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1
Introduction

In this manuscript, we report the discovery of a mathematical con-
struction that describes a self-explaining and necessarily existing
universe.

The construction has the expected properties of a complete de-
scription of reality. As such, it recovers the major laws of physics:
special relativity, general relativity, dark energy, quantum field the-
ory, etc.. and sheds some light on otherwise poorly understood phe-
nomenon such as the arrow of time and the quantum measurement.

Self-explanation and necessary existence are implied by two proper-
ties. First, the construction has the property that it is autological.

Definition 1.0.1 (Autological). Defined as:

• Of a word, especially an adjective: having or representing the property it
denotes. Opposed to "heterological".1 1 –Source: https://en.

oxforddictionaries.com/definition/

autological• An autological word (also called homological word or autonym) is a word
that expresses a property that it also possesses (e.g. the word "short" is
short, "noun" is a noun, "English" is English, "pentasyllabic" has five
syllables, "word" is a word). The opposite is a heterological word, one
that does not apply to itself (e.g. "long" is not long, "monosyllabic" has
five syllables).2 2 –Source: https://en.wikipedia.org/

wiki/Autological_word

This definition of autological is used in logic and philosophy and
applies to linguistics. Applied to a physical theory, we would say that
such theory is autological if: The formulation of the theory exhibits
the same properties (e.g. limits, symmetries, etc.) as the reality it
describes. Constructed as such, a physical theory which describe
reality is epistemologically identical to reality itself.

This remarkable property is the first of two core requirements
of a self-explaining and necessarily existing universe. The second
requirement is that it must have a tautological construction. With
these two properties, the question : "Why does the universe exists?"

https://en.oxforddictionaries.com/definition/autological
https://en.oxforddictionaries.com/definition/autological
https://en.oxforddictionaries.com/definition/autological
https://en.wikipedia.org/wiki/Autological_word
https://en.wikipedia.org/wiki/Autological_word
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has for short answer: because an autological theory is tautologically
implied.

We may call a theory having both properties; an autotautological
theory. As we will see, pure reason allows a unique construction
of such a theory and such construction necessarily describes all of
reality.

1.1 Principal argument

Consider the following definition;

Definition 1.1.1 (Artefact). An artificial product or effect observed in a
natural system, especially one introduced by the technology used in scientific
investigation or by experimental error.3 3 –Source: http://www.dictionary.com/

browse/artefact

We will only consider formal theories as candidates for the au-
totautological theory. As such, we will introduce the definition of a
logical artefact as:

Definition 1.1.2 (Logical artefacts). In the context of formal logic, we will
say that symbols, sentences, axioms, rules of inference and the underlying
language are logical artefacts.

Logical artefacts are necessary for the construction of any formal
theory. Thus, we may say that formal theories are contingent upon
their existence. It is therefore very prudent, epistemologically, to con-
struct the autotautological theory as implied only by the existence of
logical artefacts. This will, in fact, be a key step in the proof. Specifi-
cally, we will want to prove that:

∃(logical-artefacts) =⇒ (autotautological-physical-theory) (1.1.3)

This is quite interesting from a philosophical perspective, but it is
not sufficiently specific to be interesting to physics. For physics, we
want specific solutions, such as:

∃(logical-artefacts) =⇒ (autotautological-physical-theory) =⇒ (special-relativity) ∧ (general-relativity)∧
(quantum-field-theory) ∧ (dark-energy)∧
(arrow-of-time) ∧ (space-time-symmetries)∧
(planck-constants) ∧ . . . (1.1.4)

This is starting to be interesting and is indeed the requirement and
expectation of a theory of everything. Perhaps even more interesting;
the theory will be significantly more specific than that. It will be

http://www.dictionary.com/browse/artefact
http://www.dictionary.com/browse/artefact
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able to decide (within the limits of what is computationally feasible)
reality on a fact-by-fact basis. In fact, we will see that listing the facts
of reality using logical artefacts will be the first step of the proof.

∃(logical-artefacts) =⇒ f act1 ∧ f act2 ∧ f act3 ∧ f act4 ∧ . . . (1.1.5)

In this construction, the physical theory is as specific as it can
possibly be. Here, facts are the primary indivisible constituents of
reality (a fact is an atom of reality, if you will). We will see that the
laws of physics are emergent from the enumeration of the facts. As
long as the listing is complete and constructed tautologically (more
on that in the proof section), the emergence occurs irrespectively of
the choice of language or of the enumeration method.

1.2 Main result

Conventionally, the construction of a modern physical theory goes
like this. We assume a background to reality. Usually this is taken
to be space-time; one dimension of time and three or more dimen-
sions of space. Then, symmetries are associated to this space-time.
As per Noether’s theorem, each symmetry give rise to a conserved
quantity which becomes a law of physics. These symmetries, along
with potentially complex initial conditions, are responsible for the
production of facts in the universe (e.g. it decide what is actually
true).


Background (Space-time)

⇓
Symmetries (Lorentz, Poincaré, Gauge, ...)

⇓
Laws (Special relativity, general relativity, ...)

 (1.2.1)

+

Initial conditions (1.2.2)

⇓
Facts (There is milk in the fridge) (1.2.3)

Here, the background is assumed (but not proven) to be true and
actual. The background leads to symmetries (some of which are
assumed) and those symmetries leads to laws. The laws plus the
initial conditions decide the facts of the universe.

As appealing as this picture might be, it is ultimately more appro-
priate to think of it differently. The correct way (correct as in it allows
a autotautological construction), is to use logical artefacts to list all
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logically verifiable facts (this will be done explicitly in the first step of
the proof). Then, the laws of physics including the space-time back-
ground are emergent from the symmetries and properties of the list.
The logical flowchart is modified as follows:

∃(logical-artefacts) (1.2.4)

⇓
f act1 ∧ f act2 ∧ f act3 ∧ f act4 ∧ . . . (1.2.5)

⇓
Symmetries (Lorentz, Poincaré, Gauge, ...) (1.2.6)

⇓
Laws (Special relativity, general relativity, ...) (1.2.7)

We obtain a complete description of reality in the form:

f act1 ∧ f act2 ∧ f act3 ∧ f act4 ∧ · · · ⇔ (reality) (1.2.8)

In this construction, the symmetries of space-time are not the
primary actors of the theory. Instead, the laws of physics are derived
has properties of the set of all logically verifiable facts, as:

f act1 ∧ f act2 ∧ f act3 ∧ f act4 ∧ · · · =⇒ (special-relativity) ∧ (general-relativity) ∧ (quantum-field-theory) ∧ (dark-energy)∧
(arrow-of-time) ∧ (space-time-symmetries) ∧ (planck-constants) ∧ . . .

(1.2.9)

Thus, facts are the primary constituents of reality and replaces
space-time as the fundamental background. As the list will include
all facts, it is natural to think of it as a complete description of reality.

We are now ready to step into the proof and obtain the primary
equations of the autotautological physical theory.



2
Proof

Our goal with this section is to rigorously prove the following train
of thought

∃(logical-artefacts) (2.0.1)

⇓ (Step 1)

f act1 ∧ f act2 ∧ f act3 ∧ f act4 ∧ . . . (2.0.2)

⇓ (Step 2)

(autotautological-physical-theory) (2.0.3)

The main steps of the proof are Step 1 - Facts from logical-artifacts
and Step 2 - Properties emergent from facts.

But more than that, we are looking for the precise mathematical
formulation of the autotautological physical theory. We will find that
the function Z,

(autotautological-physical-theory)⇔
(

Z = ∑
q∈Q

e−Fx(q)−Wt(q)

)
(2.0.4)

obtained as the conclusion to this section, is the mathematical rep-
resentation of the autotautological physical theory. It will be properly
introduced in this chapter. As a teaser, it describes a statistical en-
semble of logically verifiable facts q from within the set Q of all such
facts. Each fact is statistically weighted by the length of its proof t(q)
and by the length of its description x(q). The function

p(q) =
1
Z

e−Fx(q)−Wt(q) (2.0.5)

is the probability that a fact q ∈ Q is actual in the universe. We
will show that this construction is autological and tautologically-
implied, and thus it describes a self-explained and necessarily exist-
ing universe.

In chapter 3, we will derive the laws of physics from Z.
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2.1 Step 1 - Facts from logical-artifacts

In step 1, we want to show the following.

∃(logical-artefacts) =⇒ f act1 ∧ f act2 ∧ f act3 ∧ f act4 ∧ . . . (2.1.1)

2.1.1 Facts and definitions

Consider a

Definition 2.1.2 (Brute Fact). A statement of a language which is true
without formal justification. In physics, the axioms of the eventual theory
of everything along with any possible initial conditions would generally be
considered to be the brute facts of reality. "Brute facts are not justified by
any other more fundamental principles."

versus a

Definition 2.1.3 (Logically verifiable Fact). A statement of a language
which is true within a formal theory because it is a theorem of said theory.

Finding the brute facts of the universe is generally thought to
be the end goal of physics. However, it is not the end goal of phi-
losophy. Indeed, if reality is contingent upon brute facts, then an
irreducible philosophical gap appears. As it cannot explain its brute
facts, such a reality cannot answer why it exists (versus any other
alternative) or why it exists over nothing.

Of course and as a result, an autotautological physical theory can-
not be contingent upon brute facts, or it would cease to be tautolog-
ical. The key to successfully construct an autotautological theory is
to avoid importing any brute facts while maintaining the universality
of the theory. This can be done by importing all theorems for all for-
mal theories as tautologies of a minimalistic formal theory. We will
perform a preliminary philosophical exercise to solidify the intuition,
then we will show how it can be done rigorously.

2.1.2 The universal doubt method of Descartes

We will recall the philosophy of René Descartes (1596-1650), the
famous 17th century French philosopher most well-known for his
derivation of cogito ergo sum - I think, therefore I am. As we will soon
see, we can guarantee the elimination of all brute facts when we
modernize his universal doubt method into a formal logic system
such as first order logic. But first, let us recall what the universal
doubt method is.

Descartes’ main idea was to come up with a test that every state-
ment must pass before it will be accepted as true. The test will be the
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strictest test imaginable. Any reason to doubt a statement will be a
sufficient reason to reject it. Then, any statement which survives the
test will be considered irrefutable.

Using this test, and for a few years, Descartes rejected every state-
ment he considered. The laws and customs of society, as they have no
logical justifications, are obviously the first to be rejected. Then, he
rejects any information that he collects with his senses; vision, taste,
hearing, etc, on the grounds that a "demon" (think hallucinogens)
could trick his senses without him knowing. He also rejects the theo-
rems of mathematics on the grounds that axioms are required to de-
rive them, and such axioms could be wrong. For a while, his efforts
were fruitless and he doubted if he would ever find an irrefutable
statement.

But, eureka! He finally found one which he published in 1641.
He doubts of things! The logic goes that if he doubts of everything,
then it must be true that he doubts. Furthermore, to doubt he must
think and to think, he must exist (at least as a thinking being). Hence,
cogito ergo sum, or I think, therefore I am.

2.1.3 Miniversal logic

We now refocus our interest to Descartes’ universal doubt method
itself and not so much in the cogito. To identify the theorems of the
universe, we will repeat Descartes’ universal doubt method within
the context of a formal logic system. The method will produce a
minimal set of rules whose theorems are the theorems of the universe -
hence the name Miniversal logic.

Miniversal logic is, in many ways, similar to the constructivism
project in mathematics but taken to the extreme. We select first-order
logic as our starting point. Then, as we do not know which axioms
are the true axioms of the universe, we remove all formal axioms
from first-order logic on the ground that they carry doubt. Then, we
further remove all rules of inference with the exception of the rule of
deduction. This method parallels Descartes’ universal doubt method
within first order logic. The main argument is that if we remove
from first order logic all formal axioms and all rules of inference
which could potentially be controversial, then whatever theorem is
left will surely be irrefutable. The result is a system of logic which,
essentially, does not deceive its user.

Like Descartes with the cogito, we will also obtain statements
that cannot be doubted of, but since we have formalized Descartes’
method within first-order logic, the irrefutable statements obtained
will be logic statements and are therefore mathematically usable.
Specifically, the irrefutable statements obtained are the theorems of
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Miniversal logic.
To write sentences in a clear and unambiguous manner, Miniversal

logic preserves the syntax of first order logic but does not retain its
rules of inference (with the exception of the rule of deduction). As
only the rule of deduction remains, let us recall its definition.

Definition 2.1.4 (Rule of deduction). The rule of deduction formalize the
idea that proving a theorem using a set of assumptions is valid within these
assumptions. It shows that if by assuming A one can show that A ` B,
then A → B is a theorem of the logical system. It is often considered one of
the most obvious rule of inference of logic, as without it we cannot extend a
logical system with new axioms/assumptions. Using the rule of deduction,
we can start from seemingly nothing and rebuild any of the familiar logic
systems such as Peano’s axioms (PA) or set theory (ZFC) by assuming their
axioms.

Why keep the rule of deduction? For the simple reason that us-
ing it does not introduce doubt but removing it would. It is the only
standard rule that has this property. For example lets consider an-
other rule, say the rule of excluded middle. Adopting this rule in the
foundation of the theory would increase doubt as it is impossible to
determine a-priori if this is a valid rule of the universe or not. How-
ever, introducing it by first appealing to the rule of deduction would
be fine. Indeed, in the latter case we would say "if we assume the rule
of excluded middle (via the rule of deduction), then we can prove by
contradiction, for example, that

√
2 is irrational". It only affects the

branch of the tree under which it is assumed and not the whole sys-
tem.

