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Clauser-Horne (CH) inequality, Eberhard inequality, and Clauser-Horne-Shimony-

Holt (CHSH) inequality are used to determine whether quantum entanglement can

contradict local realism. However, the “finite statistics” loophole is known to allow

local realism to violate these inequalities if a sample size is small and not “large

enough” [1]. Remarkably though, this paper shows that this loophole can still

cause a violation in these inequalities even with a very large sample size, e.g. a 2.4 σ

violation of CH inequality and Eberhard inequality was achieved despite 12,000,000

total trials in a Monte Carlo simulation of a local realist photonic experiment based

on Malus’ law. In addition, this paper shows how Eberhard inequality is especially

vulnerable to this loophole when combined with an improper statistical analysis

and incorrect singles counts, e.g. a 13.0 σ violation was achieved with the same

large sample size, and furthermore, a 26.6 σ violation was produced when a small,

acceptable 0.2% production rate loophole was applied. Supplementally, this paper

demonstrates how the finite statistics loophole allows a bigger violation in a smaller

sample size despite the sample size being “large enough”, e.g. a CHSH violation of

4.4 σ (2.43± 0.10) was achieved with 280 total trials, and 4.0 σ (2.16± 0.04) with

3,000 total trials. This paper introduces the aforementioned loopholes as plausible

local realist explanations to two observed violations reported by Giustina, et al.

[2], and Hensen, et al. [3].

1. Introduction:

In order to determine whether quantum entanglement can be explained by local

realism, Bell’s experiment is analyzed by CH inequality, Eberhard inequality, or CHSH

inequality. These inequalities were derived so that local realism cannot produce a violation,

although quantum mechanical predictions can [1][4][5]. Nevertheless, an inevitable finite

sample size used in all experiments opens up what is called the “finite statistics” loophole,

that could allow local realism to violate these inequalities; this is possible because the

random nature in individual experimental outcomes can cause the experimentally calculated

sample means to deviate from the theoretical mean of distribution [1].

Here is a simplistic explanation of the finite statistics loophole. Let us consider a coin

toss. In a fair coin toss, the mean of distribution (population proportion) of flipping a

head, p = 50%, and it can be used to write the following equation:

p− p = 0 (1)
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However, in a real world experiment, population proportion, p, is unknown, and

each operand is replaced by sample proportion, p̂, which is calculated from measuring

individual outcomes. Thus, Eq. (1) becomes as follows:

p̂1 − p̂2 = 0 (2)

where p̂1 and p̂2 are the sample proportions of heads measured in sample 1 and 2,

respectively.

Now, suppose that a tester tosses a coin 10 times, and flips a head 6 times. Next, the

tester tosses the same coin 10 times again, but this time, flips a head only 4 times. Then,

the equality in Eq. (2) becomes violated:

p̂1 − p̂2 = 0.6− 0.4 = 0.2 6= 0 (3)

As so, the finite sample size can allow CH, Eberhard, and CHSH inequalities to be

violated. This is because all these inequalities involve measuring detections in multiple

settings of detector angles, and these settings cannot measure the same entangled pair of

particles at the same time; however, these inequalities were derived with an assumption

that the detection probability of two different detectors would be identical if their angles

are the same (which is true with the distribution mean, but not with the sample mean.)

As shown in the next section, this finite statistics loophole can be most detrimental

to Eberhard inequality.

2. CH and Eberhard inequalities:

2.1. The statistical strength of violation

CH inequality is expressed as follows:

B = P (a, b) + P (a, b′) + P (a′, b)− P (a′, b′)− P (a)− P (b) ≤ 0

=
C(a, b)

N(a, b)
+
C(a, b′)

N(a, b′)
+
C(a′, b)

N(a′, b)
− C(a′, b′)

N(a′, b′)
− S(a)

N(a)
− S(b)

N(b)
≤ 0

(4)

where P(x,y) is the probability of coincidence detection with the detector A set at angle x

and the detector B set at angle y; P(a) and P(b) are the probabilities of singles detection

with the detector A set at angle a and the detector B set at angle b, respectively; C(x,y)

is the count of coincidence detection at x,y setting; S(a) and S(b) are the count of singles

detection with the detector A set at angle a and the detector B set at angle b, respectively;

N(x,y) is the total number of trials at x,y setting; N(a) and N(b) are the total number of

trials with the detector A set at angle a and the detector B set at angle b, respectively

[1][5][6].

