c3 Planck’s length (3.37)

3.3 Wave energy equation

Here, we use the action-frequency formulation to derive a relation
between frequency and energy. We pose dx = 0 and dS = 0. We
obtain:

dE = Sd f (3.38)

Integrating each side, we obtain:∫
dE =

∫
Sd f (3.39)

E = S f + C (3.40)

Posing C = 0 and S = h, we obtain the photon frequency to
energy relation E = h f .
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3.4 Planck units

We have now obtained a definition for three of the fundamental
constants.

h := S c :=
P
F

G :=
L2c3

h̄
(3.41)

Thus, we can now prove that the Lagrange multipliers of the equa-
tion of states P and F are indeed the Planck units.

expression quantity

G =
L2c3

h̄
=⇒ L =

√
h̄G
c3 Planck’s length (3.42)

t =
L
c
=

√
h̄G
c5 Planck’s time (3.43)

P = t−2S = 2π
c5

G
Planck’s power* (3.44)

P
F
= c =⇒ F = 2π

c4

G
Planck’s force* (3.45)

...
...

*The reader will notice that we have obtained the definitions of
P and F with an added multiplication constant 2π; whereas in the
literature these quantities are defined without it. The definitions
we have here are actually the correct ones. Indeed, in the literature,
the Planck time is connected to the Planck angular frequency via
ωP = 1/tP. In reality, however ω = 2π/t. Thus, for our equations
to balance out, we cannot ignore the factor 2π and must use the
corrected value for the Planck units which are P = 2πc5/G and
F = 2πc4/G.

3.5 General relativity

In this section, we will show how the term dA suggests that general
relativity is entropic and emergent. Our goal is to derive the Einstein
field equation of general relativity, starting from the dA regime. First,
we start from the power-time formulation expanded with two Taylor
terms:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + O(x2)dx (3.46)

Then, we pose dS = 0, dt = 0 and O(x2)dx → 0. We obtain:

dE = Fdx + lA
F

4πL
dA (3.47)
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We notice that the term dx grows linearly and the term dA grows
quadratically. Thus, as x is increased, there will be a point where
dA� dx. The approximation yields:

dE = lA
F

4πL
dA (3.48)

Deriving general relativity from dE = lA
F

4πL dA has indeed been
done before in the literature, notably by Ted Jacobson, then later
(and differently) by Erik Verlinde4. Furthermore, key insights were

4 Ted Jacobson. Thermodynamics
of spacetime: The einstein equa-
tion of state. Phys. Rev. Lett.,
75:1260–1263, Aug 1995. doi:
10.1103/PhysRevLett.75.1260. URL
https://link.aps.org/doi/10.1103/

PhysRevLett.75.1260; and Erik P.
Verlinde. On the origin of gravity
and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029
provided by Christoph Schiller5. Here, we will provide a sketch of

5 Christoph Schiller. General rela-
tivity and cosmology derived from
principle of maximum power or force.
International Journal of Theoretical
Physics, 44(9):1629–1647, Sep 2005.
ISSN 1572-9575. doi: 10.1007/s10773-
005-4835-2. URL https://doi.org/10.

1007/s10773-005-4835-2

the proof by Ted Jacobson as summarized by Schiller.
First, the entropic force F is constant throughout the system as a

result of being a Lagrange multiplier. We have already shown that
F is the Planck force. This has allowed us to derive special relativity
and the speed of light; therefore, we must continue to use F as the
Planck force here.

What then is L? Recall that earlier we used the Unruh temperature
to link T to an acceleration and derive F = ma. Here and likewise,
we will use special relativity to derive a relation between length and
acceleration and use it to replace L. As per Schiller’s paper, we select
L as the maximum length that an accelerated object can have under
special relativity6. 6 Christoph Schiller. General rela-

tivity and cosmology derived from
principle of maximum power or force.
International Journal of Theoretical
Physics, 44(9):1629–1647, Sep 2005.
ISSN 1572-9575. doi: 10.1007/s10773-
005-4835-2. URL https://doi.org/10.