In Miniversal logic, no theorem stands on its own. Any theorem
must include, within its description, the list of assumptions that are
required to prove it. The user of Miniversal logic is always reminded
that the theorems that he proves are of the form ’Assume A, then A
proves C’. Hence, by the rule of deduction, A → C is a theorem, but
C by itself never is. Miniversal logic can be interpreted as the starting
point of all logical work - it is the state of mind a logician is in before
having morning coffee and selecting a specific system of axioms to
work with. As a result and compared to other logic systems, it more
accurately represents reality as it reflects the full freedom available to
the logician to select any set of axioms prior to working.

2.1.4 Discussion on metaphysics

To solidify the intuition, let us have a small conversation on meta-
physics. The goal of this section is to construct a bridge from meta-
physics to physics. The completion of the exercise will identify all
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sentences that are theorems of the universe. To iron out the sub-
tleties we will present, in the long standing tradition of philosophy,
an hypothetical dialogue about the thesis. The dialogue is based on a
number of real conversations1 which has been edited and combined 1 Specifically, when Alice’s dialogue

is taken verbatim from a conversation
with Toid Boigler, it will be side-noted
with the initials TB.

to remove repetitions, to accelerate the flow and to help illustrate the
points being made.

Alice: - I believe in empiricism. To derive the laws of physics, one must make
observations. Without these observations, there is no way to know which of
many possible worlds is the actual world. For example, is the geometry of the
universe euclidean or hyperbolic? Is the speed of light maximal? Does the
microscopic world obeys the Schrödinger equation? Etc. Pure reason alone
cannot prove these to be actual. Only continual observations followed by
refinements or falsifications can improve our degree of confidence in a scientific
theory.

I understand your point of view, but I believe I have found a
bridge between metaphysics and physics that allows one to obtain
irrefutable knowledge about the universe. I will try to explain the
bridge from the following angle. First, lets assume that the cogito is
true: I think, therefore I exist. Do you agree with the cogito?

Alice: - Yes.

Then, for I to exist, the universe must be restricted in some way. At
the very least, it must be such that it does not contradict the existence
of thought. We have now essentially reformulated the anthropic prin-
ciple as an extension to the cogito. I think, therefore I exist - and to
exist, I must actually exist in a universe capable of supporting such exis-
tence. Would you agree that this argument rules out some universes?

Alice: - Fair enough, yes - it rules out the [...] universes incompatible with
the existence of thought.[...]2 2 TB

OK. From that, we already have a slight connection between meta-
physics and physics. An argument from pure reason, the cogito ex-
tended with the anthropic principle, can be used to place restrictions
on what the universe can be. As it contains very little information,
the restriction is very loose, but it is nonetheless a restriction.

Alice: - I agree that the anthropic principle rules out universes that are
not capable of producing an observer. But, a scientific theory should make
precise and falsifiable predictions and the anthropic principle is not sufficiently
specific for that.

Now we enter the core of the argument. We will use Miniversal
logic to improve the specificity of the anthropic principle. Each the-
orem of Miniversal logic that we can provide will serve to further
restrict what the universe is. For example, using my mind I can prove
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the sentence "PA implies that two plus two equals four", and since
my mind is in the universe, then the sentence must be a theorem of
both my mind and the universe. This is how we find the theorems
applicable to the universe. We have now restricted the universe by
two statements instead of one. So the previously poorly defined
bound is now slightly better defined. Agree, or disagree?

Alice: Well, you want the phrase "theorem of the universe" to be telling us
something about the physical world; to put it in your own words, "...this is
how we bridge metaphysics to physics." But how does this work? If "true in
the universe" just means provable in PA or ZFC or whatever (as you seem to
have just said), how does this provide any link with physical reality at all? 3 3 TB

Hold on, it appears that you have missed a subtlety. "Provable in
the universe" means provable in the Miniversal logic system I defined
earlier. If you use another logic system than Miniversal logic (such
as PA) then the argument does not work. If you use PA or ZFC, then
the theorems rely on the axioms PA or ZFC. As the universe might
have other axioms than PA or ZFC, we cannot prove that PA’s or
ZFC’s theorems are indeed the theorems of the universe. However,
Miniversal logic teaches us that the theorems of the universe are
not "two plus two equals four", they are "Assume PA, then two plus
two equals four". The "Assume PA" prefix is what the subtlety is
all about. "Assume PA, then 2+2=4" is a theorem of the universe
because, it is true that in the universe, if you assume PA you can
prove (within PA) that 2+2=4. You can easily do the exercise in your
head to prove that it can be done in the universe.

- Alice: OK, so you want to think of all mathematical proofs as conditional -
if certain axioms hold, then certain consequences follow. Fine. How does that
provide any connection with physics or the physical world?4 4 TB

Well yes, mathematical proofs that are explicitly conditional on
assumptions derived exclusively from the rule of deduction are theo-
rems of the universe. Whereas those that do not meet this condition
are theorems of their respective logic system. For example, "2+2=4" is
a theorem of Peano’s axioms. But, "Assume PA, then 2+2=4" is a the-
orem of the universe. So all worlds where "Assume PA, then 2+2=4"
is not true are ruled out.

- Alice: This is one point where I am a little confused. Pure logic (call it
[Miniversal] logic if you want) guarantees that PA implies 2+2=4. So it’s hard
to see what worlds it rules out - unless you mean worlds in which there is a
mind, but that [this] mind is too [primitive] to realize that PA implies 2+2=4.
Is that the kind of world that you take to have been ruled out? If so, I am OK
with what you have said.5 5 TB

Yes - that is part of what I am ruling out. Generally speaking, I
am ruling out any world which does not embed universal reason. I
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also rule out worlds for which logic would be incomplete and worlds
which would contradict logic by say, letting you prove any theorems
regardless of the axioms that you assume.

Since our mind is able, in principle, to explore all branches of
Miniversal logic and since the universe must embed our mind, we
can precisely identify all the theorems of the universe: The ultimate
theory which describes the universe must have, as its theorems, all
theorems of Miniversal logic.

Alice: Here I really don’t know what you mean, unless you are just saying
that there are no ’violations’ of [Miniversal] logic in the world. If that’s what
you mean, I’m happy with that claim.6 6 TB

I am indeed claiming that there are no violations of Miniversal
logic in the universe, but I am also claiming something additional.
What I am claiming is that we can use Miniversal logic and the an-
thropic principle to completely restrict reality to a single solution.

Consider the following; each theorem of Miniversal logic that we
supply can be used to restrict the universe further. In principle, we
can supply arbitrarily many theorems. PA has "2+2=4" as a theorem,
but it also has "2+3=5", etc. Then, ZFC also has infinitely many the-
orems as well. If we keep supplying theorems, we will eventually
supply all theorems for all branches of Miniversal logic7. Further- 7 To avoid hanging on non-provable

sentences, we will have to work in
dovetail.

more as Miniversal logic is universal, all possible theorems for all
possible sets of assumptions will eventually be supplied. No patches
of theorems will be left out by the process.

As a result, we will have maximally restricted what the universe
can be. Indeed, the universe cannot be simpler than Miniversal logic
because that would mean leaving a theorem out (but we already said
the work will eventually supply all possible theorems so none can be
left out). What about complexity - can the universe be more complex
then Miniversal logic? The universe cannot be more complex than
Miniversal logic either because that would mean the universe has
theorems that Miniversal logic hasn’t (but this cannot be the case
because Miniversal logic already embeds all possible theorems within
its branches).

Therefore, as the universe is restricted both from the perspective
of increasing its complexity as well as reducing it, the bound cannot
be improved furthermore. The method herein described fully restricts
the universe to a single solution.

Alice: I am not sure [I see where you are going with this]. I’m happy to say
that the universe must allow for the possibility of a mind that, in principle,
can verify all the theorems of [Miniversal] logic. But what follows from that?8 8 TB

Usually a theory is first defined by a set of axioms, then the the-
orems follows from them. In our present situation, we have a list of
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theorems but we do not have the theory which neatly explains such
theorems. We will use a meta-theory such as first-order arithmetic or
set theory to study Miniversal logic. The process is somewhat remi-
niscent of how we have invented and are now using mathematics to
describe the physical universe we live in.

Alice: [What I mean is that] I don’t understand [the connection to physics]
at all. What we have now are all the tautologies of [Miniversal] logic. What
connection is there between that and a physical theory?9 9 TB

The connection is that, for the reasons stated, the theorems of
Miniversal logic are the theorems of the universe. Hence Miniversal
logic, as its theorems are identical to those of the universe, must fully
describe the universe.

Alice: You say "The theorems of [Miniversal] logic are theorems of the uni-
verse.". If by this you just mean that the universe obeys the laws of [Miniver-
sal] logic, then yes, I agree. Then you say "Hence Miniversal logic, as its
theorems are identical to those of the universe, must fully describe the uni-
verse." This seems clearly wrong. It is true in the universe that there [is the
law of gravity]. That there [is the law of gravity] is, however, not a theorem
of [Miniversal] logic. Thus, the theorems of [Miniversal] logic do not fully
describe the universe.10 10 TB

There is a misunderstanding. I am not claiming that the laws of
the universe can be found within Miniversal logic under a certain
set of assumptions. What I am claiming is that Miniversal logic is
autological; e.g. it possess the properties of reality for the following
reason:

(tautological)∧ (universal) =⇒ (autological) (2.1.5)

Thus, studying Miniversal logic with a meta-theory is equivalent
to trying to make sense of the universe using mathematics. Except, as
the facts of Miniversal logic are precisely defined and listed, correctly
deriving the proper laws and symmetries from them will be easier
then it is in the physical case.

Alice: Can you spell out the [connection] you have in mind [between the
tautologies of Miniversal logic and the laws of physics]?11 11 TB

Yes, let us explicitly enumerate the facts of reality, then we will be
ready for step 2.

2.1.5 Enumeration of all facts

We can make this rigorous using the standard tools of formal logic.
Let us do a recap.
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Definition 2.1.6 (Symbol). For our purposes, a symbol is a reproducible
mark or shape that can be distinguished from other marks or shapes. For
example 0 and 1 are the symbols of the binary language.

Symbols can be grouped as

Definition 2.1.7 (Sentences). A sentence is a group of symbols written
one after the other. For completeness, we consider groups of one symbol to
also be sentences. The absence of symbols will be the empty sentence ε. A
sentence is of finite length. For example 000110 and 111 are sentences of the
binary language.

With these primitive notions defined, a notion of truth can be
imported into a formal theory. For this, a list of rules is defined:

Definition 2.1.8 (Rules of inference). Typically, a rule of inference will
be truth-preserving. A rule of inference takes sentences as input, then pro-
duces a conclusion. For example, (p ∧ q) =⇒ p is a rule of inference in
propositional logic.

Definition 2.1.9 (Axioms). A sentence that is considered true by definition
is an axiom.

Definition 2.1.10 (Theorem). A sentence that is proven to be true as a
result of a valid proof is a theorem. A valid proof is obtained by applying in
succession either an axiom or a rule of inference to the previous line until the
sentence is recovered.

Definition 2.1.11 (Logical truth). A sentence that is proven to be true as
a result of the application of the rules of inference of the formal theory, and
with no application of the axioms. Thus, a logical truth is a specific kind of
theorem. In philosophy, logical truths are also called analytic truth and are
valid for all worlds. By contrast, axiom-dependant theorems are only truth
for a certain world (e.i. for a certain set of axioms).

Within the context of formal logic, we can think of the previously
introduced categories of facts as follows:

Brute-facts⇔ Axioms (2.1.12)

Logically-verifiable-facts⇔ Theorems (2.1.13)

We can then convert theorems to logical truths using Miniversal
logic as follows;

logical-truth1 := ({axioms}A =⇒ theorem1) (2.1.14)

logical-truth2 := ({axioms}A =⇒ theorem2) (2.1.15)

...

logical-truthn := ({axioms}B =⇒ theoremn) (2.1.16)
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We note that each logical truth so defined now embeds the set of
axioms which permits the verification of the theorem it pertains to.

We now consider that we can enumerate all sentences of a lan-
guage. Then, as logical truths are sentences of a language, they too
can be enumerated. For the proof, we select the binary language with
symbol 0 and 1. As every language can be encoded in binary, the
choice of language has no impact on the generality of the derivation.
We can enumerate all sentences of the binary language in short-lex
(sorted alphabetically and by length) as:

0 (2.1.17)

1 (2.1.18)

00 (2.1.19)

01 (2.1.20)

10 (2.1.21)

11 (2.1.22)

000 (2.1.23)

...

Most of these sentences will be nonsensical, but once in a while
a sentence does make sense within the chosen formal theory - in
our case Miniversal logic. We can see this more clearly if we con-
sider listing all sentences of the English language including special
characters. We list them as a, b, c, ..., aa, ab, ..., ba, bb, .... Eventually, all
sentences, all books and all manuscripts will be enumerated. Then, as
the English language can be encoded in binary, the binary language
is equivalent in scope to the English language.

The next step will be to extract from the enumeration only the
facts, and to eliminate non-facts and nonsensical sentences. To do so,
we will have to think of facts as computer programs.

2.1.6 Facts as computer programs

To distinguish the logical truths from the invalid or false statements,
we define a function F : S → Z2. The function returns 1 if the sen-
tence S is verifiable and 0 otherwise. This function is known as the
universal function. Gregory Chaitin12 has shown that for a universal 12 Gregory J. Chaitin. A theory of

program size formally identical to
information theory. J. ACM, 22(3):
329–340, July 1975. ISSN 0004-5411.
doi: 10.1145/321892.321894. URL http:

//doi.acm.org/10.1145/321892.321894

system, such a function exists but is non-computable.

http://doi.acm.org/10.1145/321892.321894
http://doi.acm.org/10.1145/321892.321894
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S F(S)

(example values)

0 0 (2.1.24)

1 0 (2.1.25)

00 1 (2.1.26)

01 0 (2.1.27)

...
...

