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Abstract  The topology optimization using the homogenization method is to find 

optimal layout of microstructures which satisfies design demand in the 

neighborhood of an arbitrary point in a given design domain. The homogenization 

approach is to compute proper mechanical properties of those microstructures in 

terms of integral averaging by accepting the periodicity assumption and 

characteristic function. 

In this paper, we described a stiffness homogenization theory that is able to 

avoid the complication of the homogenization approach and reduce the 

computation cost by considering the topology optimization process in consistence 

with the finite element analysis. The method can be applied more flexibly to 

individual or simultaneous optimization of the topology, shape, size and material 

layout. We discussed a stiffness homogenization during meshing the space 

structure with different kinds of elements in detail. An optimal criterion for the 

minimum weight design problem, as one of typical optimization design problems, 

was derived and the computational algorithm was presented. Numerical results of 

an example were compared with previous methods, which show the validation of 

the method. 

Keywords homogenization method, topology optimization, stiffness 

homogenization, structure design 

  

1 Introduction 

In the structural optimization design, the homogenization method was first 

presented from an idea that topology optimization problems of the structure can be 

treated in relatively popularized way as well as sizing optimization problems in the 

late 1980's(Bendsoe and Kikuchi 1988). 

The homogenization denotes the process that the heterogeneous medium 

convert to the homogeneous medium of which property is equivalent to its. In 

problems of the continuum mechanics including solid mechanics, mathematical 

consideration is performed under the assumption for homogeneity of medium. The 
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most common tool dealing with these problems is to study behavior of medium 

using differential and integral calculus, and the fundamental technique for 

mathematical modeling and analysis and research of behavior for continuum is to 

solve the initial and boundary value problem of the differential equation. 

But in the practices, there are many cases of heterogeneous and discrete 

medium. Solving such problems using mathematical method is commonly 

impossible. For this reason, various homogenization methods to solve these 

problems were presented from attempts to use the parameters assumed as 

continuous variables for converting heterogeneous-discrete medium to 

homogeneous-continuous one with properties equivalent to its(Zhikov et al. 1979; 

Marcenko and Khruslov 1974; Makhvalov and Panasenko 1990). 

In the homogenization method, it is assumed that material at the neighborhood 

of an arbitrary point in space consists of a set of periodic microstructures i.e. cells 

including hole. The resulting medium can be described by effective macroscopic 

material properties which depend on the geometry of the basic cell, and these 

properties can be computed by invoking the formulas of homogenization theory 

based on the multiscale method(Pavliotis and Stuart 2008).  

The computations of these effective properties play a key role for the topology 

optimization. That is, the optimal design problem on heterogenous-discrete domain 

in topological optimization of the continuum structure by the material layout 

method is converted to the optimal design problem on the homogeneous-continuum 

domain in the optimal design by the homogenization method 

As a result, the topology optimization problem on the homogenized domain 

can be solved by determining parameters representing the hole’s distribution and 

size using sizing optimization method. In this sense, this optimization method is 

called homogenization method or in a broad sense, material layout method. 

After this research in the topology optimization field, it attained the highest 

stage of prosperity and this method was applied to the practical problems. 

Most of researches for this method are based on the optimality criteria 

method(Allaire 2002; Rozvany et al. 1994; Bendsoe and Sigmund 2003; Hassani 

and Hinton 1998), and some of them are based on the mathematical programming 

methods(Allaire 2002;Yang and Chuang 1994). 

Moreover, only the topology optimization problems was investigated at first, but 

gradually the sizing, shape and material layout optimization problems was 

investigated(Allaire 2002; Bendsoe and Sigmund 2003; Park 1995). Especially, the 

material layout optimization based on homogenization approach have also been 

expanded to several fields including a work for determining the structure with the 

required conductivity by optimally distributing materials with different heat 

conductivities(Rodriguese and Fernandes 1995), piezocomposite actuator’s optimal 

design(Jonsmann et al. 1999; Emilio and Nelli 1998) and so on. 