1007/s10773-005-4835-2; Wolfgang
Rindler. Relativity: special, general,
and cosmological, 2003; and Ray A
D’Inverno. Introducing einstein’s
relativity. 1992

L =
c2

2a
(3.49)

L is perhaps better understood as the acceleration of circular mo-
tion (r = v2/a) at the speed of light (v = c). In the present context,
L is the length associated with the maximum force, the Planck force.
In the context of maximums, the force cannot accelerate the object
beyond the speed of light, and therefore is best defined for a circular
motion produced by a force perpendicular to the direction of motion.
The maximum acceleration changes the direction of the motion, but
does not increases the speed beyond the speed of light.

With F = 2πc4/G, we obtain:

dE = lA
c2

G
adA (3.50)

With this result, Jacobson’s proof directly follows. Starting from
dE = TdS, he first connects dE to an arbitrary coordinate system and
energy flow rates:

dE =
∫

TabkadΣb (3.51)

https://link.aps.org/doi/10.1103/PhysRevLett.75.1260
https://link.aps.org/doi/10.1103/PhysRevLett.75.1260
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2
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Here Tab is an energy-momentum tensor, k is a killing vector field,
and dΣ the infinitesimal elements of the coordinate system. Jacobson
then shows that the area part can be rewritten as follows:

adA = c2
∫

RabkadΣb (3.52)

where Rab is the Ricci tensor describing the space-time curvature.
This relation is obtained via the Raychaud-Huri equation, giving
it a geometric justification. Combining the two with a local law of
conservation of energy, he obtains

∫
TabkadΣb = lA

c2

G

∫
RabkadΣb (3.53)

, which can only be satisfied if

Tab = lA
c2

G

[
Rab −

(
R
2
+ Λ

)
gab

]
(3.54)

Here, the full field equations of general relativity are recovered,
including the cosmological constant (as an integration constant).
Only the numerical value of lA remains. The exact formulation of the
field equation is obtained by posing the numerical value to gA :=
1/(8π).

Remark: Had we not used the corrected Planck force (F = 2πc4/G),
we would have a 2π term dividing Tab and lA would have been 1/4.
Thus, the difference would have been absorbable. However, using
the corrected Planck force has the consequence that all dimensionless
numerical multipliers are attributed to the Taylor coefficient, making
the derivation more aesthetically pleasing.

3.6 Dark energy

Connecting dark energy to a volumetric entropy has been suggested
and discussed by other authors before7. First, we start from the 7 Damien A. Easson, Paul H. Frampton,

and George F. Smoot. Entropic acceler-
ating universe. Physics Letters B, 696(3):
273 – 277, 2011. ISSN 0370-2693. doi:
https://doi.org/10.1016/j.physletb.2010.12.025.
URL http://www.sciencedirect.

com/science/article/pii/

S0370269310014048; and Damien A.
Easson, Paul H. Frampton, and
George F. Smoot. Entropic inflation.
International Journal of Modern
Physics A, 27(12):1250066, 2012. doi:
10.1142/S0217751X12500662. URL
http://www.worldscientific.com/doi/

abs/10.1142/S0217751X12500662

power-time formulation expanded with three Taylor terms:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + lV

3F
8πA

dV + O(x3)dx (3.55)

Them we pose dE = 0, dt = 0 and O(x3)dx → 0. We obtain:

TdS = Fdx + lA
F

4πL
dA + lV

3F
8πA

dV (3.56)

http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.worldscientific.com/doi/abs/10.1142/S0217751X12500662
http://www.worldscientific.com/doi/abs/10.1142/S0217751X12500662
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We notice that as dx grows linearly, dA grows as the square and
dV as the cube. Thus, there will be a point where dV � dA � dx.
The approximation yields:

TdS = lV
3F

8πA
dV (3.57)