Eberhard inequality is similar to CH inequality, except that the detection counts are
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used instead of the probabilities, as shown below [1][2]:

J = C(a, b) + C(a, b′) + C(a′, b)− C(a′, b′)− S(a)− S(b) ≤ 0 (5)

Now, one common practice in the experimental analysis for calculating the standard

deviation of these inequalities is to split up the experimental sample into several decent-

sized subsamples, and then use the subsamples to calculate the sample mean and its

standard deviation [1].

And from this, the statistical strength of a Bell’s experiment test is often presented

as the “number of standard deviations” of violation [1].

κB =
B

sB

(6)

where B is the sample mean of CH inequality violation; sB is the standard deviation of

the sample mean.

κJ =
J

sJ

(7)

where J is the sample mean of Eberhard inequality violation; sJ is the standard deviation

of the sample mean.

2.2. False violation of Eberhard inequality

Unfortunately, an improper statistical analysis applied to subsample-splitting allows

the finite statistics loophole to incorrectly amplify the statistical strength of violation, and

therefore undermines the validity of Eberhard inequality result. As shown in Appendix A,

when the number of standard deviations of Eberhard inequality violation is compared

with that of CH inequality, the statistical strength of Eberhard inequality violation can

become amplified approximately by a factor of the square root of the subsample count

greater than that of CH inequality, if an aggregate J-value is used instead of the sample

mean of J-values of all subsamples (even after the amplication has been compensated by

dividing it by the standard deviation of the sample instead of dividing it by the standard

deviation of the sample mean).

κJ ≈
√
N κB (8)

where N is the total number of subsamples used to calculate the standard deviation.

In other words, suppose that the sample data calculated by CH inequality produces

only a tiny amount of violation having a weak statistical strength of less than one standard

deviation. However, if the very same sample data is calculated using Eberhard inequality

instead, then it may all the sudden appear to produce a significant violation with a large

number of standard deviation, simply because an aggregate J-value is used! In short, the

improper statistics analysis can cause Eberhard inequality to give a false positive of the

violation.
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Such examples of the improperly amplified Eberhard violation can be found in the

paper published by Giustina, et al. that had reported a violation of Eberhard inequality

with J = 126715 ± 1837, a 69 σ violation, calculated with 30 subsamples [2], and also

in the paper published by Larsson, et al. that verified the data of Giustina, et al. to

find J = 38803± 2020, a 19 σ violation with 30 subsamples, after compensating for the

coincidence loophole in Giustina, et al. [7]. That is because the both papers improperly

used an aggregate J-value to calculate the statistical strength of violation.

But, when their results are rectified with Eq (8), their actual statistical strengths drop

down to only 12.6 σ and 3.5 σ, respectively.

Thus, if the above Eberhard inequality violation by Giustina, et al. is compensated

for the coincidence loophole [7], and is analyzed properly using the sample mean of

J , its statistical strength decreases to only 3.5 σ. Furthermore, because the reported

experimental result had a tiny production rate loophole, albeit acceptable [8], it can be

explained by the finite statistics loophole, where local realism is not violated – Section 2.4

shows how a Monte Carlo simulation of a local realist model produced a 4.9 σ violation.

Hence, in order to conduct a proper statistical analysis, the statistical strength of

Eberhard inequality violation should be calculated with the sample mean, J , instead of

an aggregate J-value, as explained in Appendix A.

2.3. Incorrect singles counts of CH and Eberhard inequalities

In addition, there is another factor that can contribute to a false violation of CH

inequality and Eberhard inequality. Appendix B shows that depending on how singles

counts are determined, it can affect the validity of the two inequalities, too.