The logical truth of Miniversal logic can be interpreted formally as
computer programs running on a universal Turing machine. Indeed,
it suffices to consider that the program script is the set axioms and
the program input is the theorem. Then the universal Turing machine
takes as input the concatenation of the program script (axioms) with
the program input (theorem) and outputs the proof. It halts once the
proof is complete (the theorem is verified from the axioms) or runs
forever (the theorem is not provable from the axioms).

As Miniversal logic describes a universal system, the function F(s)
associated with it is non-computable. Non-computable systems do
have a computable sub-domain. To properly study this sub-domain,
we will introduce feasible mathematics and use it in step 2 of the
proof. Before we do that, let us have a small discussion on the nature
of facts.

2.1.7 Discussion on the nature of facts

What then is a fact in this context? This construction is likely to be at
least somewhat controversial amongst philosophers because it elim-
inates a commonly used class of facts from our definition of phys-
ical reality. Specifically, philosophy considers the existence of syn-
thetic facts. These are facts related to the current world. For example,
"Julius Caesar was the emperor of Rome" relates to the present world
as it has unfolded historically, but is unlikely to be true for all possi-
ble world. Thus, it is a synthetic truth but not a logical truth.

In the present construction of Miniversal logic, all such synthetic
statements are converted to analytic statements. Thus, there is no
place left for synthetic statement as carriers of truth. Indeed, our
understanding of any facts is now always contingent on a set of
assumptions. The validity of the fact can be verified based on the
assumptions, but cannot be proven to stand on its own as a brute
fact. The claim of the existence of Julius Caesar must be corrected to
include the assumption which permits the deduction; somewhat in-
formally we can say "If we find evidence of an emperor named Julius
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Caesar, such as signed parchments and historical records, and that
we assume that these records are valid and representative, then Julius
Caesar was the emperor of Rome". The fact "Julius Caesar was the
emperor of Rome" is no more certain than the assumptions the claim
depends upon.

Indeed, I would argue that this representation is more legitimate
than the synthetic representation which ignores the underlying as-
sumptions. We might one day find that the historical record has
been tempered with (or that perhaps Caesar was just the pawn of
a shadow government); thus this construction can account for the
discovery of future tampering of the evidence. The possibility of tam-
pering the historical record (or even of the senses) is suggestive that
all synthetic statements are no more than logical truths contingent
upon some set of assumptions.

Do not fear the loss of synthetic statements; as by removing them
we will be rewarded with an autotautological physical theory.

Alice: How does an actual world arises purely from analytic truths?

That is a great question but you have asked it too soon into the
manuscript. If you must know now; I can provide you with a tenta-
tive answer. We will first need a theory by which the laws of physics
emerges from the set of analytical truths. This will be introduced in
the next section as feasible mathematics. The, the world that is actual
will be defined as the statistical average associated with the greatest
amount of equivalent arrangements of analytical truths. The absence
of a precisely defined actual world is the reason why our universe is
fundamentally quantum mechanical. Indeed, fluctuations around the
average explicitly connect to quantum fluctuations. In the last chap-
ter we recover the Feynman path integral formulation of quantum
field theory from fluctuations over analytical truths arrangements, as
well as the Schrödinger and the Dirac equations. What we think of as
the actual world are average properties emergent from the set of all
analytical truths.

2.2 Feasible mathematics

Some research has been done in the area of feasible numbers. Per-
haps the most promising is from Vladimir Yu. Sazonov’s paper on
feasible numbers13. He suggest that feasible numbers are intuitively 13 Vladimir Yu Sazonov. On feasible

numbers. In Logic and computational
complexity, pages 30–51. Springer, 1995

the set of numbers F which satisfies 0 ∈ F, F + 1 ⊆ F and 21000 /∈ F.
Then, he goes on to investigate various constructions which would
allow the consistent treatment of such a set.

Here, we take a different approach. We recognize that 21000 is
a large number but nonetheless, it can be compressed to a short
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representation. Thus, we accept that theorems featuring this number
can be proven even in the context of limited resources. Hence, a more
general approach to feasibility is required. We propose a method to
treat feasibility as a limit applicable to the complexity of the proofs
themselves.

Mathematical proofs come in various sizes and have various indi-
cators of complexity. By bounding proofs based on such indicators,
the proof landscape available to a mathematician with limited re-
sources is reduced (made feasible). We believe that a representation
of mathematical feasibility based on limited proof complexity more
accurately describe the intuitive notion of feasibility. After-all, a the-
orem whose shortest proof requires 21000 bits will surely never be
proven in our lifetime, but the number 21000 is easily representable
even in simple proofs.

As the construction we propose is meta-logically applicable to an
arbitrary set of formal axioms, we introduce a distinction between
feasible mathematics and universal mathematics. Universal mathemat-
ics is made feasible when, intuitively, the proof landscape of the
mathematician is bounded by computational limits. In this sense, all
practical work in mathematics is feasible.

To formalize feasible mathematics, we will consider mathematical
proofs as computer programs that are executed on a self-delimiting
universal Turing machine. We will then construct a statistical ensem-
ble able to decide feasible mathematics.

2.2.1 Main problem

Suppose a research group with access to a supercomputer. Alice has
been granted a fixed amount of computing resources to use on the
supercomputer. She has further been instructed to run a program
qA. With no prior knowledge of qA, what is the probability that the
program will halt within the allocated resources?

Answering this question will require notions of algorithmic thermo-
dynamics and statistical physics.

2.2.2 Statistical physics

We will provide a brief recap of statistical physics. In statistical
physics, we are interested in the distribution that maximizes entropy,

S = −kB ∑
x∈X

p(x) ln p(x) (2.2.1)

subject to the fixed macroscopic quantities. The solution for this is
the Gibbs ensemble. Typical thermodynamic quantities are:
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quantity name units type

T = 1/(kBβ) temperature K intensive (2.2.2)

E energy J extensive (2.2.3)

p = γ/β pressure J/m3 intensive (2.2.4)

V volume m3 extensive (2.2.5)

µ = δ/β chemical potential J/kg intensive (2.2.6)

N number of particles kg extensive (2.2.7)

Taking these quantities as examples, the partition function be-
comes:

Z = ∑
x∈X

e−βE(x)−γV(x)−δN(x) (2.2.8)

The probability of occupation of a micro-state is:

p(x) =
1
Z

e−βE(x)−γV(x)−δN(x) (2.2.9)

The average values and their variance for the quantities are:

E = ∑
x∈X

p(x)E(x) E =
−∂ ln Z

∂β
(∆E)2 =

∂2 ln Z
∂β2 (2.2.10)

V = ∑
x∈X

p(x)V(x) V =
−∂ ln Z

∂γ
(∆V)2 =

∂2 ln Z
∂γ2 (2.2.11)

N = ∑
x∈X

p(x)N(x) N =
−∂ ln Z

∂δ
(∆N)2 =

∂2 ln Z
∂δ2 (2.2.12)

The laws of thermodynamics can be recovered by taking the fol-
lowing derivatives

∂S
∂E

∣∣∣∣
V,N

=
1
T

∂S
∂V

∣∣∣∣
E,N

=
p
T

∂S
∂N

∣∣∣∣
E,V

= − µ

T
(2.2.13)

, which can be summarized as

dE = TdS− pdV + µdN (2.2.14)

This is known as the equation of state of the thermodynamic sys-
tem. The entropy can be recovered from the partition function and is
given by:

S = kB
(
ln Z + βE + γV + δN

)
(2.2.15)
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2.2.3 Algorithmic thermodynamics

Many authors (Bennett et al., 1998, Chaitin, 1975, Fredkin and Tof-
foli, 1982, Kolmogorov, 1965, Zvonkin and Levin, 1970, Solomonoff,
1964, Szilard, 1964, Tadaki, 2002, 2008) have discussed the similar-
ity between physical entropy S = −kB ∑ pi ln pi and the entropy in
information theory S = −∑ pi log2 pi. Furthermore, the similarity be-
tween the halting probability Ω and the Gibbs ensemble of statistical
physics has also been studied14. Tadaki suggests to augment Ω with 14 Ming Li and Paul M.B. Vitanyi.

An Introduction to Kolmogorov
Complexity and Its Applications.
Springer Publishing Company, Incorpo-
rated, 3 edition, 2008. ISBN 0387339981,
9780387339986; Cristian S. Calude
and Michael A. Stay. Natural halting
probabilities, partial randomness, and
zeta functions. Inf. Comput., 204(11):
1718–1739, November 2006. ISSN 0890-
5401. doi: 10.1016/j.jc.2006.07.003.
URL http://dx.doi.org/10.1016/

j.jc.2006.07.003; John Baez and
Mike Stay. Algorithmic thermody-
namics. Mathematical. Structures in
Comp. Sci., 22(5):771–787, Septem-
ber 2012. ISSN 0960-1295. doi:
10.1017/S0960129511000521. URL
http://dx.doi.org/10.1017/

S0960129511000521; and Kohtaro
Tadaki. A generalization of chaitin’s
halting probability omega and halting
self-similar sets. Hokkaido Math.
J., 31(1):219–253, 02 2002. doi:
10.14492/hokmj/1350911778. URL
http://dx.doi.org/10.14492/hokmj/

1350911778

a multiplication constant D which acts as a decompression term on
Ω.

Chaitin construction Tadaki ensemble (2.2.16)

Ω = ∑
q∈halts

2−|q| ⇒ ΩD = ∑
q∈halts

2−D|q| (2.2.17)

With this change, the Gibbs ensemble compares to the Tadaki
ensemble as follows;

Gibbs ensemble Tadaki ensemble

Z = ∑
x∈X

e−βE(x) ΩD = ∑
q∈halts

2−D|q| (2.2.18)

Interpreted as a Gibbs ensemble, the Tadaki construction forms
a statistical ensemble where each program corresponds to one of
its micro-state. The Tadaki ensemble admits a single quantity; the
prefix code length |q| conjugated with D. As a result, it describes the
partition function of a system which maximizes the entropy subject
to the constraint that the average length of the codes is some constant
|q|;

|q| = ∑
q∈halts

|q|2−|q| from 2.2.10 (2.2.19)

The entropy of the Tadaki ensemble corresponds to the average
length of prefix-free codes available to encode programs.

S = kB

(
ln Ω + D|q| ln 2

)
from 2.2.15 (2.2.20)

The constant ln 2 comes from the base 2 of the halting probability
function instead of base e of the Gibbs ensemble.

John C. Baez and Mike Stay15 take the analogy further by sug- 15 John Baez and Mike Stay. Algorithmic
thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–
787, September 2012. ISSN 0960-1295.
doi: 10.1017/S0960129511000521.
URL http://dx.doi.org/10.1017/

S0960129511000521

gesting an interpretation of algorithmic information theory based on

http://dx.doi.org/10.1016/j.jc.2006.07.003
http://dx.doi.org/10.1016/j.jc.2006.07.003
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.14492/hokmj/1350911778
http://dx.doi.org/10.14492/hokmj/1350911778
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
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thermodynamics, where the characteristics of programs are con-
sidered to be thermodynamic quantities. Starting from Gregory
Chaitin’s Ω number, the Chaitin construction

Ω = ∑
q∈halts

2−|q| (2.2.21)

is extended with algorithmic quantities to obtain

Gibbs ensemble Baez-Stay ensemble (2.2.22)

Z = ∑
x∈X

e−βE(x)γV(x)−µN(x) Ω′ = ∑
q∈halts

2−βE(q)−γV(q)−δN(q) (2.2.23)

Noting the similarity between the Gibbs ensemble of statistical
physics (2.2.8) and (2.2.23), these authors suggest an interpretation
where E is the expected value of the logarithm of the program’s run-
time, V is the expected value of the length of the program and N is
the expected value of the program’s output. Furthermore, they inter-
pret the conjugate variables as (quoted verbatim from their paper);

"

1. T = 1/β is the algorithmic temperature (analogous to temperature).
Roughly speaking, this counts how many times you must double
the runtime in order to double the number of programs in the
ensemble while holding their mean length and output fixed.

2. p = γ/β is the algorithmic pressure (analogous to pressure). This
measures the trade-off between runtime and length. Roughly speak-
ing, it counts how much you need to decrease the mean length to
increase the mean log runtime by a specified amount, while holding
the number of programs in the ensemble and their mean output
fixed.

3. µ = −δ/β is the algorithmic potential (analogous to chemical po-
tential). Roughly speaking, this counts how much the mean log
runtime increases when you increase the mean output while hold-
ing the number of programs in the ensemble and their mean length
fixed.

"

–John C. Baez and Mike Stay

From equation (2.2.23), they derive analogues of Maxwell’s rela-
tions and consider thermodynamic cycles, such as the Carnot cycle
or Stoddard cycle. For this, they introduce the concepts of algorithmic
heat and algorithmic work.

Other authors have suggested other alternative mappings in other
but related context16.