We notice that the factor F/A has the units of pressure. Hence,
our goal will be to derive a value of the pressure p associated with
volumetric entropy. As suggested by the factor F/A and in line with
our earlier derivations, we will select F to be the corrected Planck
force (F = 2πc4/G) and will take A as the area of a sphere. In this
case, the pressure relates to the force as

F = −pA (3.58)

=⇒ p = − F
A

= − F
4πx2 (3.59)

p = − c4

2Gx2 entropic pressure (3.60)

The sign of the force is negative because the force points in the di-
rection of increased entropy, which is oriented outward of the enclos-
ing area. Physically and as argued by Easson et al., it makes sense
to connect the size of the sphere to the Hubble horizon. Therefore,
we take the radius of the sphere to be the Hubble radius x := c/H.
Finalizing our derivation, we obtain:

p = − c2H2

2G
(3.61)

This is close to the current measured value for the negative pres-
sure associated with dark energy8. As we can see, the suggested 8 Damien A. Easson, Paul H. Frampton,

and George F. Smoot. Entropic acceler-
ating universe. Physics Letters B, 696(3):
273 – 277, 2011. ISSN 0370-2693. doi:
https://doi.org/10.1016/j.physletb.2010.12.025.
URL http://www.sciencedirect.

com/science/article/pii/

S0370269310014048

entropic derivation of dark energy applies to the third term of the
Taylor expansion.

4 Discussion - Arrow of time

Adding a time variable to a partition function adds a whole new dy-
namic to a thermal system. The system now becomes aware of future,
past, and present configurations and can translate from time to space
and from space to time for an entropic cost (provided that various
limits are respected). By studying thermodynamic cycles involving
space and time, we investigated what happens to the entropy when a
system is translated forward or backward in time and draw conclu-
sions that pertain to the arrow of time. In the model presented, space
serves as an entropy sink for time; whose role is to deplete future
alternatives to power change in the universe.

http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
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4.1 Negative power

In the power-time formulation, increasing t, while keeping the other
variables constant, decreases the entropy. Indeed, starting with the
power-time formulation and posing dx = 0, we obtain:

TdS = dE− Pdt (4.1)

=⇒ T
dS
dt

=
dE
dt
− P (4.2)

As the law of conservation of energy requires that dE/dt = 0, we
obtain the negative power:

T
dS
dt

= −P (4.3)

This result is expected for the following reason: to obtain the re-
lation dx = cdt with the correct signs, the power P must have a
different sign than the force F in the equation of states. Thus, a pos-
itive force implies a negative power and vice versa. As we require a
positive force to recover F = ma (and not F = −ma), the sign of the
force is already chosen for us. Therefore, the power must be negative.

We will now discuss this result in more detail.

Question: What is a negative power?
Let’s take an example. Consider the case of an electric car; whose

engine is powered by a battery. To propel the car, the battery supplies
power to the engine. If the driver hits the breaks, such that regenera-
tive breaking kicks in, the flow of power will reverse and the engine
will supply power to the battery. Thus, the power is now considered
to be negative and occurs when the engine depletes the energy of the
system (e.g. the car slows down) to supply power to the battery.

Question: Why does time have a negative power?
Power is associated with time because it powers all changes that oc-

cur in the universe. To understand why it is negative, it helps to un-
derstand negative power in the context of thermodynamics. To do so,
let’s first recall its more familiar cousin: the negative temperature. If
we understand temperature as the random movements of molecules,
then a temperature is always equal to or above zero. However, sta-
tistical physics admits a generalized definition of temperature as the
trade-off between energy and entropy. Most systems cannot admit
a negative temperature because their entropy will always increase
at higher energies; however, for some systems, e.g. the population
inversion in a laser, the entropy saturates at higher energies. Thus, a
negative temperature is possible.
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In regards to time, the negative power has essentially the same
interpretation; increasing time, while keeping the other variables
constant, decreases the entropy. A decrease in entropy over time
requires the application of a power.