In short, Clauser and Horne derived CH inequality (which ultimately Eberhard inequality

depends on) by factoring P (a) and P (b) with P (a, b) and P (a′, b) respectively in case of

P (a′) ≥ P (a), and with P (a, b′) and P (a, b) respectively in case of P (a′) < P (a) [5].

In other words, P (a) should be measured using the data gathered either from P (a, b) if

P (a′) ≥ P (a) or from P (a, b′) if P (a′) < P (a). And P (b) should be measured using the

data gathered either from P (a′, b) if P (a′) ≥ P (a) or from P (a, b) if P (a′) < P (a).

Otherwise, determining P (a) and P (b) with the data from different detector settings

or by mixing the data from different detector settings, may jeopardize the validity of the

inequalities, because, for example, although both values of P (a) from P (a, b) and P (a)

from P (a, b′) should be identical in the theoretical distribution mean, the two values are

likely going to be different in the sample mean measured in a real experiment.

Unfortunately, all experiments involving CH-like inequalities, do not take this factor

into account when analyzing the data, as far as I am aware. For example, the following

three prominent papers did not use the correct singles counts: Giustina, et al. used

the singles counts from only one setting without considering whether P (a′) is greater or

lesser than P (a) [2][8]; Larsson, et al. mixed the singles counts by taking an average from

both detection settings [7]; Christensen, et al. also mixed the singles counts by taking an
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average from both detection settings [6].

Nevertheless, I expect the impact of this incorrect singles count to be small in CH

inequality as long as a large sample is taken, where the sample mean approaches the

distribution mean.

However, it may play a more significant role in Eberhard inequality, because unlike

CH inequality, Eberhard inequality measurements are not normalized by dividing the

singles counts with their corresponding total numbers of trials. So, for example, if P (a, b)

had more trials than P (a, b′), then although P (a) from the both settings would have

similar values, their singles counts would not.

2.4. Monte Carlo simulation of amplified violation in Eberhard

inequality

To demonstrate the amplified false violation of Eberhard inequality, a Monte Carlo

computer simulation of a photonic experiment using a local realist model is run as

described in Appendix C. Basically the simulation applies the purely classical interpretation

of detection based on Malus’ law, as suggested by Marshall, et al., to a typical photonic

experimental setup such as that employed by Giustina, et al. [9].

The simulation was run with the following parameters where the angles of detector

settings were: a = 90◦, a′ = 90◦, b = 0◦, and b′ = 0◦ with the degree of entanglement,

r = 0.25. The total number of 12,000,000 trials (3,000,000 trials per detector setting) were

run. In order to calculate the statistical strength of violation, each sample of 3,000,000

trials was split into 30 subsamples of 100,000 trials. The singles counts were averaged as

done in Larsson, et al. and Christensen, et al.

The result of the simulation is:

• B = 0.00069± 0.00029, κB = 2.4 σ

• J = 2, 074± 160, κJ = 13.0 σ

The two statistical strengths, κB and κJ, differ significantly despite both B and J

having been calculated from the exact same data. And, as expected, κJ is approximately√
30 times greater than κB, which equals the square root of the total number of subsamples

used to calculate the standard deviation.

This simulation shows how CH inequality can be violated with a local realist model,

and moreover, how Eberhard inequality can falsely amplify its statistical strength if the

improper statistical analysis is applied.

Furthermore, the production rate loophole can also contribute to a false positive of

Eberhard inequality. The production rate loophole can occur when the laser intensity

drifts over time to cause a temporal change in the rate at which entangled photon pairs

are produced [8]. Kofler, et al. analyzed the experiment of Giustina, et al. for the

production rate loophole, and concluded that its effect had been negligible [8].
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However, running the simulation with a production rate drift comparable to the one

calculated by Kofler, et al., shows that it can nonetheless further amplify a violation of

Eberhard inequality despite this acceptable drift being negligible.

To simulate the production rate loophole, the exact same simulation settings as the

above were used, except a 0.2% decrease in production rate was applied to the detector

setting, (a’,b’), so that it would have only 30 subsamples of 99,800 trials. The rest settings

were unchanged with 30 subsamples of 100,000 trials each.