Besides, there were many researches in which the homogenization method 

was applied on the optimization of dynamic problems(Bendsoe and Sigmund 2003; 

Diaz and Kikuchi 1992) and several researches for improving the convergence of 

the optimization process was presented.  But the homogenization method has 
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drawbacks requiring a lot of design variables and great computational cost yet. 

Bendsoe(1989)
 

had proposed SIMP (Solid Isotropic Material with 

Penalization), which introduced material distribution density on the design domain 

of structure in the research of the topology optimization. 

The SIMP interpolation scheme addresses the integer format of the original 

setting for the topology design problem. It converts this integer problem to a sizing 

problem that finally results in practical 0-1 designs. Another serious problem 

associated with the 0-1 problem is that SIMP can lead to nonexistence of solution 

of the problem. This not only is a serious theoretical drawback but also affects on 

the estimation of sensitivity of computational results to the fineness of the finite 

element mesh. As above mentioned, the SIMP interpolation scheme does not 

directly resolve this problem, and further considerations are in place to assure a 

well-posed distributed design problem that also is benign in terms of mesh fineness 

of the finite element model(Hsu and Hsu 2005; Borrvall and Petersson 2001). 

Colligating the research results so far, we can find that the homogenization 

method was generalized and popularized as a major method converting the 

topology optimization problem to a material layout optimization or a sizing 

optimization problem. Also according to increase of the computation ability of 

computers, it is applied to the many optimal design problems for practical 

structures and its application field is wide more and more. 

Its application object and field is optimal design of static structure(Allaire 

2002; Bendsoe and Sigmund 2003; Hassani and Hinton 1998; Hsu and Hsu 2005), 

topology optimization of a eigenvalue and frequency response problem(Bendsoe 

and Sigmund 2003; Diaz and Kikuchi 1992), topology design of structures with a 

buckling load constraint(Neves et al. 1995), topology optimization of 

thermo-elastic structures(Rodriguese and Fernandes 1995), optimal design of 

controlled structures(Ou and Kikuchi 1996), Systematic synthesis of micro 

compliant mechanisms(Ananthasuresh et al. 1993; Ananthasuresh et al. 1994), 

optimal design of piezocomposite materials, piezoelectric transducers and 

electro-thermal micro actuators(Jonsmann et al. 1999; Emilio and Nelli 1998)
  

and 

so on. 

In this paper, the topology optimization process using stiffness 

homogenization theory is discussed, in which the periodic assumption is relaxed 

and the computation cost is reduced without a complicated discussion as integral 

average by introduction of the characteristic function by simplifying the 

homogenization approach. The stiffness homogenization method applies individual 

and simultaneous optimization of sizing, shape, material layout and topology. 

This method is more convenient to apply to the computation procedure and 

structural optimization practices by using the common methods of the finite 

element analysis in all consideration and formulating of cell and element. 

2 Theory of the stiffness homogenization by using area (or volume) rate of 

element. 

In this paper it is assumed that the structural component of the design domain is 
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meshed with elements, each of elements is made of the microstructure, that is, 

infinitely small cells with holes and the shape of cell and element is triangle or 

tetrahedron. Of course, the higher order’s element can be used and hole’s centroid 

is placed in the centroid of the cell in which it belongs and hole’s shape is 

geometrically similar to that cell. 

2.1 Stiffness homogenization by using first order plane triangle element. 

First, let’s consider the linear triangle plane element. 

 

Fig. 1. Geometry model (a) design domain, b) element, c) cell) 

In the cells and elements, the hole’s size is completely determined with a 

parameter by using area rate: 

S

S0        (1) 

where S  is the total area of cell or element and 0S  is area of hole in the cell or 

the element. The characteristics for the cells is labeled “c” and for the elements is 

labeled “e”. 

The stiffness matrix of the cells for the linear element is reduced by the hole 

rate c  as compared with that without hole and is formulated as following: 

 

  1  
1

cc

S

cc

T

ccc dst

cc




 


KBDBK      (2) 

where 

     dst

cS

cc

T

ccc  BDBK , 



 5 

         

D00

0DD

0DD

33

2221

1211

c

















D , 

ct  is thickness of the element(or the cell) and cB is strain matrix of the element 

The stiffness distribution of the plane triangle element, which is assumed to be  

made of the infinitely many cells, can be represented in the form interpolated from 

the stiffnesses per unit area at the nodes. 

    cmemcjejcieie KKKK          (3) 

where i, j and m are node numbers of the element respectively, m)j,i,(  e is 

the shape function represented by the area coordinates, and m)j,i,( cK is 

assumed to be continuous in the element. 