4.2 The second law of thermodynamics as an opposition to negative power

Question: How does this result reconcile with the second law of
thermodynamics, which states that entropy increases with time (or in
some ideal cases stays constant)?

The power-time formulation admits other terms: dx, dA, and dV.
The term −Pdt encourages a reduction in the entropy over time,
but the other variables, as their signs are positive, work in the other
direction. Thus, the entropy of the system as a whole need not neces-
sarily decrease over time. It is more accurate to say that increasing t,
while keeping the other variables constant, decreases the entropy. We
will now study this into more detail.

To offset the decrease in entropy caused by the negative power, we
suggest a proportional increase in the quantities x, A, and V.

To simplify the power-time formulation, let us rename κ := F
16πL

and p := 3gV F
4πA and pose O(x3)dx → 0. We obtain:

TdS = dE− Pdt + Fdx + κdA + pdV (4.4)

Dividing both sides by dt, we obtain:

T
dS
dt

=
dE
dt
− P + F

dx
dt

+ κ
dA
dt

+ p
dV
dt

(4.5)

As per the law of conservation of energy, posing dE/dt = 0, we
obtain:

T
dS
dt

= −P + F
dx
dt

+ κ
dA
dt

+ p
dV
dt

(4.6)

This result puts in opposition the change of entropy caused by a
change of t to the change in entropy caused by a change of x, A and
V. To investigate this result, let us look at these three cases:

F
dx
dt

+ κ
dA
dt

+ p
dV
dt

< P =⇒ dS
dt

< 0 decreasing entropy (4.7)

F
dx
dt

+ κ
dA
dt

+ p
dV
dt

= P =⇒ dS
dt

= 0 constant entropy (4.8)

F
dx
dt

+ κ
dA
dt

+ p
dV
dt

> P =⇒ dS
dt

> 0 increasing entropy (4.9)
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At (4.8), we have an inflexion point and a shift occurs in the direc-
tion of the production of entropy over time. It is the point at which
the production of entropy caused by the space quantities overtake
and exceed the reduction in entropy caused by the time quantity. The
second law of thermodynamics states that dS/dt ≥ 0 and will hold
for (4.8) and (4.9), but will be violated for (4.7).

4.3 Arrow of time

In this section, we will explain why these results provide us with an
understanding of the arrow of time. Indeed, it links the arrow of time
to three concepts: 1) a reduction in entropy over time caused by the
negative power, 2) an increase in entropy over time caused by the
space quantities, and 3) a closed system’s inability to reduce its own
entropy. We will see how it corresponds to an observer’s perception
of time.

1. At the beginning of time all possible future alternatives are compat-
ible with the present. Thus, the pool of entropy accessible to t is
maximal. In contrast, the entropy associated with the space quan-
tities is zero. Thus, the occupied micro-states have to be located
at the same point in space. This matches our current empirical
data regarding the Big Bang for which the entropy of space was
very low and the entropy of time, as the future was as of yet un-
determined, was very high.

2. During the evolution the future becomes past, thus the possible
future alternatives are rarefied. This reduction in entropy caused
by a growth in t produces a negative entropic power fuelled by the
growth of entropy in the space quantities.

3. At the "end of time" there is no future alternatives. The full history
of the system is now "set in stone". The system can no longer pro-
duce an entropic power to fuel changes and the entropy associated
with the space quantities is at its maximum.

Question: The conventional wisdom is that the arrow of time is
connected to an increase in entropy with time. Are you suggesting
something else?

A partition function constructed without the use of a time quantity
will follow the second law of thermodynamics. This statistical effect
is partially explained by the H-theorem of Boltzmann; however, this
changes when time is inserted as a thermodynamic quantity. Such
a partition function then becomes aware of past, present, and future
configurations. The rarefaction of futures configurations as time is
increased is associable to a time which moves forward by closing
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future alternatives as it creates a past. Thus, an increase in the time
quantity, while keeping other quantities constant, must be followed
by a decrease in entropy.