The result of the simulation with this acceptable 0.2% production rate loophole is:

• B = 0.00062± 0.00033, κB = 1.9 σ

• J = 4, 870±183, κJ = 26.6 σ (or 4.9 σ if it is divided by
√

30 in order to compensate

for the false amplication.)

Therefore, the simulation demonstrates how even a small drift in production rate can

also amplify a violation of Eberhard inequality.

The production rate loophole can affect Eberhard inequality more than CH inequality,

because the counts are not normalized in Eberhard inequality. For example, although

the following simple equality is true if counts are normalized, 5
10

= 4
8
, it would no longer

be true without normalization, 5 6= 4.

3. CHSH inequality:

CHSH inequality is expressed as follows:

−2 ≤ S = E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) ≤ 2 (9)

where E(x,y) is the expectation value with the detector A set at angle x and the detector

B set at angle y [3][4].

CHSH inequality is also susceptible to the finite statistics loophole, which is why

the statistical strength of violation must be calculated. And, Larsson explains how the

sample size should be “large enough”, so that the Central Limit Theorem can be applied to

allow for the normal approximation of a Bionomial distribution [1]. For CHSH inequality,

Larsson uses an often quoted number, Np > 5 to calculates this “large enough” sample

size to be, N & 35, where p is the smallest probability of one outcome and N is the

sample size [1].

However, Np > 5 is a somewhat arbitrary number. There are many sources that

recommend Np > 10, and some even recommend Np > 30 [11][12]. This increases the

“large enough” sample size of CHSH inequality to N & 210.

The mandate of this bigger “large enough” sample size becomes relevant if an experiment

is run with a sample size close to this “large enough” value. For example, the experiment

by Hensen, et al. was carried out with the sample size of 245 toal trials to report a CHSH

inequality violation of 2.42± 0.20 [3].
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Because their sample size is too close to the needed “large enough” sample size,

a possibility exists that the reported violation may have been influenced by the finite

statistics loophole.

To test this possibility, the Monte Carlo computer simulations of the same local realist

model were run again. As usual, Malus’ law is used to determine whether a pair of

entangled photons would have horizontal/vertical or vertial/horizontal polarizations.

In one simulation run, the total number of 280 trials (70 trials per detector setting)

was run, which is about the same number as the sample size reported by Hensen, et al.

In another run, the total number of 3,000 trials (750 trials per detector setting) was run,

which is ten times more than the “large enough” value. And in a final simulation run,

the total number of 12,000,000 trials (3,000,000 trials per detector setting) was run.

The angles of detector settings were: a = 0◦, a′ = 90◦, b = 45◦, and b′ = 90◦ with

the degree of entanglement, r = 0.25. In order to calculate the standard deviation of the

mean, each sample was split into 10 subsamples.

The results of the simulations are:

• 280 trials: S = 2.429± 0.098, κS = 4.4 σ

• 3,000 trials: S = 2.163± 0.041, κS = 4.0 σ

• 12,000,000 trials: S = 2.002± 0.001, κS = 2.0 σ

As expected, the magnitude of the violation of CHSH inequality becomes smaller as

the sample size increases. Nevertheless, this shows that if a sample size does not far

exceed the ”large enough” value, a local realist model can produce a large violation in

CHSH inequality.

4. Conclusions:

The finite statistics loophole can allow local realism to violate CH inequality, Eberhard

inequality, and CHSH inequality even if the sample size far exceeds the “large enough”

value. Especially, the finite statistics loophole, in conjunction with an improper statistical

analysis and incorrect singles counts, can be detrimental to Eberhard inequality.

The improper statistical analysis can occur when a sample is split into many subsamples.

If an aggregate J-value is used instead of the sample mean of J-values of all subsamples,

then the statistical strength of violation can incorrectly get amplified by the square root

of the total number of subsamples as described in Eq (8).

The incorrect singles counts can also skew the results of CH inequality and Eberhard

inequality because the proof of CH inequality requires different singles counts to be used

for the specific conditions. However, Eberhard inequality is more susceptible because it

does not normalize its measurement counts; thus, its effect would become more noticeable.