The stiffness matrix of the plane triangle element is; 

  )1()1()1(
3

cmcmcjcjcici
e

Se

ee

S
ds    KKKKK   (4) 

That is; 

 )
3

-(1
cmcjci

ece S
 

 KK  

where cK is the stiffness of cells without voids, ecSK is the stiffness matrix of the 

element  made of the cells without hole and  )
3

-(1
cmcjci  

is average area 

rate.  Accordingly, the stiffness of the triangle element is represented as following 

)1(  eee KK        (5) 

      ece SKK  ,  
3

cmcjci

e





  

That is, the element’s stiffness is reduced by the hole’s rate e  as compared 
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with that without hole in cells eK . 

Considering  eee

T

eee St BDBK  , then we can rewrite as following equations: 

     eee

T

eeee St BDBK )]1([       (6) 

     eeee

T

eee St BDBK )]1([       (7) 

     )]1([ eeee

T

eee St  BDBK      (8) 

     )1( eee KK  

From Equation (6)-(7), it is found that this problem can be considered as the 

homogenization of the thickness, material constant, area and entire stiffness and in 

the future, sizing, shape, topology and material layout optimization can be 

individually or simultaneous performed. 

2.2 Stiffness homogenization by using tetrahedron element. 

In the space problem, meshing with tetrahedron element, 

 

  1  
1

cc

V

cc

T

cc dv

cc




 


KBDBK     (9) 

where cB , cD  are strain and elastic matrix of the space problem, respectively. 

   

            a) V                 b) eV             c)  
C

V  

Fig. 2. geometry model(a.design domain, b.element ,c.cell) 
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By using above similar method 

)1(  eee KK          (10) 

where ece VKK   and  
4




ccmcjci

e


   

From Equation (10) we can also obtain:  

    eeee

T

ee VBDBK )]1([         (11) 

    )]1([ eeee

T

ee V  BDBK        (12) 

    )1( eee KK  

In deriving above equations, we used following the integral formulas in area 

and volume coordinates on triangle and tetrahedron domain. 

)!2(

!!!
2


 cba

cba
Sds e

S

c

m

b

j

a

i

e

 ,  

     
)!3(

!!!!
6


 dcba

dcba
Vds e

V

d

p

c

m

b

j

a

i

e

  

2.3 The stiffness homogenization for the anisotropic material. 

If the structure is made of the orthotropic material and we consider the orthotropic 

property in the stiffness homogenization method, we discuss the triangle of cells 

and elements at the local coordinates of which axes coincide with the orthotropic 

axes. 
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Fig. 3. Geometrical model for orthotropic material 

(a.design domain, b.element ,c.cell) 

The stiffness matrix of cells is derived at the local coordinate system as 

following; 

 

  1
~

  ˆ

1

cc

S

cc

T

ccc dst

cc




 


KBDBK      (13) 

where  
~

cK is the cell’s stiffness matrix without void in the local coordinate system, 

cB  is the strain matrix at the local coordinate system and the orthotropic elastic 

matrix at the local coordinate system cD  is:  

   

D00

0DD

0DD

33

2221

1211

c

















D . 

In the triangle element full of such cells, if the element size is enough small, the 

local coordinate axes of the inner cells are equal to each other. 

Assuming that the stiffness distribution of the element is interpolated by the 

stiffnesses of cells at nodes as 

   ˆˆˆˆ
cmemcjejcieie KKKK    

,the stiffness matrix of the triangular element is; 

  )1(
~

)1(
~

)1(
~

3
ˆˆ

cmcmcjcjcici
e

Se

ee

S
ds    KKKKK  
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 )
3

-(1
~ cmcjci

ec S
 

 K .     (14) 

Considering eec S KK
~~

  and  
3

e

cmcjci






, then the homogenized 

stiffness matrix of element at the local coordinate system is represented as 

following;. 