To help fixate the idea, let us look at an example:

4.4 The physics of future alternatives

Here, we give a simple system which follows the requirements of the
equation of states.

Suppose a system with n open binary future alternatives. At t = 0,
there are 2n possible futures each equally compatible with the present
macroscopic state. Thus, the entropy of the system (which includes a
description of its possible futures) is equal to S = kBn ln 2. As time
is increased, events occurs and future alternatives are closed. Say,
at t = 1, one event occurs: Thus, one future alternative becomes
fixed to a specific value and the entropy of the system is reduced to
S = kB(n− 1) ln 2.

For instance, we might have:

t event future alternatives entropy

0 Big Bang {b1, b2, b3, b4, ..., bn} kBn ln 2 (4.10)

1 b3 → 0 {b1, b2, b3 := 0, b4, ..., bn} kB(n− 1) ln 2 (4.11)

2 b1 → 1 {b1 := 1, b2, b3 := 0, b4, ..., bn} kB(n− 2) ln 2 (4.12)

...
...

...
...

As events occurs over time, an entropic power is generated. Fur-
thermore, the second law of thermodynamics imposes that the space
quantity (Fdx) must grow proportionally. To maintain dS/dt = 0, the
growth must correspond to dx = cdt; special relativity. Extending this
example to the continuous partition function, we also recover gen-
eral relativity and dark energy as per the earlier derived equations of
states. In the continuous case, we would use the natural bit (the nat,
in base e) to express future possibilities. A continuous event would
consume a non-integer quantity of future possibilities.

Question: But a system cannot decrease its entropy over time with-
out violating the second law of thermodynamics!

A system can decrease its entropy if it is connected to an entropy
sink. For example, biological life can reduce its entropy but only at
the cost of severely increasing it in its environment. This requires
excess energy and, in the case of Earth, the Sun supplies it. Thus,
the power-time conjugate can decrease the entropy as long as it is
connected to a sink.
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Question: So, there should be a sink in the universe available to
offset the decrease in entropy caused by increasing t?

In the case of time, the sink is the universe itself. The laws of
physics that we have derived are in fact the limits required to pro-
duce an entropy sink of sufficient size to accommodate a forward
direction of time for an observer (we will discuss this more rigor-
ously in a moment in the section on limiting relations).

Question: Can we calculate the exact future before it occurs?
An observer cannot pre-calculate his exact future before it occurs

without increasing the size of the entropy sink. Here we make a
distinction between calculating a probable future versus the exact
future. Calculating a probable future does not necessarily imply a
reduction of entropy within the system, but calculating the exact
future requires consuming the entropy of all possible alternative
futures. Therefore, an entropy sink is required to offset the reduction.
Calculating an exact future is equivalent to causing it.

Question: Does the second law of thermodynamics need to be cor-
rected for the wider system, which includes future states?

Yes. Time is usually considered to be an independent background
to statistical physics and, to our knowledge, statistical physics has
not been used with a time quantity before. When we do add time as
a thermodynamic quantity to a partition function, a new behaviour
emerges. Indeed, an observer cannot move into the future unless all
alternative futures are ’closed’. Thus, its time-entropy must decrease
when he does. The second law of thermodynamics is a consequence
of the system increasing its space-entropy to offset the reduction in
future alternatives as time moves along. Thus, the second law is a
subset of a more general conservation of entropy law.

4.5 Limiting relations

With our new interpretation of space as an entropy sink for time, let
us immediately prove three limits from first principle: the speed of
light, a limiting stiffness, and a limiting volumetric flow rate appli-
cable to the universe. To prove that these are limits, we will consider
the assumption that an observer who evolves forward in time must
see a growth in the size of its available entropy sink to offset the re-
duction in future alternatives. The limit occurs when the sink exactly
offsets the reduction in entropy attributable to time (in which case
dS/dt = 0). First, let us see how the power-time formulation implies
a limiting speed.
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TdS = dE− Pdt + Fdx (4.13)