And because of this lack of normalization, even a small production rate loophole can

potentially contribute to a false violation.
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To demonstrate these points, Monte Carlo computer simulations of the local realist

photonic experiment were run. In the simulation of CH inequality, the finite statistics

loophole was able to produce a 2.4 σ violation despite 12,000,000 total trials. In the

simulations of Eberhard inequality, the incorrect application of an aggregate J-value and

an averaged singles counts, produced a 13 σ violation with the same large total trials,

and furthermore, a 27 σ violation when a small, acceptable 0.2% production rate loophole

was applied.

These simulations provide the local realist explanations for Giustina, et al. who had

reported a 69 σ violation of Eberhard inequality, calculated with 30 subsamples [2]. When

their result is rectified by Larsson, et al. for the coincidence loophole [7] and then by

Eq (8), their statistical strength drops down to only 3.5 σ, which is below the 4.9 σ

violation produced by the Monte Carlo simulation run with the similar production rate

loophole observed in Giustina, et al.

In the simulations of CHSH inequaltiy, the sample sizes considered to be “large

enough” produced the violations of 4.4 σ (2.43 ± 0.10) with 280 total trials, and 4.0 σ

(2.16 ± 0.04) with 3,000 total trials. These simulations provide a potential local realist

explanation for Hensen, et al. who had reported a CHSH inequality violation of 2.42±0.20

with only 245 total trials.
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Appendices:

A. Amplified number of standard deviations of Eberhard inequality

violation

The statistical strength of CH inequality violation expressed in the number of standard

deviations is:

κB =
B

sB

=
1
N

∑N
1 Bi√∑N

1 (Bi−B)2

N−1 /
√
N

(10)
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where:
B = CH inequality value.

sB = standard deviation of the sample mean used to calculate CH inequality.

B = sample mean of all Bi.

Bi = B of the i-th subsample.

N = total number of subsamples.

As so, the proper calculation of the statistical strength of Eberhard inequality violation

expressed in the number of standard deviations should be:

κJ =
J

sJ

=
1
N

∑N
1 Ji√∑N

1 (Ji−J)2
N−1 /

√
N

(11)

where:
J = Eberhard inequality value.

sJ = standard deviation of the sample mean used to calculate Eberhard inequality.

J = sample mean of all Ji
Ji = J of the i-th subsample.

N = total number of subsamples.

However, the improper calculation can be employed by using an aggregate J-value

instead of a sample mean as shown here:

κJ =
Jaggregate

sJ

=

∑N
1 Ji√∑N

1 (Ji−J)2
N−1 /

√
N

(12)

where:

Jaggregate = aggregate J-value = NJ

Now, κJ can be expressed in terms of κB by applying the following two reasonable

approximations:

1. The sample is divided into subsamples of equal size.

This practice is used by experiments like [2] and [6]. Although subsamples may be

of only roughly equal size, it is a reasonable approximation that would simplify the

derivation.

2. Every detector setting in each subsample has the same subtotal number of trials as

the other settings. Again, in reality, each of the four settings may have only roughly

the same subtotal number of trials. Nevertheless, this approximation works because

their trial numbers need to be closely similar with each other in order to avoid the

production rate loophole [8].
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Then Eq (4) can be written as:

B =
J

Nsetting

(13)

where:
Nsetting = total number of trials per detector setting

= N(a,b) = N(a,b’) = N(a’,b) = N(a’,b’) = N(a) = N(b)

Substituting this to Eq (10) yields:

κB =
B√

1
N−1

∑N
1 (Bi −B)2/

√
N

=
1
N

∑N
1 Bi√

1
N−1

∑N
1 (Bi − 1

N

∑N
1 Bi)2/

√
N

=
1
N

∑N
1

Ji
ni√

1
N−1

∑N
1 ( Ji

ni
− 1

N

∑N
1

Ji
ni

)2/
√
N

=
1
N

1
ni

∑N
1 Ji√

1
N−1

1
ni

2

∑N
1 (Ji − 1

N

∑N
1 Ji)

2/
√
N

=
1
N

1
ni

∑N
1 Ji

1
ni

√
1

N−1
∑N

1 (Ji − J)2/
√
N

=
1
N

∑N
1 Ji

sJ

=
1
N
Jaggregate

sJ

=
1

N
κJ

(14)

where:
ni = subtotal number of trials per detector setting in the i-th subsample.