)1(
~ˆ

eee  KK  

That is, the element’s stiffness is reduced by the cell void’s rate e  as compared 

with that without holes. 

If the angle between local coordinate’s x  axis and global coordinate’s x  

axis is e , 

eee

T

eeee

T

eee

T

eee StSt BDBBTDTBK   

Therefore the homogenized element stiffness matrix at the global coordinate 

system is; 

)1( eee KK  

where the transformation matrix of coordinate is 






















22

2

2

eeeeee

eeee

eeee







T , 

ee  sin , ee  cos , and eB is the strain matrix at the global coordinate 

system. 

That is, replacing the elastic matrix eD and the strain matrix eB  in the 

homogenized element’s stiffness matrixes at the local coordinate system with eD  

and eB , we obtain the homogenized element’s stiffness matrixes at the global 

coordinate system. 

2.4 Stiffness homogenization by using high order element. 

In the finite element analysis by using high order element, the stiffness 

homogenization method can be also used. Using above method, we can find that all 

homogenized stiffness matrices for high order elements have the form as 
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)1( eee KK  

At this time, we represented the stiffness distributions of different high order 

elements by the corresponding shape functions in the area or volume coordinates 

and used integral formula in the area or volume coordinate system. 

For example, shape functions for the second order plane triangle element are 

presented by the area coordinates 1 , 2 , 3  as  

111 )12(  N ,    222 )12(  N  

333 )12(  N ,    214 4 N  

325 4 N ,       136 4 N . 

Thus; 

           )(2)(0
6

1
654321 cccccce        (15) 

And for the third order plane triangle element the shape function is as below 

)23)(13(
2

1
1111  N ,  )23)(13(

2

1
2222  N  

)23)(13(
2

1
3333  N ,  )13(

2

9
2324  N  

)13(
2

9
3325  N ,      )13(

2

9
3136  N  

)13(
2

9
1137  N ,       )13(

2

9
1218  N  

)13(
2

9
2219  N ,       32110 27 N  

Therefore 









 10987654321

2

9
)(

4

3
)(1

10

1
cccccccccce   (16) 

And for second order tetrahedron element; 

)12( 111  N ,          )12( 222  N , 

)12( 333  N ,          )12( 444  N , 
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325 4 N ,   136 4 N ,   217 4 N  

418 4 N ,   429 4 N ,   4310 4 N  

Therefore 









 )(2)(

2

1

10

1
10987654321 cccccccccce   (17) 

From above all, we can find that the average of the void’s rate of cell 

multiplied by some weights for cells at the vertices, nodes on edges and inner 

nodes of element is corresponding to the stiffness reduction of element’s e . 

If ci  for every cells is the same as c , then ce   . 

The weight coefficient is the same as in the following table. 

 order node at the edge inner 

triangle 

first 1   

second 0 2  

third 1 3/4 9/2 

tetrahedron 
first 1   

second -1/2 2  

In this way, by using the area or volume rate corresponding to the holes’ size, 

we can obtain the homogenized stiffness matrix by using the interpolation’s 

method of the finite element method and can easily solve the optimal design 

problem. 

3 Problem formulation for optimal design and optimal criterion. 

Now, we shall formulate the minimum volume design problem by using the 

stiffness homogenization method and discuss its solving method. 

3.1 Optimization Model 

The minimum volume design problem is to find the structure with minimum 

volume(or weight) under the restriction of the global stiffness. That is, the problem 

is to find e  satisfying the following equations. 

min)1()1(V
11

 


n

e

eee

n

e

ee St       (18) 

       
0

1

2
11

02
1 UUUU 


uKuuKu

TT   (19) 

     PuK           (20) 
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where     



n

e

ee

n

e

e

11

)1( KKK  

Unlike in the conventional optimal design problems, all the sizing, shape, 

topology and material layout optimization problems in the stiffness 

homogenization method is reduced to the problem which is finding optimal design 

parameter e  which is the area rate(volume rate) characterizing hole’s size of 

cells. In the above problems, 0V , 0U : the given volume and strain energy 

characterizing global stiffness in the structure respectively. And the equality 

restriction PuK   is the stiffness equation, namely, the restriction of the state 

equation. Also, for convenience, we assume that eK  is the element’s stiffness 

matrix which is expanded in accordance with the dimension of the structure’s 

stiffness matrix K . 