T
F

dS
dt

=
1
F

dE
dt
− P

F
+

dx
dt

(4.14)

As always dE/dt = 0

T
F

dS
dt

= −P
F
+

dx
dt

(4.15)

To see why this implies a limiting speed, first consider that the
units of this equation are length/time and hence are indeed describing
a speed. Second, consider the following three cases:

dx
dt

=
P
F

=⇒ dS
dt

= 0 (4.16)

dx
dt

<
P
F

=⇒ dS
dt

< 0 (4.17)

dx
dt

>
P
F

=⇒ dS
dt

> 0 (4.18)

We notice a reversal in the production of entropy at the inflection
point where dS/dt = 0. Therefore, for an observer at rest to evolve
forward in time, it must see its entropy sink grow at the speed of
c := P/F. Therefore, the entropy sink of an observer moving forward
in time must grow at the speed of light.

The following relations each characterize a limiting quantity.

limited quantity units limiting relation

Power J/s
T
F

dS
dt

= −P (4.19)

Speed m/s
T
F

dS
dt

=
dx
dt
− P

F
(4.20)

Stiffness m2/s
T
κ

dS
dt

=
dA
dt
− P

κ
(4.21)

Volumetric flow rate m3/s
T
p

dS
dt

=
dV
dt
− P

p
(4.22)

Each relation can easily be obtained from the power-time formula-
tion by posing the other quantities as 0. To show that the quantities
are inflection limits, it suffices to notice that they each correspond to
a growth of the entropy sink that an observer at rest must see to fuel
its forward translation in time.

It is well known that a limiting speed implies special relativity,
but what about the other two limits? It is less known, but a maxi-
mum stiffness does imply general relativity. In this context, we can
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interpret space as being very stiff but nonetheless compressible. The
maximum volumetric flow rate is associated with dark energy and
is responsible for the Hubble horizon - beyond which the flow rate
would be exceeded. These are in fact the approaches (in disguise)
that we took to derive general relativity and dark energy earlier.

5 Thermal space-time

What is thermal time and thermal space? Consider the thermody-
namic quantities t and x of the power-time formulation. Their aver-
age value is given by the standard relations (from 1.10):

quantity average

thermal-time t t =
−∂ ln Z

∂P
(5.1)

thermal-space x x =
−∂ ln Z

∂F
(5.2)

Furthermore, as thermal-time and thermal-space are thermody-
namic averages, they will undergo fluctuations (from 1.10):

quantity fluctuation

thermal-time t (∆t)2 =
∂2 ln Z

∂P2 (5.3)

thermal-space x (∆x)2 =
∂2 ln Z

∂F2 (5.4)

Using the original argument made by Einstein in 1905, which led
to the derivation of Brownian motion, we argue here that fluctuations
of the t and x variables produce a universal Brownian motion along
the axis themselves. What does a thermal spacetime with fluctuations
look like? The consequences of such are nothing to be feared; indeed,
we will shortly show that Brownian motion over x will produce the
Schrödinger equation and that Brownian motion over both x and t
will produce the Dirac equation.

Question: Are we suggesting a pilot-wave interpretation where
particles undergo Brownian motion until a measurement is made?

Not at all. Rather, we are suggesting that any positional or time in-
formation undergoes a "Dirac equation-like diffusion" so as to make
positional or time information perishable over time. To illustrate, we
can imagine placing a mark at a position in space. After a certain
time, Brownian motion will diffuse the position of the marker at any
number of possible locations until its actual position is measured
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again. Instead of being punctual, the marker could be continuous
and weighted and the same diffusion-like behaviour will be ob-
served. This Brownian motion would universally apply to the axis
itself. This is not a claim that a particle is punctual.