N = total number of subsamples.

Therefore, if an aggregate J-value is used to calculate the statistical strength, then:

κJ = N κB (15)

Notice how it would become the correct κJ = κB if the sample mean, J , is used instead

of Jaggregate. Thus, the proper statistical analysis should use J to calculate the statistical

strength.

Unfortunately, Giustina, et al. used Jaggregate in their calculation, although it appears

that they may have tried to compensate for this by dividing with the standard deviation
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of the sample, instead of the standard deviation of the sample mean [2]. If so, then the

amplication would have been reduced (however, still not eliminated) as follows because

the standard deviation of the sample is only
√
N larger than the standard deviation of

the sample mean:

κJ =
√
N κB (16)

B. Correct singles counts in CH inequality and Eberhard inequality

Clauser and Horne derived their CH inequality by proving the following theorem of

six numbers [5].

U = x1y1 − x1y2 + x2y1 + x2y2 − Y x2 −Xy1 ≤ 0 (17)

where:

0 ≤ x1 ≤ X, 0 ≤ x2 ≤ X, 0 ≤ y1 ≤ Y , 0 ≤ y2 ≤ Y

Their proof involved considering two cases: (1) x1 ≥ x2 and (2) x1 < x2.

For the case (1) x1 ≥ x2, they rewrote Eq (17) as follows:

U = (x1 −X)y1 + (y1 − Y )x2 + (x2 − x1)y2 (18)

The first term is non-positive because 0 ≤ x1 ≤ X. The second term is non-positive

because 0 ≤ y1 ≤ Y . The third term is non-positive because this case assumes x1 ≥ x2.

Thus, U ≤ 0 for this case.

For the case (2) x1 < x2, they rewrote Eq (17) as follows:

U = x1(y1 − y2) + (x2 −X)y1 + x2(y2 − Y )

≤ x1(y1 − y2) + (x2 −X)y1 + x1(y2 − Y )

≤ (x2 −X)y1 + x1(y1 − Y )

(19)

Both the first and second terms of the last line are non-positive. Thus, U ≤ 0 for this

case, too.

Therefore, U ≤ 0 for the all cases.

Then, Clauser and Horne derived CH inequality from Eq (17) by substituting the

six numbers with the probabilities of detection events from different detector settings as

shown below.

U = P (a, b) + P (a, b′) + P (a′, b)− P (a′, b′)− P (a)− P (b) ≤ 0 (20)

where:

x1 = P1(a
′), x2 = P1(a), y1 = P2(b), y2 = P2(b

′), X = P1(∞), Y = P2(∞)
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Now, let us investigate how different ways of determining singles counts may jeopardize

the validity of CH inequality. Notice how, in order to rewrite Eq (17) into Eq (18), the

following terms have been rearranged by factoring out the variables y1 and x2:

x1y1 −Xy1 = (x1 −X)y1 (21)

x2y1 − Y x2 = (y1 − Y )x2 (22)

At first glance, these are simple algebraic equations that appear to have no unexpected

consequence to CH inequality. However, they do. In Eq (21), the term corresponding to

singles count, Xy1, is being subtracted from the term corresponding to coincidence count,

x1y1. So, to figure out the correct singles count, it should be counted from the detector

setting, x1y1; it should not be counted from the detector setting x2y1 or by averaging the

counts from the two settings. Otherwise, the above proof may become invalid because

the equality in Eq (21) may not be true anymore, in which case it could consequently

result in a false violation of CH inequality.

That is because, although in pure math, all values of y1 in x1y1, x2y1, and Xy1 are

identical to each other, in a real world experiment, the measured values of y1 in those

three terms are likely going to be different from each other.

The same reasoning applies to x2 in Eq (22), and also to x1 and y1 in Eq (19) as well.

The following tables show the correct singles counts for each case.