3.2 Optimality criterion 

Let’s derive the problem’s optimal criterion; 

Lagrange’s equation is constructed as 

     PuKμuKuu 


TT
n

e

eee 02
1

1

U)1(V,L        (21) 

where  , T
μ are Lagrange’s uncertain multipliers. 

From a necessary condition for the optimal solution of the nonlinear 

programming problem, the structure’s state at the optimal point, namely, 

optimization criterion is derived. 

Using the condition at the optimal point 0
L






u
,then 

0 KμKu
TT  

Therefore 

   TT
uμ              (22) 

And using the condition at the optimal point 0
L






e
(e=1,2,…,n), then 

0V
2
1 





















e

T

e

T

e

T

e

T

e






u

Kμ
u

Kuu
K

μu
K

u  (23) 
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    0U  eeV   (e=1,2,…,n)        (24) 

Here, considering )1( eee KK , then the equation 

u

K

uu
K

u
e

n

e

e

T

e

T

e
 










1

2
1

2
1U  

becomes to uKu e

T

e 2
1U  , which presents the element’s strain energy when the 

element has no hole. 

Summing up the two sides of Equation (24) for all elements repectively, 

0UV
11

 


n

e

e

n

e

e    (e=1, 2,…, n) 

Multiplying )1( e  to the two sides of the above equation and Equation 

(24), eliminating uncertain multiplier   and considering 0  from the 

condition of the optimal point; 

  0U02
1 uKu

T  

,then we obtain the equalization criterion about the density of the strain energy at 

the optimal point as 

0

1

U

)1(V

)1(U

)1(V










n

e

ee

ee

ee






 (e=1,2,…,n)    (25) 

where eU  is element’s strain energy obtained by the finite element analysis. 

From Equation (25) we can find that the structure of the optimal size, shape, 

topology and material layout is the structure in which element’s area (volume) rate 

is determined so that density of the element’s strain energy is equalized to the 

density of the structure’s global strain energy. 

4 Algorithm 

The optimality criterion can be rewritten as 

0

1

U

)1(V)1(U

)1(V








n

e

eeee

ee



  (e=1, 2,…, n) 
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0

1

UV

)1(V)1(U

1
e

n

e

eeee

e










  (e=1, 2,…, n)        (26) 

Our purpose is to get solution, *

e  of the nonlinear algebraic simultaneous 

Equation (26). 

Equation (26) is calculated by using the simple iteration schema as 

0

1

)()()(

)1(

UV

)1(V)1(U

1
e

n

e

k

ee

k

e

k

e

k

e










 (e=1, 2 … n) (k=0, 1, 2 …) (27) 

The algorithm is as following: 

1. Initialize the design parameters )(k

e (e=1~n) for k = 0(in general cases, 

take e =0 everywhere in the domain).  Compute  k
u , )1(V )(k

ee   and 





n

e

k

e

k

e

1

)()( )1(U   by solving the state equation, PuK 


n

e

k

ee

1

)( )1(  . 

2.  Compute )1( k  using the iteration schema (27). 

3.  Repeat the iteration loop for k = k+1, until the convergence is achived.  

Here, the convergence condition is  

   
1

11

1 )1(V)1(V   



n

e

k

e

n

e

k

e , 

or   2

)()1( )1()1(    k

e

k

e  (e=1~n) 

The design parameters  1k = *  (e=1~n) which satisfy the above condition 

are optimal solutions. 

Figure 4 shows the above algorithm. 