5.1 Schrödinger equation

The derivation of the Schrödinger and Dirac equations as a result of
universal Brownian motion has already been done by other authors.
Therefore, we can import their proofs into our derivation. Here, we
will offer a sketch and refer to their respective authors for the more
rigorous treatment. The derivation of the Schrödinger equation from
Brownian motion was done by Nelson9 and reviewed by the same 9 Edward Nelson. Derivation of the

schrodinger equation from newtonian
mechanics. Phys. Rev., 150:1079–
1085, Oct 1966. doi: 10.1103/Phys-
Rev.150.1079. URL https://link.aps.

org/doi/10.1103/PhysRev.150.1079

author some 46 years later10. The field is stochastic mechanics and it

10 Edward Nelson. Review of stochastic
mechanics. In Journal of Physics:
Conference Series, volume 361, page
012011. IOP Publishing, 2012

connects very nicely to our thermodynamic description of the world.
Nelson first considers the Langevin equation,

d [x(t)] = v(t)dt (5.5)

d [v(t)] = − γ

m
v(t)dt +

1
m

W(t)dt (5.6)

, which describes a particle in a fluid undergoing a Brownian
motion as a result of the random collisions with the water molecules.
Here W(t) is a noise term responsible for the Brownian motion and
v(t) is a viscosity term specific to the properties of the fluid.

Nelson replaces the acceleration d[v(t)]/dt by F/m (from F = ma).
Then, he is able to show that the Langevin equation in gradient form
becomes:

∇
(

1
2
~u2 + D∇ · ~u

)
=

1
m
∇V (5.7)

where D := h̄/(2m) is the diffusion coefficient, where ~F = −∇V,
where ~u = v∇ ln ρ and ρ is the probability density of x(t). As this is
a sketch, the proof of 5.7 is omitted here but can be reviewed in Nel-
son’s paper. Eliminating the gradients on each side and simplifying
the constants, Nelson obtains:

m
2
~u2 +

h̄
2
∇ · ~u = V − E (5.8)

where E is the arbitrary integration constant. Nelson then converts
this equation to a linear equation via a change of variable applied to
the term ~u2. Posing,

https://link.aps.org/doi/10.1103/PhysRev.150.1079
https://link.aps.org/doi/10.1103/PhysRev.150.1079
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~u =
h̄
m

1
ψ
∇ψ (5.9)

Nelson obtains

[
− h̄2

2m
∇2 + V − E

]
ψ = 0 (5.10)

which is the time-independent Schrödinger’s equation. The time-
dependent Schrödinger’s equation is recovered as per the usual re-
placement ψ := eR+iS. Finally, Nelson obtains:

ih̄
∂

∂t
ψ(x, t) =

[
−h̄2

2m
∇2 + V(x, t)

]
ψ(x, t) (5.11)

, which is the time-dependent Schrödinger’s equation.

5.2 Dirac equation

We recently used the entropic force TdS = Fdx and the Unruh tem-
perature to recover F = ma. Then, we used 0 = −Pdt + Fdx to
recover special relativity. Finally, we showed that a Brownian motion
resulting from the thermal fluctuations on x recovers the Schrödinger
equation as a thermo-statistical analogue to F = ma. Of course, the
natural question to ask is this: will the thermal fluctuations of both t
and x be enough to recover the Dirac equation as a thermo-statistical
analogue to special relativity? The answer is yes!

Similarly to the stochastic-mechanical derivation of the Schrödinger
equation, other authors previously derived the Dirac equation from
universal Brownian motion11. In the original stochastic-mechanical 11 D Mckeon and G N. Ord. Time

reversal in stochastic processes and the
dirac equation. Physical review letters,
69:3–4, 08 1992

derivation, the origin of such universal Brownian motion is ambigu-
ous and is, at best, imported as a hypothesis. Thus, the benefit of our
construction is to provide a thermal source of such universal Brow-
nian motion. Hence, the derivation of the Dirac equation and the
Schrödinger equation by these authors can nicely be imported into
our thermodynamic construction.