Case X Y
x1 ≥ x2 y1 from x1y1 x2 from x2y1
x1 < x2 y1 from x2y1 x2 from x2y2

Table 1: The correct singles counts expressed in terms of x and y variables.

Case P2(∞) P1(∞)
P1(a

′) ≥ P1(a) P2(b) from P (a′, b) P1(a) from P (a, b)
P1(a

′) < P1(a) P2(b) from P (a, b) P1(a) from P (a, b′)

Table 2: The correct singles counts expressed in terms of P1 and P2 probabilities.

C. Monte Carlo simulation of amplified violation in Eberhard

inequality

A typical photonic experiment such as the one described in Giustina, et al. is run in a

Monte Carlo computer simulation as a local realist model, where detection is determined

by Malus’ law, as suggested by Marshall, et al. [9]. The simulation program is written

in C# (.NET Framework v4.0) using Microsoft Visual C# 2010 Express IDE.

The experiment setup consists of a pump laser emitting a beam of photons to a

spontaneous parametric down-conversion crystal, which then produces two cones of photons
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with two complementary polarization angles: horizontal and vertical. The two lines where

these two cones intersect each other represent a pair of entangled photons. One of the

two entangled photons is sent to the detector A, and the other one to the detector B. At

each detector, an entangled photon passes through a polarizing beam splitter, and then

finally gets detected by a sensor.

The classical interpretation is applied to a polarizing beam splitter at each detector.

The polarizer causes an incident photon to obey Malus’ law where the wave amplitude

gets reduced by cosine of the angle between the polarization orientation of an incident

wave and the transmission orientation of the polarizer. Then, the cosine squared is

proportional to the probability of the transmission, and consequently the detection [9].

This classical detection serves as the major contributor of the local realist model in this

Monte Carlo simulation.

Malus’ law is also used to determine the polarization orientations of the two entangled

photons produced by the down-conversion. The pump polarization is calculated as an

arctangent of the degree of entanglement as described by White, et al. [10]. Then the

angle between the pump polarization and the optical axis of down-conversion crystal

is used by Malus’ law to determine whether a pair of entangled photons would be

horizontal/vertical or vertial/horizontal.

This simulation uses the degree of entanglement, r = 0.25. This value is similar to

the values, r = 0.26 and r = 0.297 used in the experiments by Christensen, et al. and

Giustina, et al., respectively [2][6].

The simulated angles of detector settings are: a = 90◦, a′ = 90◦, b = 0◦, and b′ = 0◦.

The total number of 12,000,000 trials (3,000,000 trials per detector setting) are run.

In order to calculate the statistical strength of violation, each sample of 3,000,000 trials

is split into 30 subsamples of 100,000 trials.

In this and all other experiments, several simulations were run to find the best result.

The following equations show the best result of the same simulation data, expressed by

CH inequality and Eberhard inequality.

B =
C(a, b)

N(a, b)
+
C(a, b′)

N(a, b′)
+
C(a′, b)

N(a′, b)
− C(a′, b′)

N(a′, b′)
− S(a)

N(a)
− S(b)

N(b)

=
1, 498, 859

3, 000, 000
+

1, 500, 509

3, 000, 000
+

1, 501, 371

3, 000, 000
− 1, 498, 866

3, 000, 000
− 2, 999, 368

6, 000, 000
− 3, 000, 230

6, 000, 000

= 0.00069± 0.00160

(23)

Where S(a) is the sum of singles counts at the detector A with the settings (a,b) and

(a,b’); S(b) is the sum of singles counts at the detector B with the settings (a,b) and

(a’,b).

B = 0.00069± 0.00029 (24)

κB =
B

sB

=
0.00069

0.00029
= 2.4 σ (25)

Where B is the mean of B, and sB is the standard deviation of the mean.
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J = C(a, b) + C(a, b′) + C(a′, b)− C(a′, b′)− S(a)− S(b)

= 1, 498, 859 + 1, 500, 509 + 1, 501, 371 + 1, 498, 866− 1, 499, 684− 1, 500, 115

= 2, 074± 160

(26)

Where S(a) is the average of singles counts at the detector A with the settings (a,b) and

(a,b’); S(b) is the average of singles counts at the detector B with the settings (a,b) and

(a’,b).