16 Ming Li and Paul M.B. Vitanyi.
An Introduction to Kolmogorov
Complexity and Its Applications.
Springer Publishing Company, Incorpo-
rated, 3 edition, 2008. ISBN 0387339981,
9780387339986; and Kohtaro Tadaki. A
statistical mechanical interpretation of
algorithmic information theory. In Local
Proceedings of the Computability in
Europe 2008 (CiE 2008), pages 425–434.
University of Athens, Greece, Jun 2008.
URL http://arxiv.org/abs/0801.4194

http://arxiv.org/abs/0801.4194
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2.2.4 Derivation of feasible mathematics

1. We start from the standard Chaitin construction applicable to a
self-delimiting universal Turing machine17. 17 Gregory J. Chaitin. A theory of

program size formally identical to
information theory. J. ACM, 22(3):
329–340, July 1975. ISSN 0004-5411.
doi: 10.1145/321892.321894. URL http:

//doi.acm.org/10.1145/321892.321894

Ω = ∑
q∈halts

2−|q| (2.2.24)

, where

Ω ∈ (R∩ [0, 1]) numerical value of the sum (2.2.25)

q ∈ Σb binary program (encoded as a prefix-free code)
(2.2.26)

|q| : Σb →N length of the program’s code (2.2.27)

2. We augment Ω with a multiplication constant D; we obtain the
Tadaki ensemble18. 18 Kohtaro Tadaki. A generalization

of chaitin’s halting probability omega
and halting self-similar sets. Hokkaido
Math. J., 31(1):219–253, 02 2002. doi:
10.14492/hokmj/1350911778. URL
http://dx.doi.org/10.14492/hokmj/

1350911778

ΩD = ∑
q∈halts

2−D|q| (2.2.28)

, where

ΩD ∈ (R∩ [0, 1]) numerical value of the sum (2.2.29)

D ∈ R Conjugate to program length (2.2.30)

3. With this addition, ΩD has the same mathematical structure as a
Gibbs ensemble of statistical physics19. 19 Kohtaro Tadaki. A statistical mechan-

ical interpretation of algorithmic infor-
mation theory. In Local Proceedings
of the Computability in Europe 2008

(CiE 2008), pages 425–434. University
of Athens, Greece, Jun 2008. URL
http://arxiv.org/abs/0801.4194; and
John Baez and Mike Stay. Algorith-
mic thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–
787, September 2012. ISSN 0960-1295.
doi: 10.1017/S0960129511000521.
URL http://dx.doi.org/10.1017/

S0960129511000521

Gibbs ensemble Tadaki ensemble

G = ∑
x∈X

e−βE(x) ΩD = ∑
q∈halts

2−D|q| (2.2.31)

, where(
2−D|q|

)
micro-state representing a program (2.2.32)

D ∈ R algorithmic decompression (2.2.33)

4. We interpret the Tadaki ensemble within the context of algorith-
mic thermodynamics20. We can introduce a probability distribu- 20 John Baez and Mike Stay. Algorithmic

thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–
787, September 2012. ISSN 0960-1295.
doi: 10.1017/S0960129511000521.
URL http://dx.doi.org/10.1017/

S0960129511000521

tion for Ω and ΩD that maximizes the entropy of the system.

Halting probability Halting probability with fixable |q|

p(q) =
1
Ω

2−|q| p(q, D) =
1

ΩD
2−D|q| (2.2.34)

In the case of ΩD, D is a Lagrange multiplier and p(q, D) is the
probability measure that maximizes the entropy subject to the
constraint that the average program length is |q|.

|q| = ∑
q∈halts

p(x)|q| (2.2.35)

http://doi.acm.org/10.1145/321892.321894
http://doi.acm.org/10.1145/321892.321894
http://dx.doi.org/10.14492/hokmj/1350911778
http://dx.doi.org/10.14492/hokmj/1350911778
http://arxiv.org/abs/0801.4194
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
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, where

|q| ∈ R≥0 average program length (2.2.36)

5. Finally, to obtain feasible mathematics, we introduce into ΩD a
new quantity t(q) the runtime of program q and pair it with its
conjugate W. We obtain the construction Z.

Z = ∑
q∈halts

2−Wt(q)−D|q| (2.2.37)

(2.2.38)

, where

Z ∈ R≥0 numerical value of the sum (2.2.39)

t(q) : q→N number of iterations required for q to halt (2.2.40)

W ∈ R conjugate to t(q) in units of (iterations)−1 (2.2.41)

|q| : q→N number of bits of program q (2.2.42)

D ∈ R conjugate to |q| in units of (bits)−1 (2.2.43)

The corresponding probability measure is:

p(q, W, D) =
1
Z

2−Wt(q)−D|q| (2.2.44)

It maximizes the entropy subject to the following constraints:

|q| = ∑
q∈halts

p(q, W, D)|q| average program length |q| (2.2.45)

t = ∑
p∈halts

p(q, W, D)t(q) average program runtime t (2.2.46)

Let us now study this equation in more detail in the following
section.

2.2.5 Results

We interpret the supercomputing research group as taking a similar
role to the role taken by the various baths in thermodynamics (heat
bath, particle bath). For example, in thermodynamics we would say
that a system which can exchange energy with its environment is
in a heat bath. Its temperature will be constant but its total energy
would fluctuate as it is exchanged with the bath. By analogy, in fea-
sible mathematics, we would imagine that a computation occurs in a
supercomputer which schedule priority, assigns memory, etc. so has
to maintain various computing resources fixed during the calculation.
This is analogous the role of the thermodynamic baths.

To make this more precise, let us define what we mean by fixed
resources.
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2.2.6 Fixed resources

Each Lagrange multiplier of the partition function Z is a computing
resource fixed by the supercomputer. In the provided definition of Z,
there are two such constants : W and D. They can be interpreted as
follows:

Halting-power P =
1

W
(2.2.47)

Halting-force F =
D
W

(2.2.48)

• The halting-power counts how much the runtime must be doubled
in order to double the entropy of the ensemble while holding the
mean length fixed.

• The halting-force counts how much the average length must be
decreased to increase the average runtime by a specified amount,
while holding the entropy in the ensemble fixed.

By adjusting the halting-power and the halting-force, the super-
computer is able to control the value of the constraints of the system
t and |p|. Thus, the halting probability of Alice’s program qA de-
pends on the halting-power allocated by the supercomputer. In the
supercomputer analogy, the halting-power can be understood as re-
lated to the clock speed of the processor(s), and the halting-force as a
compression algorithm applied to input memory.

2.2.7 Alternative formulations

There exists alternative constructions of Z such that other resources
are fixed by the supercomputer.

Action-frequency formulation:

Z′ = ∑
q∈halts

2−A f (q)−D|q| (2.2.49)

The supercomputer must fix

Halting-action S =
1
A (2.2.50)

• The halting-action counts how much the action must be doubled
in order to double the entropy of the ensemble while holding the
mean length fixed.

Time-power formulation:
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Z′′ = ∑
q∈halts

2−tP(q)−D|q| (2.2.51)

The supercomputer must fix

Halting-time t (2.2.52)

• The halting-time counts how much the time must be doubled in
order to double the entropy in the ensemble while holding the
mean length fixed.

This formulation does not describe a time cutoff (see next formu-
lation). Rather, it describes a system where all programs halt at the
same time. To guarantee that the work on each program terminates
simultaneously (e.g. there are no partial executions), the supercom-
puter must adjust the computation power on a per program basis.

Time-cutoff formulation:

Z′′′ = ∑
q∈halts;t(q)≤k

2−D|q| (2.2.53)

The sum Z′′′ is performed only on programs that halt within a
time cutoff k. Thus, Z′′′ contains no halting information and is com-
putable. Ω is recovered in the limit when k→ ∞.

Size-cutoff formulation:

Z′′′′ = ∑
q∈halts;|q|≤k

2−D|q| (2.2.54)

The sum Z′′′′ is performed only on programs with sizes less or
equal to k. Ω is recovered in the limit when k → ∞. Z′′′′ represents
the first n bits Ω up to the cutoff k.

2.2.8 Relation to Ω

Theorem 2.2.55. Z → ΩD as the amount of available resources is increased
arbitrarily.

lim
P→∞

Z → ΩD (2.2.56)

Proof. First, we rewrite ΩD as:

ΩD =
∞

∑
i=1

2−H(qi)−D|qi | where H(qi) :=

0 qi halts

∞ otherwise
(2.2.57)



on the existence of an autotautological physical theory 29

Second, we note that the runtime t(qi) of a program qi will be
finite if it halts and infinite otherwise.

t(qi) =

ti ∈ R≥0 qi halts

∞ otherwise
(2.2.58)

Then taking the limit of Z,

lim
P→∞

1
P t(qi) =

0 qi halts

∞ otherwise
(2.2.59)

This is the definition of H(qi). Therefore,

lim
P→∞

1
P

t(qi)→ H(qi) (2.2.60)

Thus,

lim
P→∞

Z → ΩD (2.2.61)

Theorem 2.2.62. Z monotonically converges towards ΩD as the available
resources are increased.

Proof. Without loss of generality, let us now expand Z explicitly with
an example. Assume a system comprised of three micro-states with
prefix code-length |q1| = 1, |q2| = 2 and |q3| = 3 and with the run-
times t1 = 5, t2 = ∞ and t3 = 5. In this example, q1 and q2 halt and q3

does not. For the purposes of simplicity we can assume that all other
programs do not halt. In this case the system is not universal but let
us nonetheless use it as a simplified numerical example. The sum Z
becomes;

Z(W) = 2−1−5W + 2−2−∞W + 2−3−5W (2.2.63)

We will now produce a series of numerical calculations with pro-
gressively smaller values of W and we will look at the evolution of
the error rate ξ(W) = Ω− Z(W). For this system, Ω = 0.1010b.
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W Z(W) ξ(W) error

∞ 0 Ω max (2.2.64)

1 0.000000101...b 0.10011011b ≈ 2−1 (2.2.65)

0.1 0.011100010...b 0.00101110...b ≈ 2−3 (2.2.66)

0.01 0.100110101...b 0.00000010...b ≈ 2−6 (2.2.67)

0.001 0.011100010...b 0.00000000...b ≈ 2−9 (2.2.68)

...
...

...
...

0 Ω 0 none (2.2.69)

As we can see, increasing the halting-power (P = 1/W) causes
the value Z to monotonically converges towards Ω. The error rate
decreases as more valid bits of Ω are obtained.

Theorem 2.2.70. An observer knowing n bits of Z will be able to decide at
most 2N programs.

Proof. We consider a numerical value for Z whose first k bits corre-
sponds to the bits of Ω. We look at two cases: 1) For the first k bits,
Z (as with Ω) can decide 2N programs per bit. 2) For the bits after k,
the situation is a bit more complex:

To recover the feasible programs beyond k, an observer can execute
programs on a universal Turing machine in dovetail. As they halt,
the observer adds their contribution to Z. Once the value of Z is
recovered, then all programs taking longer to halt are beyond the
feasible bound, regardless of whether they ultimately halt or not.

2.3 Step 2 - Properties emergent from facts

In step 2, we want to show the following.

f act1 ∧ f act2 ∧ f act3 ∧ · · · =⇒
(

Z = ∑
q∈Q

e−Fx(q)−Wt(q)

)
(2.3.1)

Now armed with feasible mathematics, the derivation of Z is quite
direct. The main result from feasible mathematics is that if we look
at the properties of facts objectively: e.i. we only look at those prop-
erties which are measurable such as the length of the sentence cor-
responding to the fact, or the length of proof verifying the fact, and
avoid "poetic" properties such as how meaningful, interesting or how
"deep" a fact is, then we can construct such an ensemble.
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Each fact has a cost. The cost is intrinsic and irreducible. The
universe is not immune to this cost; thus, it must bare the cost of each
fact that it comprises. For each fact, its irreducible costs are;

irreducible cost 1 length (in bits) required to describe the fact (2.3.2)

irreducible cost 2 length (in bits) required to proof the fact (2.3.3)

2.3.1 Main result of feasible mathematics

The main result of feasible mathematics is that the ensemble of all
analytical fact, organized by proof length and description length will
produce, when all other things are equal, two equilibrium quantities
that are constant throughout the system; namely the halting-density
F and the halting-power P . If the universe is indeed built out of
facts, evidence for these two quantities should empirically be plenti-
ful.

The function Z of feasible mathematics

Z = ∑
q∈Q

e−Fx(q)−Wt(q) (2.3.4)

describes a statistical ensemble of logically verifiable facts q from
within the set Q of all such facts. Each fact is statistically weighted by
the length of its proof t(q) and by the length of its description x(q).
Furthermore, the function

p(q) =
1
Z

e−Fx(q)−Wt(q) (2.3.5)

is the probability that a fact q ∈ Q is actual in the universe.

2.3.2 Recovering the facts as the limits of computation

Ω is an oracle for the halting problem of a universal Turing machine.
Thus, knowing Ω is equivalent to knowing the function F : S →
Z2 which lists the facts that are verifiable. The statistical ensemble
connects to Ω when the feasible bound is removed.

2.3.3 Soft versus hard limits

The length of the proof and the length of the description of an ana-
lytical fact within a formal system is irreducible for the reason that
changing it will transform it to another fact. Thus, the limits associ-
ated to these quantities will be hard limits. Physically, we can think
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of hard limits as the speed of light or horizons applicable to the ob-
servable universe - all of which are inviolable.

Other properties of facts and proofs may, I hypothesize, give rise
to softer limits. For example, a solution requiring lots of memory and
time would require the contribution of a large amount of physical
substrate (many molecules working together) for a long time. Thus,
the computation of such fact is likely to be destroyed by fluctuations
of the environment. This makes it unlikely that such high memory
long running statement be verified early in the history of the uni-
verse. These types of limits are statistical and yield soft laws and can
be investigated by usual complexity class theory. As a concrete exam-
ple we can think of the evolution of life and its many near extinction
events.

However interesting soft limits may be, in this manuscript, we will
only be concerned with the hard limits.

2.3.4 Mapping to the physical quantities

The function Z applies to all worlds which are exclusively comprised
of verifiable facts and that are of sufficient generality to embed arbi-
trary logical artefacts - as required for self explanation.

We have shown in a previous paper21 (and will do so here as 21 Alexandre Harvey-Tremblay. A
derivation of the laws of physics from
pure information. http://vixra.org/

abs/1705.0274, 2017

well) that the laws implied by Z corresponds to the familiar laws of
physics. Specifically, we will derive the following laws: special rel-
ativity, general relativity, dark energy, the arrow of time, the second
law of thermodynamics, the Schrödinger equation, the Dirac equation
and quantum field theory.