The derivation of the Dirac equation was noticed by studying ran-
dom walk effects that were applicable to telegraphic communication.
McKeon and Ord propose a random walk model in space and in time
which, once applied to the telegraph equations, produces the Dirac
equation. We provide a sketch of the proof here and refer to the au-
thors’ paper for the rigorous treatment. Starting from the equation
for a random walk in space, the authors obtain:



the world constructed as a simple partition function 26

P±(x, t + ∆t) = (1− a∆t)P±(x∓ ∆x, t) + a∆tP∓(x± ∆x, t) (5.12)

Afterward, the authors extend this equation with a random walk
in time and obtain:

F±(x, t) = (1− aL∆t− aR∆t)F±(x∓ ∆x, t− ∆t)+

aL,R∆tB±(x∓ ∆x, t + ∆t) + aR,L∆tF∓(x± ∆x, t− ∆t)
(5.13)

where F±(x, t) is the probability distribution to go forward in time
and B±(x, t) the probability distribution to go backward in time.
They then introduce a causality condition such that F±(x, t) and
B±(x, t) only depends on probabilities from the past.

F±(x, t) = B∓(x± ∆x, t + ∆t) (5.14)

From equation 5.13 and 5.14, they get

B±(x, t) = (1− aL∆t− aR∆t)B±(x∓ ∆x, t + ∆t)+

aL,R∆tB∓(x± ∆x, t + ∆t) + aR,L∆tF±(x∓ ∆x, t− ∆t)
(5.15)

In the limit ∆x, ∆t→ 0 and with ∆x = v∆t, they get

±v
∂F±
∂x

+
∂F±
∂t

= aL,R(−F± + B±) + aR,L(−F± + F∓) (5.16)

±v
∂B∓
∂x

+
∂B∓
∂t

= aL,R(−B∓ + F∓) + aR,L(−B∓ + B±) (5.17)

Posing these changes of variables,

A± = (F± − B∓) exp[(aL + aR)t] (5.18)

λ := −aL + aR (5.19)

then 5.17 becomes

v
∂A±
∂x
± ∂A±

∂t
= λA∓ (5.20)

Finally, they pose v = c, λ = mc2/h̄ and ψ = F(A+, A−), and they
get

ih̄
∂ψ

∂t
= mc2σyψ− ich̄σz

∂ψ

∂x
(5.21)

which is the Dirac equation in 1+1 spacetime.
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6 Conclusion

Understanding the world from purely thermodynamic principles
holds several conceptual advantages. The construction provides a
possible means to explain the origins of the laws of physics as per
John Wheeler’s suggestion of law without law (or as order from dis-
order) - in this case thermo-statistical disorder. Indeed, the obscure
origin of the Dirac and Schrödinger equations is now clearly shown
to be a result of thermal fluctuations applicable to x and t. Second,
the laws of inertia, general relativity, and dark energy are simply the
result of taking the Taylor expansion of an arbitrary space-encoding
function. Third, as these laws are derived from the general equation
of state of the system, the laws of physics do not need to be invoked
as a ’special case’. In the present construction, the laws of physics are
a consequence of the mere fact that the world can be expressed as a
statistical ensemble involving time and space; hence, the ’axiomatic-
load’ of the construction is minimal.

The construction allows a possible explanation of the arrow of
time. Indeed, moving into the future requires a negative power. A
possible cause of negative power is closing future alternatives, which
works towards reducing the entropy over time. To preserve the sec-
ond law of thermodynamics, an entropy sink must be grown as time
moves forward to offset said entropy reduction. Thus, the passage of
time is heavily connected to the size of the entropy sink. The mini-
mal growth rate requirements of this entropy sink are precisely the
limits required to derive special relativity, general relativity, and
dark energy. Therefore, we conclude that the entropy sink spawns
the observable universe. Its expansion is required for an observer to
translate forward in time. The second law of thermodynamics, under-
stood as an increase in entropy over time, is only half the truth. The
second law is perceived in the entropy sink while the larger system,
made to include future possibilities, has a constant entropy. In this
system, future possibilities are consumed as time moves forward.
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