Obtaining optimal design parameter *

e (e=1, 2 … n), then the optimal 

structures about every elements can be obtain by using followings; 

Size and topology optimization;      ** 1 eee tt         (28) 
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Shape optimization;                 ** 1 eee SS        (29) 

Material layout optimization;          ** 1 eee DD          (30) 

If Poisson's ratio’s change is neglected, instead of Equation (30), 

       ** 1 eee EE             (31) 

Simultaneous optimization of the size, shape and topology; 

 ** 1 eee VV             (32) 

Simultaneous optimization including material layout; 

 ** 1 eee  KK           (33) 

Limits of the individual parameters are considered in the computation process. 

When the simultaneous optimization is performed, the parameter with stronger 

limit is first determined or the parameters are determined in accordance with  

weights specified by designer, considering their importance. 
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Fig. 4. Optimization algorithm 

5 Examples 

Consider a thin beam in a plane stress state(the out-of-plane displacement is 

restrained), which is a standard testing problem(Allaire 2002) for verifying the 

optimal design method above discussed. 

Thickness  2cm ,  P=1 kN 

PaE 11

1 101.2  ,   PaE 10

2 105.2   

0U =0.46E-02 Nm  
 

Fig. 5. The boundary condition about the plate 

beam problem 

The structure is meshed by 1600 linear plain triangle elements. 
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According to the algorithm as referred above, first *

e  is found and one or 

several limits is considered when all final parameters is determined.  

Figure 6 shows the stress state of the initial structure. 

 
Fig. 6. The stress state of the initial structure. 

Figure 7 shows that the checkerboard pattern is generated in the optimization 

processing. At this time in the repeat process non-converged or impossible 

structure is obtained. To overcome problems of the generation of the grey domain, 

checkerboard phenomenon and so on, the previous methods(Allaire 2002; Hsu and 

Hsu 2005) such as averaging, filtering and penalizing are used. 

 

Fig. 7. checkerboard pattern. 

The obtained results is shown in Table1 together with pictures. First and 

second pictures in the table show the shape optimization result at the different 

limits and third picture shows the topology optimization result. 

Forth picture is the calculation result of the simultaneous size and shape 

optimization under the maximum thickness limit and fifth is the macroscopic 

material layout optimization using two kind of materials. The sixth shows the 

simultaneous optimization result of the material layout and topology. 

As shown in this example of plane problem, the purposed optimal structure is 

obtained with 20% of the repeat number and much less computation cost as 

compared with the previous method. Table 2 shows the three dimensional topology 

optimization results as compared with the previous homogenization method’s 

results. The compution example is represented as compared with the same objects 

as in literature(Hsu and Hsu 2005).  

 The method’s validity for the practical problems of the several structures is 

verified through the results of the three dimensional topology optimization based 

on the stiffness homogenization method. 

Table1. The calculation result of 2-D problem. 
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 Optimal structure 
optimization 

initial 

Homogenization 

 Method(Allaire 

2002) 

Etc. 

1 

 

0.588 
iteration 21 

(------) 
e limit 

0.9 

2 

 

0.443 
iteration 21 

(------) 
e limit 

0.8 

3 

 

0.34 
iteration 21 

(100) 
 

4 

 

0.413 
iteration 25 

(------) 

maxt = 

5.0cm 

 

5 

 

------ 
iteration 30 

(------) 

E1, 

 

E2 

6 

 

------ 
iteration 22 

(------) 

out edge: 
11104  Pa 

 

in: 
11102  Pa 
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Table2. 3-D topology optimization results 

6 Conclusions 

As above-mentioned, the stiffness homogenization method proposed for structural 

optimization is a kind of material layout method, in which the components of the 

space structure are corresponding to each element and the stiffness matrix is 

estimated according to the microstructure hole’s rate.  

example 
homogenization  

method(Hsu and Hsu 2005) 

stiffness 

homogenization method 
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The structure optimization by the stiffness homogenization method makes it 

possible to use the theory and method of the finite element method in all the 

processes of homogenization, structure analysis and optimization in a unified way. 

The derivation of the optimality criterion for minimum volume design 

problem and numerical example of the two and three dimensional problems shows 

that the theory for the structural optimization by the stiffness homogenization is 

easily extend to the different kinds of optimization problems and practices.  
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