Why and how to these laws come out from Z? The first step is to
pose a mapping between reality as it is perceived by our senses, and
reality as it is described by analytical facts. We pose the following
mapping:

Property Variable Mapping Units

proof-length t(q) t(q)→ time seconds (2.3.6)

description-length x(q) x(q)→ space meters (2.3.7)

How do we justify the mapping? Let us consider these perspec-
tives:

• Practical computability: In practice, the length of a program al-
ways corresponds, in some way, to a physical size, and the proof
to a physical time. That is because the description of the program
(in terms of bits) is always encoded into some physical substrate to
be used in a real computation. The Bekenstein-Hawking entropy

http://vixra.org/abs/1705.0274
http://vixra.org/abs/1705.0274
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suggests an upper bound as to the "miniaturization" of binary in-
formation. Thus, the description of a program must occupy space.
As for the proof; it is found using multiple iterations which are
performed over a time period.

• Simulation hypothesis: As the computer finds more proof of the-
orems, the age of the system appears to increase: the system is
occupied by longer and longer programs having longer and longer
run-times. Thus, to an observer good at pattern recognition, the
output looks like an aging system.

• Equivalent and isomorphic: The physical representation is equiva-
lent to the analytical-fact representation. Thus, we can switch from
one to the other with impunity.

• Senses: Our senses give us the impression that there is such a
thing as space and time. We get our information from a scale so
far removed from the non-computable fact-based fabric of reality
that space and time are good approximations. As we go smaller,
we find that our senses fails us. Macroscopic space and time be-
come ambiguous at the Planck scales as quantum uncertainty
begin to dominate.

All of these justifications support the mapping. The last one is per-
haps most interesting as it is most directly supported by Z. Indeed,
as we will see in the next chapter, the scale of the bit is on the order
of the Planck scale, and time and space (associated to P and F) are
emergent properties.





3
The laws of physics

Backed by the mapping and using the language of physics, we con-
sider an interpretation of Z isomorphic to the analytic-fact interpreta-
tion. Consistent with Z, we inject as thermodynamic conjugate-pairs
the two quantities that are mapped to time and space, respectively
proof-length and description-length. Interpreted as time and space
and to recover the units of energy (appropriate for statistical physics),
time must be multiplied by a power and space (e.g. a length) must be
multiplied by a force; thus, the partition function describes arbitrary
micro-states in terms of both space and time. Due to the simplicity
and generality of the construction, it is perhaps reassuring that the
relations of space-time; special relativity, general relativity, and dark
energy are provable solutions of its equation of state. Furthermore,
thermal fluctuations along the time and space quantities produce the
Schrödinger and Dirac equations as thermo-statistical extensions to
classical analogues. The notion of temperature is recovered simply as
the proportion between entropy and energy as per the standard defi-
nition. The construction suggests that both general relativity and the
quantum world emerge from a more fundamental thermo-statistical
world which is isomorphic to analytic-truths.

3.1 First proposed partition function: Time and Space

Consistent with the function Z applicable to analytical truth and to
the physical mapping, we propose the following partition function,
constructed as a Gibbs ensemble:

Z(β, P, F) = ∑
q∈Q

e−β[E(q)+Fx(q)−Pt(q)] (3.1.1)

where
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quantity name units type

T = 1/(kBβ) temperature K intensive (3.1.2)

P entropic power J/s intensive (3.1.3)

F entropic force J/m intensive (3.1.4)

E(q) energy J extensive (3.1.5)

t(q) thermal time s extensive (3.1.6)

x(q) thermal space m extensive (3.1.7)

The partition function includes the familiar entropic force and the
unfamiliar entropic power. Its equation of state is:

TdS = dE− Pdt + Fdx (3.1.8)

We can convert it to an equivalent representation by converting the
time to a frequency and the power to an action. Let us do that now.

TdS = dE− Pdt + Fdx (3.1.9)

TdS = dE− Pd( f
−1

) + Fdx [t := 1/ f ] (3.1.10)

TdS = dE + P f
−2

d f + Fdx
[
d( f−1) = − f−2d f

]
(3.1.11)

TdS = dE + Sd f + Fdx
[
S := P f−2

]
(3.1.12)

This representation introduces two new quantities, defined as:

quantity name units type

S entropic action Js intensive (3.1.13)

f (q) thermal frequency s extensive (3.1.14)

Thus, the equation of state admits these two formulations:

TdS = dE + Sd f + Fdx action-frequency formulation (3.1.15)

TdS = dE− Pdt + Fdx power-time formulation (3.1.16)

which we will refer to throughout the paper.

3.1.1 Regimes and cycles

We will derive the familiar laws of physics by studying the equation
of state in terms of its regimes. To do so, we will fix some derivatives
(e.g. dS = 0) and analyze what happens when we let the others vary.
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3.1.2 Special relativity

Here, we use the power-time formulation and pose dS = 0 and
dE = 0. We obtain the fundamental relation of special relativity
linking space to time.

0 = −Pdt + Fdx (3.1.17)

Fdx = Pdt (3.1.18)

dx =
P
F

dt (3.1.19)

As the power P and the force F are Lagrange multipliers of the
partition function, they are constant throughout the system. There-
fore, their quotient is also a constant.

c :=
P
F

(3.1.20)

Therefore,

dx = cdt (3.1.21)

As the units of P/F are meters per second, c will be our working
definition of the speed of light.

Remark: When P is the Planck power and F is the Planck force, we
do indeed recover the speed of light:

P
(

1
F

)
=

c5

G

(
G
c4

)
= c (3.1.22)

3.1.3 Light cones as thermodynamic cycles

In this section, we look at the thermodynamic cycle of the system
transiting through time and space starting at O to A to B and back
to O, as illustrated on Figure 3.1. During the transitions and to keep
the energy constant, trade-offs must be made between time, distance
and entropy. This cycle is reminiscent of other thermodynamic cycles,
such as those involving pressure and volume. Interestingly, the cycles
can also be interpreted as light cones.

O A

B

x'=
P/
F

t

x

Figure 3.1: A "thermodynamic cycle"
through space and time.

O to A: As O is translated forward in time to A while keeping the
distance constant (dx = 0), the entropy decreases over time.

(
TdS = Fdx− Pdt

∣∣
dx=0 (3.1.23)

=⇒ dS
dt

= −P
T

(3.1.24)
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A to B: As A is translated forward in space to B while keeping the
time constant (dt = 0), the entropy increases over the distance.

(
TdS = Fdx− Pdt

∣∣
dt=0 (3.1.25)

=⇒ dS
dx

=
F
T

(3.1.26)

O to B: As O is translated forward both in time and in space to B
while keeping the entropy constant (dS = 0), the system has a speed
of c.

(
TdS = Fdx− Pdt

∣∣
dS=0 (3.1.27)

=⇒ dx
dt

=
P
F
= c (3.1.28)

We conclude that an object traveling at speed c is neither encour-
aged nor discouraged by entropy. The speed of light represents an
inflexion point in the rate of entropy production over time. We will
return to that notion in the section on the arrow of time.

3.1.4 Lorentz’s transformation

To recover the Lorentz’s factor γ, let us consider figure 3.2. Two ob-
servers start at the origin S and travel in space-time respectively to O
and O′. We regard O′ as traveling at speed |v| in the reference frame
of O. From standard trigonometry, we derive the following values for
the length of the segment;

θS

O

O'

L

L cosθ

L
si
nθ

t

x

t ′

x ′

Figure 3.2: The space-time intervals
between two observers. Here O′ travels
at speed |v| in O’s reference frame.

Segment Length

|SO| L (3.1.29)

|SO′| L cos θ (3.1.30)

|O′O| L sin θ (3.1.31)

From the Pythagorean theorem and solving for cos θ, we obtain:

|SO|2 = |SO′|2 + |O′O|2 (3.1.32)

L2 = (L cos θ)2 + (L sin θ)2 (3.1.33)

1 = (cos θ)2 + (sin θ)2 (3.1.34)√
1− (sin θ)2 = cos θ (3.1.35)

We consider that the distance between two observers moving at
constant speed is simply vt. Hence, |O′O| = vt. Solving for sin θ, we
obtain:
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|O′O| = vt = L sin θ (3.1.36)

=⇒ sin θ =
vt
L

(3.1.37)

From equation (3.1.35) and (3.1.37), we get the reciprocal of the
Lorentz factor:

√
1− v2t2

L2 = cos θ = γ−1 (3.1.38)

=⇒ γ =
1√

1− v2t2

L2

(3.1.39)

Finally, we consider that L is the distance traveled by O in the
reference frame of O′ such that the entropy of O is constant over
time. According to the relation dx = cdt, for this to be the case, the
speed of O must be c. Thus, the distance traveled by O during time t
is L = ct. We obtain:

γ =
1√

1− v2

c2

(3.1.40)

which is the well-known Lorentz factor and is the multiplication
constant connecting |SO| to |SO′|.

3.1.5 Inertial mass

In this section, we will need to use the Unruh temperature1. As can 1 Stephen A. Fulling. Nonunique-
ness of canonical field quantization in
riemannian space-time. Phys. Rev.
D, 7:2850–2862, May 1973. doi:
10.1103/PhysRevD.7.2850. URL
https://link.aps.org/doi/10.1103/

PhysRevD.7.2850; P C W Davies.
Scalar production in schwarzschild
and rindler metrics. Journal of Physics
A: Mathematical and General, 8(4):
609, 1975. URL http://stacks.iop.

org/0305-4470/8/i=4/a=022; W. G.
Unruh. Notes on black-hole evapo-
ration. Phys. Rev. D, 14:870–892, Aug
1976. doi: 10.1103/PhysRevD.14.870.
URL https://link.aps.org/doi/10.

1103/PhysRevD.14.870; and Erik P.
Verlinde. On the origin of gravity
and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

be reviewed in the citations provided, the Unruh temperature is
an exact result obtained from special relativity. The Unruh effect is
the prediction that an accelerating observer will observe blackbody
radiation (at the Unruh temperature), whereas an inertial observer
would observe none. The Unruh temperature is:

T =
h̄a

2πckB
(3.1.41)

The Unruh temperature connects acceleration to the temperature.
We will use it here to convert an entropic force expressed in terms of
a temperature to an entropic force expressed in terms of acceleration.

Furthermore, we start from the power-time formulation and pose
dt = 0 and dE = 0. As originally done by Erik Verlinde2, from these

2 Erik P. Verlinde. On the origin of
gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

starting points, we can derive F = ma as follows:

https://link.aps.org/doi/10.1103/PhysRevD.7.2850
https://link.aps.org/doi/10.1103/PhysRevD.7.2850
http://stacks.iop.org/0305-4470/8/i=4/a=022
http://stacks.iop.org/0305-4470/8/i=4/a=022
https://link.aps.org/doi/10.1103/PhysRevD.14.870
https://link.aps.org/doi/10.1103/PhysRevD.14.870
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
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TdS = Fdx (3.1.42)

F = T
dS
dx

(3.1.43)

F =

(
h̄a

2πckB

)
dS
dx

(3.1.44)

F =

(
h̄

2πckB

dS
dx

)
a (3.1.45)

This equation corresponds to F = ma provided that
(

h̄
2πckB

dS
dx

)
=

m. How reasonable is that? Well, for it to be the mass, it suffices
that dS/dx is the inverse of the reduced Compton wavelength multi-
plied by a constant. Recall that the reduced Compton wavelength is
h̄/(mc). Let us investigate:

h̄
2πckB

dS
dx

= m =⇒ dS
dx

= 2πkB

(mc
h̄

)
(3.1.46)

We obtain a relation between entropy and x. What could this
mean? It means two things.

1. The further away an object is from the origin, the higher its posi-
tional entropy.

2. The more massive an object is, the higher its positional entropy.

Why then the factor 2π? The presence of π suggest a connection
between a line and a circle. Therefore, a possible interpretation is
that the entropy associated with positional entropy is scaled pro-
portionally to the curvature of a circle (we can think of it as a one-
dimensional case of the holographic principle). Then, as an object
with a small Compton wavelength that can be more finely located, it
requires more positional entropy to describe its position than an ob-
ject with a large Compton wavelength. Why then the factor kB? The
factor kB converts the reduced Compton wavelength to the units of
entropy/length (joules per kelvin per meter).

3.2 Second proposed partition function: Time and generalized length

The first partition function we proposed was constructed with an
entropic-force conjugated with a thermal-length. The length was,
of course, linear and expressed by x. In this section, however, we
extend the representation to consider a thermal-length described by
an arbitrary function; after all, the mass of the universe is not linearly
distributed with clockwork precision. To achieve this, we consider an
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arbitrary function l(q) : q → R used to express the lengths of the
micro-states. We will study such function via a Taylor expansion. A
Taylor expansion requires that Q as in q ∈ Q be uncountable. As l(q)
is an arbitrary length with meter units, it will still be conjugated with
the entropic-force. The Taylor expansion of Fl(q) is:

Fl(q) = Fl(0) + Fl′(0)q +
Fl′′(0)

2
q2 +

Fl′′′(0)
6

q3 + O(q4) (3.2.1)

and its derivative with respect to q is:

Fdl(q) = Fl′(0)dq + Fl′′(0)qdq +
Fl′′′(0)

2
q2dq + 4O(q3)dq (3.2.2)

As the micro-states q ∈ Q must be uncountable for the Taylor
expansion of l(q) to be well defined, the partition function must be
continuous. Therefore, it becomes:

Z =
1
h

∫
e−β[E(q)+S f (q)+Fl(q)]dq (3.2.3)

and is integrated over Q. Likewise, its equation of state is

TdS = dE + Sd f + Fdl action-frequency formulation (3.2.4)

TdS = dE− Pdt + Fdl power-time formulation (3.2.5)

3.2.1 Discussion on the smoothness continuation

Equations such as general relativity assumes that space is continuous.
Thus, it would be naive to think that general relativity could be re-
covered without smoothing out the discrete partition function Z to a
continuous reciprocal. The theory, once so approximated as smooth,
becomes an effective theory able to describe reality within a certain
limit (as opposed to being applicable on all scales). In this case, it is
applicable in the limit far away from the Planck scales. Thus, the re-
sults obtained in this section are to be taken as laws emergent in the
limit.