κJ =
Jaggregate

sJ

=
2, 074

160
= 13.0 σ (27)

Where Jaggregate is the aggregate J-value, and sJ is the standard deviation.

The following table shows the effect of singles counts on the calculation when the data

from different detector settings are used as their source.

S(a) source S(b) source B κB Jaggregate κJ

averaged averaged 0.00069 ± 0.00029 2.4 σ 2,074 ± 160 13.0 σ
a,b a’,b 0.00055 ± 0.00034 1.6 σ 1,643 ± 185 8.9 σ
a,b’ a,b 0.00084 ± 0.00038 2.2 σ 2,505 ± 206 12.2 σ

Table 3: The Monte Carlo simulation results with no production rate loophole.

In all results, κJ, the statistical strength of the Eberhard inequality violation, are

greater than κB, the statistical strength of the CH inequality violation, even though they

are both calculated from the exact same data! And, as expected, κJ are about
√

30 times

greater than κB, which equals the square root of the total number of subsamples used to

calculate the standard deviation.

Therefore, the statistical strength of the Eberhard inequality violation has been falsely

amplified by the improper statistical analysis of the subsamples.

C.1. Production Rate Loophole

Another factor that can contribute to a false amplication of the statistical strength

is the production rate loophole. The production rate loophole can occur when the laser

intensity drifts over time to cause a temporal change in the rate at which entangled

photon pairs are produced [8].

According to the analysis by Kofler, et al. on the experiment of Giustina, et al., the

effect of the production rate loophole had been acceptably insignificant; they calculated

that the corrected intensity factors had been: (a,b) = 100.43%, (a,b’) = 100.18%, (a’,b)

= 100.12%, (a’,b’) = 100.00% [8].

However, when the simulation is run again with a production rate comparable to

the one calculated by Kofler, et al., it shows a further amplified violation in Eberhard

inequality. To test the production rate loophole, the exact same simulation settings as

the above are used, except a 0.2% decrease in production rate is applied to (a’,b’), so
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that it would have only 2,994,000 trials (30 subsamples of 99,800 trials.) The rest settings

continue to have 3,000,000 trials per setting (30 subsamples of 100,000 trials) as they did

before.

The following equations show the result of the same simulation data with the production

rate loophole, expressed by CH inequality and Eberhard inequality.

B =
1, 500, 252

3, 000, 000
+

1, 501, 090

3, 000, 000
+

1, 501, 076

3, 000, 000
− 1, 496, 213

3, 000, 000
− 3, 001, 342

6, 000, 000
− 3, 001, 328

6, 000, 000

= 0.00062± 0.00183

(28)

B = 0.00062± 0.00033 (29)

κB =
B

sB

=
0.00062

0.00033
= 1.9 σ (30)

J = 1, 500, 252 + 1, 501, 090 + 1, 501, 076 + 1, 496, 213− 1, 500, 671− 1, 500, 664

= 4, 870± 183
(31)

κJ =
Jaggregate

sJ

=
4, 870

183
= 26.6 σ (32)

The following table shows the effect of singles counts on the calculation when the data

from different detector settings are used as their source.

S(a) source S(b) source B κB Jaggregate κJ

averaged averaged 0.00062 ± 0.00033 1.9 σ 4,870 ± 183 26.6 σ
a,b a’,b 0.00063 ± 0.00038 1.6 σ 4,877 ± 210 23.2 σ
a,b’ a,b 0.00062 ± 0.00039 1.6 σ 4,863 ± 214 22.7 σ

Table 4: The Monte Carlo simulation results with the production rate loophole.

Again, in all results, κJ are much greater than κB, even though they are both calculated

from the exact same data. They are about 14 times greater than κB, far more than the

amplication of
√

30 ≈ 5.5. That is because the counts are not normalized in Eberhard

inequality. Thus, even a small drift in production rate can have a noticeable effect in

Eberhard inequality, unlike in normalized CH inequality.
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