The price to pay for this approximation is that the space-time
events described by the discrete Z will manifest themselves "awk-
wardly" in the continuous regime. Thankfully however, this "awk-
wardness" provides us with a tentative connection to the quantum
measurement; now interpreted as a tool to keep the smooth approxi-
mation in-sync with discrete events. The system would need to have
a unitary evolution in-between events, and such unitary evolution
would be violated as the events occur. Furthermore, as the events
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occurs at the limit of computability, they would likely appear algo-
rithmically random. The permissible measurement outcomes are
the micro-states of the partition function; the facts. The behavior is
reminiscent of the quantum measurement.

The smoothness continuation is best interpreted as an interpo-
lation technique between discrete events in space-time. Below the
Planck limit, the entropy of the smoothed partition function becomes
less than one. Thus, below the Planck scale, it would describes partial
facts (if such a thing were to exist). Making Q uncountable does not
imply that we pack infinitely many facts in every point of space. It
simply means that a single fact is describe by a section of area under
the curve of smoothed Z. Thus, the smoothness approximation is a
continuation for the region in-between events.

3.2.2 Taylor expansion of dl

We convert the term dl of the power-time formulation into its Tay-
lor expansion. The first change we will do is rename q := x. The
multiplication term 4 in 4O(x3) can be absorbed in to O(x3).

Fdl(x) = Fl′(0)dx + Fl′′(0)xdx +
Fl′′′(0)

2
x2dx + O(x3)dx (3.2.6)

Then, injecting it into the power-time formulation, we obtain:

TdS = dE− Pdt + Fdl (3.2.7)

TdS = dE− Pdt + Fl′(0)dx + Fl′′(0)xdx +
Fl′′′(0)

2
x2dx + O(x3)dx

(3.2.8)

Something interesting appends with the units of the Taylor expan-
sion. Let us investigate:
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Taylor term quantity units

Fl′(0)dx F N (3.2.9)

” l′(0) @ (3.2.10)

” dx m (3.2.11)

Fl′′(0)xdx F N (3.2.12)

” l′′(0) 1/m (3.2.13)

” xdx m2 (3.2.14)

Fl′′′(0)x2dx F N (3.2.15)

” l′′′(0) 1/m2 (3.2.16)

” x2dx m3 (3.2.17)

...
...

...

Since xdx has units m2 and x2dx has units m3, we pose γdA := xdx
and αdV := x2dx. Furthermore, as l′(0) has no units, we define it as
the baseline l′(0) := 1 and we define l′′(0) := lA/L and l′′′(0) :=
lV/A as they respectively have units m−1 and m−2. For empirical
reasons (e.g., the observable universe is a sphere), we consider that
γdA describes the surface of a sphere and that αdV describes the
volume of a sphere. Therefore, to properly link γdA to xdx, the factor
γ must be 1/(4π) and the factor α must be 3/(4π). Introducing these
replacements, the equation of state becomes:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + lV

3F
8πA

dV + O(x3)dx (3.2.18)

where lA and lV are leftovers of the Taylor coefficients. We can
recover three relations by varying the intensity of the Taylor approxi-
mation.

TdS = dE− Pdt + Fdx + O(x)dx (3.2.19)

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + O(x2)dx (3.2.20)

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + lV

3F
8πA

dV + O(x3)dx (3.2.21)

With the first relation, and by posing O(x)dx → 0, we recover the
first proposed partition function:

TdS = dE− Pdt + Fdx (3.2.22)

Thus, the results derived with the previous partition function are
importable into this more general equation of state.
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3.2.3 Gravitational constant

To find a suitable definition for G, we must derive Newton’s law of
gravitation from the equation of states. A derivation of Newton’s law
of gravitation from the entropic perspective has been done before3 3 Erik P. Verlinde. On the origin of

gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

by Erik Verlinde. His derivation can be imported into our equation
of states. To obtain G, we start from the power-time formulation
expanded with two Taylor terms:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + O(x2)dx (3.2.23)

Then, we pose dE = 0, dt = 0 and O(x2)dx → 0. We obtain:

TdS = Fdx + lA
F

4πL
dA (3.2.24)

We notice that the term dx grows linearly as the term dA grows
quadratically. Thus, as x is increased, there will be a point where
dA� dx (recall that dA = xdx). The approximation yields:

TdS = lA
F

4πL
dA (3.2.25)

This regime contains the holographic principle and, as a result,
the entropy of the system grows proportional to x2, an area law. To
recover Newton’s law of gravity, and consistent with the holographic
principle, we further pose the assumption that an entropy is associ-
ated to this area law and is given by bits occupying a small area L2

on the surface of a sphere. In this case, the total number of bits on
the surface is given by:

N =
4πx2

L2 holographic assumption (3.2.26)

The term xdx of the equation of state is associated to x2/2 in the
partition function. As a result of the equipartition theorem, which
applies to quadratic energy terms, the average energy will be E =

kBT/2. Multiplying E by N, we get the total energy associated with
xdx:

E =
1
2

(
4πx2

L2

)
kBT (3.2.27)

=⇒ T =
L2

2πkB

E
x2 (3.2.28)

https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
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Consistent with thermodynamic equilibrium, we obtain a tempera-
ture T. As our goal is to recover the gravitational force, we inject this
temperature in the entropic force relation.

Fdx = TdS entropic force (3.2.29)

Fdx =

(
L2

2πkB

E
x2

)
dS derived temperature (3.2.30)

F =

(
L2

2πkB

E
x2

)
dS
dx

(3.2.31)

What then is dS/dx? Recall equation 3.1.46; the connection between
the reduced Compton wavelength and the distance entropy.

F =

(
L2

2πkB

E
x2

)(
2πkB

mc
h̄

)
Compton wavelength (3.2.32)

F =

(
L2c
h̄

)
Em
x2 clean up (3.2.33)

We then convert E to its rest mass via E = mc2.

F =

(
L2c3

h̄

)
Mm
x2 (3.2.34)

We obtain the Newton’s law of gravitation along with a definition for
G.

F = G
Mm
x2 (3.2.35)

=⇒ G :=
L2c3

h̄
(3.2.36)

which further implies that

L =

√
h̄G
c3 Planck’s length (3.2.37)

3.2.4 Energy-to-frequency equation

Here, we use the power-time formulation to derive a relation between
frequency and energy. We pose dx = 0. We obtain:

TdS = dE− Pdt (3.2.38)

T
dS
dt

=
dE
dt
− P (3.2.39)

We consider the case of speed c. Thus, as we have seen in the section
on special relativity, this implies that dS/dt = 0.

dE = Pdt (3.2.40)
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We change to the action-frequency formulation by posing f = 1/t
and −P = S t2

−dE = Sd f (3.2.41)

Then, integrating:

−
∫

dE = S
∫

d f (3.2.42)

−E + C1 = S f + C2 (3.2.43)

Here, E is the energy that must be taken from the pool for the sys-
tem to occupy a micro-state with frequency f . Reversing the sign of E
and posing the integration constants to 0, we obtain the energy asso-
ciated with it: E = S f . Furthermore, recall that we posed dS/dt = 0
which is associated with speed c.

Indeed, posing S = h, the Planck action, we do recover the energy-
to-frequency relation of a photon: E = h f .

3.2.5 Planck units

We have now obtained a definition for three of the fundamental
constants.

h := S c :=
P
F

G :=
L2c3

h̄
(3.2.44)

Thus, we can now show that the Lagrange multipliers of the equa-
tion of states P and F are indeed the Planck units.

expression quantity

G =
L2c3

h̄
=⇒ L =

√
h̄G
c3 Planck’s length (3.2.45)

t =
L
c
=

√
h̄G
c5 Planck’s time (3.2.46)

P = t−2S = 2π
c5

G
Planck’s power* (3.2.47)

P
F
= c =⇒ F = 2π

c4

G
Planck’s force* (3.2.48)

...
...

*The reader will notice that we have obtained the definitions of
P and F with an added multiplication constant 2π; whereas in the
literature these quantities are defined without it. The definitions
we have here are actually the correct ones. Indeed, in the literature,
the Planck time is connected to the Planck angular frequency via
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ωP = 1/tP. In reality, however ω = 2π/t. Thus, for our equations
to balance out, we cannot ignore the factor 2π and must use the
corrected value for the Planck units which are P = 2πc5/G and
F = 2πc4/G.

3.2.6 General relativity

In this section, we will show how the term dA suggests that general
relativity is entropic and emergent. Our goal is to derive the Einstein
field equation of general relativity, starting from the dA regime. First,
we start from the power-time formulation expanded with two Taylor
terms:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + O(x2)dx (3.2.49)

Then, we pose dS = 0, dt = 0 and O(x2)dx → 0. As we want to
describe the energy of the micro-states (and not the energy taken out
of the pool of the system), we flip the sign of E. We obtain:

dE = Fdx + lA
F

4πL
dA (3.2.50)

We notice that the term dx grows linearly and the term dA grows
quadratically. Thus, as x is increased, there will be a point where
dA� dx. The approximation yields:

dE = lA
F

4πL
dA (3.2.51)

Deriving general relativity from dE = lA
F

4πL dA has indeed been
done before in the literature, notably by Ted Jacobson4, then later 4 Ted Jacobson. Thermodynamics

of spacetime: The einstein equa-
tion of state. Phys. Rev. Lett.,
75:1260–1263, Aug 1995. doi:
10.1103/PhysRevLett.75.1260. URL
https://link.aps.org/doi/10.1103/

PhysRevLett.75.1260

(and differently) by Erik Verlinde5. Furthermore, key insights were

5 Erik P. Verlinde. On the origin of
gravity and the laws of newton. Journal
of High Energy Physics, 2011(4):29,
Apr 2011. ISSN 1029-8479. doi:
10.1007/JHEP04(2011)029. URL https:

//doi.org/10.1007/JHEP04(2011)029

provided by Christoph Schiller6. Here, we will provide a sketch of

6 Christoph Schiller. General rela-
tivity and cosmology derived from
principle of maximum power or force.
International Journal of Theoretical
Physics, 44(9):1629–1647, Sep 2005.
ISSN 1572-9575. doi: 10.1007/s10773-
005-4835-2. URL https://doi.org/10.

1007/s10773-005-4835-2

the proof by Ted Jacobson as summarized by Schiller.
First, the entropic force F is constant throughout the system as a

result of being a Lagrange multiplier. We have already shown that
F is the Planck force. This has allowed us to derive special relativity
and the speed of light; therefore, we must continue to use F as the
Planck force here.

What then is L? Recall that earlier we used the Unruh temperature
to link T to an acceleration and derive F = ma. Here and likewise,
we will use special relativity to derive a relation between length and
acceleration and use it to replace L. As per Schiller’s paper, we select
L as the maximum length that an accelerated object can have under
special relativity7.

7 Christoph Schiller. General rela-
tivity and cosmology derived from
principle of maximum power or force.
International Journal of Theoretical
Physics, 44(9):1629–1647, Sep 2005.
ISSN 1572-9575. doi: 10.1007/s10773-
005-4835-2. URL https://doi.org/10.

1007/s10773-005-4835-2; Wolfgang
Rindler. Relativity: special, general,
and cosmological, 2003; and Ray A
D’Inverno. Introducing einstein’s
relativity. 1992

https://link.aps.org/doi/10.1103/PhysRevLett.75.1260
https://link.aps.org/doi/10.1103/PhysRevLett.75.1260
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2
https://doi.org/10.1007/s10773-005-4835-2
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L =
c2

2a
(3.2.52)

L is perhaps better understood as the acceleration of circular mo-
tion (r = v2/a) at the speed of light (v = c). In the present context,
L is the length associated with the maximum force, the Planck force.
In the context of maximums, the force cannot accelerate the object
beyond the speed of light, and therefore is best defined for a circular
motion produced by a force perpendicular to the direction of motion.
The maximum acceleration changes the direction of the motion, but
does not increases the speed beyond the speed of light.

With F = 2πc4/G, we obtain:

dE = lA
c2

G
adA (3.2.53)

With this result, Jacobson’s proof directly follows. Starting from
dE = TdS, he first connects dE to an arbitrary coordinate system and
energy flow rates:

dE =
∫

TabkadΣb (3.2.54)

Here Tab is an energy-momentum tensor, k is a killing vector field,
and dΣ the infinitesimal elements of the coordinate system. Jacobson
then shows that the area part can be rewritten as follows:

adA = c2
∫

RabkadΣb (3.2.55)

where Rab is the Ricci tensor describing the space-time curvature.
This relation is obtained via the Raychaud-Huri equation, giving
it a geometric justification. Combining the two with a local law of
conservation of energy, he obtains

∫
TabkadΣb = lA

c2

G

∫
RabkadΣb (3.2.56)

, which can only be satisfied if

Tab = lA
c2

G

[
Rab −

(
R
2
+ Λ

)
gab

]
(3.2.57)

Here, the full field equations of general relativity are recovered,
including the cosmological constant (as an integration constant).
Only the numerical value of lA remains. The exact formulation of the
field equation is obtained by posing the numerical value to gA :=
1/(8π).
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Remark: Had we not used the corrected Planck force (F = 2πc4/G),
we would have a 2π term dividing Tab and lA would have been 1/4.
Thus, the difference would have been absorbable. However, using
the corrected Planck force has the consequence that all dimensionless
numerical multipliers are attributed to the Taylor coefficient, making
the derivation more aesthetically pleasing.

3.2.7 Dark energy

Connecting dark energy to a volumetric entropy has been suggested
and discussed by other authors before8. First, we start from the 8 Damien A. Easson, Paul H. Frampton,

and George F. Smoot. Entropic acceler-
ating universe. Physics Letters B, 696(3):
273 – 277, 2011. ISSN 0370-2693. doi:
https://doi.org/10.1016/j.physletb.2010.12.025.
URL http://www.sciencedirect.

com/science/article/pii/

S0370269310014048; and Damien A.
Easson, Paul H. Frampton, and
George F. Smoot. Entropic inflation.
International Journal of Modern
Physics A, 27(12):1250066, 2012. doi:
10.1142/S0217751X12500662. URL
http://www.worldscientific.com/doi/

abs/10.1142/S0217751X12500662

power-time formulation expanded with three Taylor terms:

TdS = dE− Pdt + Fdx + lA
F

4πL
dA + lV

3F
8πA

dV + O(x3)dx (3.2.58)

Them we pose dE = 0, dt = 0 and O(x3)dx → 0. We obtain:

TdS = Fdx + lA
F

4πL
dA + lV

3F
8πA

dV (3.2.59)

We notice that as dx grows linearly, dA grows as the square and
dV as the cube. Thus, there will be a point where dV � dA � dx.
The approximation yields:

TdS = lV
3F

8πA
dV (3.2.60)

We notice that the factor F/A has the units of pressure. Hence,
our goal will be to derive a value of the pressure p associated with
volumetric entropy. As suggested by the factor F/A and in line with
our earlier derivations, we will select F to be the corrected Planck
force (F = 2πc4/G) and will take A as the area of a sphere. In this
case, the pressure relates to the force as

F = −pA (3.2.61)

=⇒ p = − F
A

= − F
4πx2 (3.2.62)

p = − c4

2Gx2 entropic pressure (3.2.63)

The sign of the force is negative because the force points in the di-
rection of increased entropy, which is oriented outward of the enclos-
ing area. Physically and as argued by Easson et al., it makes sense
to connect the size of the sphere to the Hubble horizon. Therefore,

http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.worldscientific.com/doi/abs/10.1142/S0217751X12500662
http://www.worldscientific.com/doi/abs/10.1142/S0217751X12500662
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we take the radius of the sphere to be the Hubble radius x := c/H.
Finalizing our derivation, we obtain:

p = − c2H2

2G
(3.2.64)

This is close to the current measured value for the negative pres-
sure associated with dark energy9. As we can see, the suggested 9 Damien A. Easson, Paul H. Frampton,

and George F. Smoot. Entropic acceler-
ating universe. Physics Letters B, 696(3):
273 – 277, 2011. ISSN 0370-2693. doi:
https://doi.org/10.1016/j.physletb.2010.12.025.
URL http://www.sciencedirect.

com/science/article/pii/

S0370269310014048

entropic derivation of dark energy applies to the third term of the
Taylor expansion.

3.3 Discussion - Arrow of time

Adding a time variable to a partition function adds a whole new dy-
namic to a thermal system. The system now becomes aware of future,
past, and present configurations and can translate from time to space
and from space to time for an entropic cost (provided that various
limits are respected). By studying thermodynamic cycles involving
space and time, we investigated what happens to the entropy when a
system is translated forward or backward in time and draw conclu-
sions that pertain to the arrow of time. In the model presented, space
serves as an entropy sink for time; whose role is to deplete future
alternatives to power change in the universe.

3.3.1 Negative power

In the power-time formulation, increasing t, while keeping the other
variables constant, decreases the entropy. Indeed, starting with the
power-time formulation and posing dx = 0, we obtain:

TdS = dE− Pdt (3.3.1)

=⇒ T
dS
dt

=
dE
dt
− P (3.3.2)

As the law of conservation of energy requires that dE/dt = 0, we
obtain the negative power:

T
dS
dt

= −P (3.3.3)

This result is expected for the following reason: to obtain the re-
lation dx = cdt with the correct signs, the power P must have a
different sign than the force F in the equation of states. Thus, a pos-
itive force implies a negative power and vice versa. As we require a
positive force to recover F = ma (and not F = −ma), the sign of the
force is already chosen for us. Therefore, the power must be negative.

We will now discuss this result in more detail.

http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
http://www.sciencedirect.com/science/article/pii/S0370269310014048
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Question: What is a negative power?
Let’s take an example. Consider the case of an electric car; whose

engine is powered by a battery. To propel the car, the battery supplies
power to the engine. If the driver hits the breaks, such that regenera-
tive breaking kicks in, the flow of power will reverse and the engine
will supply power to the battery. Thus, the power is now considered
to be negative and occurs when the engine depletes the energy of the
system (e.g. the car slows down) to supply power to the battery.

Question: Why does time have a negative power?
Power is associated with time because it powers all changes that oc-

cur in the universe. To understand why it is negative, it helps to un-
derstand negative power in the context of thermodynamics. To do so,
let’s first recall its more familiar cousin: the negative temperature. If
we understand temperature as the random movements of molecules,
then a temperature is always equal to or above zero. However, sta-
tistical physics admits a generalized definition of temperature as the
trade-off between energy and entropy. Most systems cannot admit
a negative temperature because their entropy will always increase
at higher energies; however, for some systems, e.g. the population
inversion in a laser, the entropy saturates at higher energies. Thus, a
negative temperature is possible.

In regards to time, the negative power has essentially the same
interpretation; increasing time, while keeping the other variables
constant, decreases the entropy. A decrease in entropy over time
produces a negative entropic power.

3.3.2 The second law of thermodynamics as an opposition to negative
power

Question: How does this result reconcile with the second law of
thermodynamics, which states that entropy increases with time (or in
some ideal cases stays constant)?

The power-time formulation admits other terms: dx, dA, and dV.
The term −Pdt encourages a reduction in the entropy over time,
but the other variables, as their signs are positive, work in the other
direction. Thus, the entropy of the system as a whole need not neces-
sarily decrease over time. It is more accurate to say that increasing t,
while keeping the other variables constant, decreases the entropy. We
will now study this into more detail.

To offset the decrease in entropy caused by the negative power, we
suggest a proportional increase in the quantities x, A, and V.

To simplify the power-time formulation, let us rename κ := F
16πL

and p := 3gV F
4πA and pose O(x3)dx → 0. We obtain:
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TdS = dE− Pdt + Fdx + κdA + pdV (3.3.4)

Dividing both sides by dt, we obtain:

T
dS
dt

=
dE
dt
− P + F

dx
dt

+ κ
dA
dt

+ p
dV
dt

(3.3.5)

As per the law of conservation of energy, posing dE/dt = 0, we
obtain:

T
dS
dt

= −P + F
dx
dt

+ κ
dA
dt

+ p
dV
dt

(3.3.6)

This result puts in opposition the change of entropy caused by a
change of t to the change in entropy caused by a change of x, A and
V. To investigate this result, let us look at these three cases:

F
dx
dt

+ κ
dA
dt

+ p
dV
dt

< P =⇒ dS
dt

< 0 decreasing entropy (3.3.7)

F
dx
dt

+ κ
dA
dt

+ p
dV
dt

= P =⇒ dS
dt

= 0 constant entropy (3.3.8)

F
dx
dt

+ κ
dA
dt

+ p
dV
dt

> P =⇒ dS
dt

> 0 increasing entropy (3.3.9)

At (3.3.8), we have an inflexion point and a shift occurs in the
direction of the production of entropy over time. It is the point at
which the production of entropy caused by the space quantities over-
take and exceed the reduction in entropy caused by the time quantity.
The second law of thermodynamics states that dS/dt ≥ 0 and will
hold for (3.3.8) and (3.3.9), but will be violated for (3.3.7).

3.3.3 Arrow of time

In this section, we will explain why these results provide us with an
understanding of the arrow of time. Indeed, it links the arrow of time
to three concepts: 1) a reduction in entropy over time caused by the
negative power, 2) an increase in entropy over time caused by the
space quantities, and 3) a closed system’s inability to reduce its own
entropy. We will see how it corresponds to an observer’s perception
of time.

1. At the beginning of time all possible future alternatives are compat-
ible with the present. Thus, the pool of entropy accessible to t is
maximal. In contrast, the entropy associated with the space quan-
tities is zero. Thus, the occupied micro-states have to be located
at the same point in space. This matches our current empirical
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data regarding the Big Bang for which the entropy of space was
very low and the entropy of time, as the future was as of yet un-
determined, was very high.

2. During the evolution the future becomes past and the possible
future alternatives are rarefied. This reduction in entropy caused
by a growth in t produces a negative entropic power fuelled by the
growth of entropy in the space quantities.

3. At the "end of time" there is no future alternatives. The full history
of the system is now "set in stone". The system can no longer pro-
duce an entropic power to fuel changes and the entropy associated
with the space quantities is at its maximum.

Question: The conventional wisdom is that the arrow of time is
connected to an increase in entropy with time. Are you suggesting
something else?

A partition function constructed without the use of a time quantity
will follow the second law of thermodynamics. This statistical effect
is partially explained by the H-theorem of Boltzmann; however, this
changes when time is inserted as a thermodynamic quantity. Such
a partition function then becomes aware of past, present, and future
configurations. The rarefaction of futures configurations as time is
increased is associable to a time which moves forward by closing
future alternatives as it creates a past. Thus, an increase in the time
quantity, while keeping other quantities constant, must be followed
by a decrease in entropy.

To help fixate the idea, let us look at an example:

3.3.4 The physics of future alternatives

Here, we give a simple system which follows the requirements of the
equation of states.

Suppose a system with n open binary future alternatives. At t = 0,
there are 2n possible futures each equally compatible with the present
macroscopic state. Thus, the entropy of the system (which includes a
description of its possible futures) is equal to S = kBn ln 2. As time
is increased, events occurs and future alternatives are closed. Say,
at t = 1, one event occurs: Thus, one future alternative becomes
fixed to a specific value and the entropy of the system is reduced to
S = kB(n− 1) ln 2.

For instance, we might have:
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t event future alternatives entropy

0 Big Bang {b1, b2, b3, b4, ..., bn} kBn ln 2 (3.3.10)

1 b3 → 0 {b1, b2, b3 := 0, b4, ..., bn} kB(n− 1) ln 2 (3.3.11)

2 b1 → 1 {b1 := 1, b2, b3 := 0, b4, ..., bn} kB(n− 2) ln 2 (3.3.12)

...
...

...
...

As events occurs over time, an entropic power is generated. Fur-
thermore, the second law of thermodynamics imposes that the space
quantity (Fdx) must grow proportionally. To maintain dS/dt = 0, the
growth must correspond to dx = cdt; special relativity. Extending this
example to the continuous partition function, we also recover gen-
eral relativity and dark energy as per the earlier derived equations of
states. In the continuous case, we would use the natural bit (the nat,
in base e) to express future possibilities. A continuous event would
consume a non-integer quantity of future possibilities.

Question: But a system cannot decrease its entropy over time with-
out violating the second law of thermodynamics!

A system can decrease its entropy if it is connected to an entropy
sink. For example, biological life can reduce its entropy but only at
the cost of severely increasing it in its environment. This requires
excess energy and, in the case of Earth, the Sun supplies it. Thus,
the power-time conjugate can decrease the entropy as long as it is
connected to a sink.

Question: So, there should be a sink in the universe available to
offset the decrease in entropy caused by increasing t?

In the case of time, the sink is the universe itself. The laws of
physics that we have derived are in fact the limits required to pro-
duce an entropy sink of sufficient size to accommodate a forward
direction of time for an observer (we will discuss this more rigor-
ously in a moment in the section on limiting relations).

Question: Can we calculate the exact future before it occurs?
An observer cannot pre-calculate his exact future before it occurs

without increasing the size of the entropy sink. Here we make a
distinction between calculating a probable future versus the exact
future. Calculating a probable future does not necessarily imply a
reduction of entropy within the system, but calculating the exact
future requires consuming the entropy of all possible alternative
futures. Therefore, an entropy sink is required to offset the reduction.
Calculating an exact future is equivalent to causing it.
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Question: Does the second law of thermodynamics need to be cor-
rected for the wider system, which includes future states?

Yes. Time is usually considered to be an independent background
to statistical physics and, to our knowledge, statistical physics has
not been used with a time quantity before. When we do add time as
a thermodynamic quantity to a partition function, a new behaviour
emerges. Indeed, an observer cannot move into the future unless all
alternative futures are ’closed’. Thus, its time-entropy must decrease
when he does. The second law of thermodynamics is a consequence
of the system increasing its space-entropy to offset the reduction in
future alternatives as time moves along. Thus, this system follows a
general entropy conservation law.

3.3.5 Limiting relations

With our new interpretation of space as an entropy sink for time, let
us immediately prove three limits from first principle: the speed of
light, a limiting stiffness, and a limiting volumetric flow rate appli-
cable to the universe. To prove that these are limits, we will consider
the assumption that an observer who evolves forward in time must
see a growth in the size of its available entropy sink to offset the re-
duction in future alternatives. The limit occurs when the sink exactly
offsets the reduction in entropy attributable to time (in which case
dS/dt = 0). First, let us see how the power-time formulation implies
a limiting speed.

TdS = dE− Pdt + Fdx (3.3.13)

T
F

dS
dt

=
1
F

dE
dt
− P

F
+

dx
dt

(3.3.14)

As always dE/dt = 0

T
F

dS
dt

= −P
F
+

dx
dt

(3.3.15)

To see why this implies a limiting speed, first consider that the
units of this equation are length/time and hence are indeed describing
a speed. Second, consider the following three cases:

dx
dt

=
P
F

=⇒ dS
dt

= 0 (3.3.16)

dx
dt

<
P
F

=⇒ dS
dt

< 0 (3.3.17)

dx
dt

>
P
F

=⇒ dS
dt

> 0 (3.3.18)
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We notice a reversal in the production of entropy at the inflection
point where dS/dt = 0. Therefore, for an observer at rest to evolve
forward in time, it must see its entropy sink grow at the speed of
c := P/F. Therefore, the entropy sink of an observer moving forward
in time must grow at the speed of light.

The following relations each characterize a limiting quantity.

limited quantity units limiting relation

Power J/s
T
F

dS
dt

= −P (3.3.19)

Speed m/s
T
F

dS
dt

=
dx
dt
− P

F
(3.3.20)

Stiffness m2/s
T
κ

dS
dt

=
dA
dt
− P

κ
(3.3.21)

Volumetric flow rate m3/s
T
p

dS
dt

=
dV
dt
− P

p
(3.3.22)

Each relation can easily be obtained from the power-time formula-
tion by posing the other quantities as 0. To show that the quantities
are inflection limits, it suffices to notice that they each correspond to
a growth of the entropy sink that an observer at rest must see to fuel
its forward translation in time.

It is well known that a limiting speed implies special relativity,
but what about the other two limits? It is less known, but a maxi-
mum stiffness does imply general relativity. In this context, we can
interpret space as being very stiff but nonetheless compressible. The
maximum volumetric flow rate is associated with dark energy and
is responsible for the Hubble horizon - beyond which the flow rate
would be exceeded. These are in fact the approaches (in disguise)
that we took to derive general relativity and dark energy earlier.

3.4 Fluctuating space-time

What is thermal time and thermal space? Consider the thermody-
namic quantities t and x of the power-time formulation. Their aver-
age value is given by the standard relations (from 2.2.10):

quantity average

thermal-time t t =
−∂ ln Z

∂P
(3.4.1)

thermal-space x x =
−∂ ln Z

∂F
(3.4.2)

Furthermore, as thermal-time and thermal-space are thermody-
namic averages, they will undergo fluctuations (from 2.2.10):
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quantity fluctuation

thermal-time t (∆t)2 =
∂2 ln Z

∂P2 (3.4.3)

thermal-space x (∆x)2 =
∂2 ln Z

∂F2 (3.4.4)

Using the original argument made by Einstein in 1905, which led
to the derivation of Brownian motion, we argue here that fluctuations
of the t and x variables produce a universal Brownian motion along
the axis themselves. What does a thermal space-time with fluctua-
tions look like? The consequences of such are nothing to be feared;
indeed, we will shortly show that Brownian motion over x will pro-
duce the Schrödinger equation and that Brownian motion over both x
and t will produce the Dirac equation.

Question: Are we suggesting a pilot-wave interpretation where
particles undergo Brownian motion until a measurement is made?

Not at all. Rather, we are suggesting that any positional or time in-
formation undergoes a "Dirac equation-like diffusion" so as to make
positional or time information perishable over time. To illustrate, we
can imagine placing a mark at a position in space. After a certain
time, Brownian motion will diffuse the position of the marker at any
number of possible locations until its actual position is measured
again. Instead of being punctual, the marker could be continuous
and weighted and the same diffusion-like behavior will be observed.
This Brownian motion would universally apply to the axis itself. This
is not a claim that a particle is punctual.

3.4.1 Schrödinger equation

The derivation of the Schrödinger and Dirac equations as a result of
universal Brownian motion has already been done by other authors.
Therefore, we can import their proofs into our derivation. Here, we
will offer a sketch and refer to their respective authors for the more
rigorous treatment. The derivation of the Schrödinger equation from
Brownian motion was done by Nelson10 and reviewed by the same 10 Edward Nelson. Derivation of the

schrodinger equation from newtonian
mechanics. Phys. Rev., 150:1079–
1085, Oct 1966. doi: 10.1103/Phys-
Rev.150.1079. URL https://link.aps.

org/doi/10.1103/PhysRev.150.1079

author some 46 years later11. The field is stochastic mechanics and it

11 Edward Nelson. Review of stochastic
mechanics. In Journal of Physics:
Conference Series, volume 361, page
012011. IOP Publishing, 2012

connects very nicely to our thermodynamic description of the world.
Nelson first considers the Langevin equation,

d [x(t)] = v(t)dt (3.4.5)

d [v(t)] = − γ

m
v(t)dt +

1
m

W(t)dt (3.4.6)

https://link.aps.org/doi/10.1103/PhysRev.150.1079
https://link.aps.org/doi/10.1103/PhysRev.150.1079
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, which describes a particle in a fluid undergoing a Brownian
motion as a result of the random collisions with the water molecules.
Here W(t) is a noise term responsible for the Brownian motion and
v(t) is a viscosity term specific to the properties of the fluid.

Nelson replaces the acceleration d[v(t)]/dt by F/m (from F = ma).
Then, he is able to show that the Langevin equation in gradient form
becomes:

∇
(

1
2
~u2 + D∇ · ~u

)
=

1
m
∇V (3.4.7)

where D := h̄/(2m) is the diffusion coefficient, where ~F = −∇V,
where ~u = v∇ ln ρ and ρ is the probability density of x(t). As this is a
sketch, the proof of 3.4.7 is omitted here but can be reviewed in Nel-
son’s paper. Eliminating the gradients on each side and simplifying
the constants, Nelson obtains:

m
2
~u2 +

h̄
2
∇ · ~u = V − E (3.4.8)

where E is the arbitrary integration constant. Nelson then converts
this equation to a linear equation via a change of variable applied to
the term ~u2. Posing,

~u =
h̄
m

1
ψ
∇ψ (3.4.9)

Nelson obtains

[
− h̄2

2m
∇2 + V − E

]
ψ = 0 (3.4.10)

which is the time-independent Schrödinger’s equation. The time-
dependent Schrödinger’s equation is recovered as per the usual re-
placement ψ := eR+iS. Finally, Nelson obtains:

ih̄
∂

∂t
ψ(x, t) =

[
−h̄2

2m
∇2 + V(x, t)

]
ψ(x, t) (3.4.11)

, which is the time-dependent Schrödinger’s equation.

3.4.2 Dirac equation

We recently used the entropic force TdS = Fdx and the Unruh tem-
perature to recover F = ma. Then, we used 0 = −Pdt + Fdx to
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recover special relativity. Finally, we showed that a Brownian motion
resulting from the thermal fluctuations on x recovers the Schrödinger
equation as a thermo-statistical analogue to F = ma. Of course, the
natural question to ask is this: will the thermal fluctuations of both t
and x be enough to recover the Dirac equation as a thermo-statistical
analogue to special relativity? The answer is yes!

Similarly to the stochastic-mechanical derivation of the Schrödinger
equation, other authors previously derived the Dirac equation from
universal Brownian motion12. In the original stochastic-mechanical 12 D Mckeon and G N. Ord. Time

reversal in stochastic processes and the
dirac equation. Physical review letters,
69:3–4, 08 1992

derivation, the origin of such universal Brownian motion is ambigu-
ous and is, at best, imported as a hypothesis. Thus, the benefit of our
construction is to provide a thermal source of such universal Brow-
nian motion. Hence, the derivation of the Dirac equation and the
Schrödinger equation by these authors can nicely be imported into
our thermodynamic construction.

The derivation of the Dirac equation was noticed by studying ran-
dom walk effects that were applicable to telegraphic communication.
McKeon and Ord propose a random walk model in space and in time
which, once applied to the telegraph equations, produces the Dirac
equation. We provide a sketch of the proof here and refer to the au-
thors’ paper for the rigorous treatment. Starting from the equation
for a random walk in space, the authors obtain:

P±(x, t + ∆t) = (1− a∆t)P±(x∓ ∆x, t) + a∆tP∓(x± ∆x, t) (3.4.12)

Afterward, the authors extend this equation with a random walk
in time and obtain:

F±(x, t) = (1− aL∆t− aR∆t)F±(x∓ ∆x, t− ∆t)+

aL,R∆tB±(x∓ ∆x, t + ∆t) + aR,L∆tF∓(x± ∆x, t− ∆t)
(3.4.13)

where F±(x, t) is the probability distribution to go forward in time
and B±(x, t) the probability distribution to go backward in time.
They then introduce a causality condition such that F±(x, t) and
B±(x, t) only depends on probabilities from the past.

F±(x, t) = B∓(x± ∆x, t + ∆t) (3.4.14)

From equation 3.4.13 and 3.4.14, they get

B±(x, t) = (1− aL∆t− aR∆t)B±(x∓ ∆x, t + ∆t)+

aL,R∆tB∓(x± ∆x, t + ∆t) + aR,L∆tF±(x∓ ∆x, t− ∆t)
(3.4.15)
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In the limit ∆x, ∆t→ 0 and with ∆x = v∆t, they get

±v
∂F±
∂x

+
∂F±
∂t

= aL,R(−F± + B±) + aR,L(−F± + F∓) (3.4.16)

±v
∂B∓
∂x

+
∂B∓
∂t

= aL,R(−B∓ + F∓) + aR,L(−B∓ + B±) (3.4.17)

Posing these changes of variables,

A± = (F± − B∓) exp[(aL + aR)t] (3.4.18)

λ := −aL + aR (3.4.19)

then 3.4.17 becomes

v
∂A±
∂x
± ∂A±

∂t
= λA∓ (3.4.20)

Finally, they pose v = c, λ = mc2/h̄ and ψ = F(A+, A−), and they
get

ih̄
∂ψ

∂t
= mc2σyψ− ich̄σz

∂ψ

∂x
(3.4.21)

which is the Dirac equation in 1+1 space-time.

3.5 Quantum Field Theory and the actual world

The connection between classical statistical physics and quantum
field theory is well established13. In classical statistical physics, we 13 Barry M McCoy. The connection

between statistical mechanics and
quantum field theory. arXiv preprint
hep-th/9403084, 1994

have:

Oj =
1
Z ∑

q∈Q
Oje−E(q)/kt where Z = ∑

q∈Q
e−E(q)/kT (3.5.1)

and in quantum field theory, we have:

Oj =
1

ZE

∫
[dq]Oje−SE(q)/h where ZE =

∫
[dq]e−SE(q)/h (3.5.2)

This is the Feynman path integral formulation of quantum field
theory. The constructions are reciprocal; the thermal fluctuations of
the first one are the quantum fluctuations of the second one. The
Euclidean-space representation (above) can be connected to the
Lorentzian representation via a Wick rotation t→ it.

The partition function for analytical facts (without temperature)
can be formulated as a quantum field theory quite directly. We start
with the power-time formulation:
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Z = ∑
q∈Q

ePt(q)−Fx(q) (3.5.3)

Z = ∑
q∈Q

e−
1
h [−hPt(q)+hFx(q)] (3.5.4)

Then, posing SE(q) = hPt(q)− hFx(q)

Z = ∑
q∈Q

e−SE(q)/h (3.5.5)

Then, posing the smoothness approximation we get

Z =
∫

Q
e−SE(q)/hdq (3.5.6)

where the average value of each observables Oj is given by:

Oj =
1
Z

∫
Oje−SE(q)/hdq (3.5.7)

Here, the action SE is an space-time event function dependent of
both x and t. Quantum fluctuations around the averages replaces
the thermal fluctuations of statistical physics. The usual interpreta-
tion of the path integral applies to understanding the actual world;
incompatible paths over the micro-states interfere destructively and
compatible ones interfere constructively, etc.





4
Conclusion

The starting point of the theory is the self-referential notion that a
formal theory requires logical artefacts to be formulated. Thus, a
derivation exclusively from ∃(logical-artefacts) is as safe as safe can
be. Using logical artefacts, each synthetic fact is converted to an
analytical fact via Miniversal logic. Then, because Miniversal logic is
universal and only includes tautologies, we are able to claim that it is
autological.

tautological∧ universal =⇒ autological (4.0.1)

An autological physical theory has the same properties as reality.
Thus, studying it using a formal meta-theory (such as Set theory)
should be equivalent to using mathematics to understand the uni-
verse. This, is indeed what we find. Explicitly, we consider the ob-
jective properties of facts (description-length and proof-length) and
avoid "poetic" properties (such as how interesting a fact might be to
us). Doing so, the natural description of these facts is as an ensemble
Z of feasible mathematics.

We find that when Z describes an ensemble of facts statistically
weighted by their proof-length and description-length, we recover a
description for which the familiar laws of physics emerge - including
space and time. The world that is actual can be tentatively under-
stood as an emergent average over the set of all possible facts of re-
ality for certain fixed resources associated with a purely description-
length and proof-length description. This interpretation is directly
mappable to a thermodynamic system from which we understand
and derive the laws of physics from.

Understanding the world from purely thermodynamic principles
holds several conceptual advantages. The construction provides a
possible mean to explain the origins of the laws of physics as per
John Wheeler’s suggestion of law without law (or as order from dis-
order) - in this case thermo-statistical disorder. Indeed, the obscure
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origin of the Dirac and Schrödinger equations is now clearly shown
to be a result of thermal fluctuations applicable to x and t. Second,
the laws of inertia, general relativity, and dark energy are simply the
result of taking the Taylor expansion of an arbitrary space-encoding
function. Third, as these laws are derived from the general equation
of state of the system, the laws of physics do not need to be invoked
as a ’special case’. In the present construction, the laws of physics are
a consequence of the mere fact that the world can be expressed as a
statistical ensemble involving time and space; hence, the ’axiomatic-
load’ of the construction is minimal.

The construction allows a possible explanation of the arrow of
time. Indeed, moving into the future requires a negative power. A
possible cause of negative power is closing future alternatives, which
works towards reducing the entropy over time. To preserve the sec-
ond law of thermodynamics, an entropy sink must be grown as time
moves forward to offset said entropy reduction. Thus, the passage of
time is heavily connected to the size of the entropy sink. The mini-
mal growth rate requirements of this entropy sink are precisely the
limits required to derive special relativity, general relativity, and dark
energy. Therefore, we conclude that the entropy sink spawns the ob-
servable universe. The second law of thermodynamics, understood
as an increase in entropy over time, is only half the truth. The second
law is perceived in the entropy sink while the larger system, made
to include future possibilities, has a constant entropy. In this system,
future possibilities are consumed as time moves forward.
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