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Abstract

A general geometric apparatus extending the standard calculus on
Riemannian manifolds in a coordinate independent way is developed. It
is, moreover, obvious that all quantities involved give rise to the correct
limits in such case when convergence is subtle enough. We finish by giv-
ing the correct equivalent of the Einstein tensor which approximately is
covariantly conserved on a certain deformation scale.

1 Introduction.

Discrete Lorentzian or Riemannian structures often emerge in some ap-
proaches to quantum gravity, ranging from Lorentzian simplicial space-
times, causal sets to abstract Lorentz spaces as studied by this author
in the past. The problem is then how to look for generalizations of the
Torsion, Riemann, Ricci and Einstein tensor having no notion of differ-
entiability at ones disposal. We shall adress these questions in this paper
and provide for a unique geometric setting for metric spaces avoiding
some nonlocal subtleties associated to the Lorentzian distance treatment
due to compactness of metric balls. First of all, we start by generalizing
the notion of differentiability in a coordinate independent way, one which
is actually valid for general topological spaces and not only for metric ones
which is important to keep in mind when treating the Lorentzian case.
Next, we discuss the natural absence of a notion of torsion in the general
metric case; something which will only be recuperated when comparing
with a differentiable Riemannian space close enough to the metric one.
The reason is evident, without a compass, we have no rotation and there-
fore no twist or Torsion; general metric spaces are not provided with such
which explains the matter. Nevertheless, there is a method to extract the
“Levi-Civita connection” and it goes very subtle by noticing that the usual
first Bianchi identity holds and that the “Riemann tensor” has all usual
symmetries which is equivalent to the vanishing of torsion in differential
geometry. Given that the absence of a linear structure denies one the right
of a Jacobi identity, which explains why no second Bianchi identity for
the generalized connection needs to hold, the “Levi Civita connection” is
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extracted by means of an optimization criterium that the second Bianchi
identity needs to hold as closely as possible. This then defines Torsion for
a general metric compatible connection.

2 Topological differentials.

We construct an intrinsic notion of differentiability to be used in the next
section to define the notion of torsion in a metric space without rulers and
compasses, but merely bi-functions indicating distances between points.
In other words, we define a fundamental geometrical notion of transport:
take two topological spaces X,Y with reflexive and symmetric relations1

R ⊂ X ×X,T ⊂ Y × Y respectively which are both topologically open.
Then

∇X : {(x, y, z) : y, z ∈ R(x, ·)} → R : (x, y, z)→ ∇(x,y)(x, z) ∈ R(y, ·)

is called the transported relation regarding (x, z) over (x, y) from x to y
and as such it indicates a preffered path or geodesic at least locally. ∇X
should obey a division property in order to recuperate the usual linearity
properties at small scales if possible. Weakly put, there exists an open
environment Q ⊂ R with π1(Q) = X such that for all (x,w) ∈ Q there
exists an open W around w such that O ⊂ R(x, ·) ⊂ X and

TO : {(x, y, z) : y, z ∈ O} → X : (x, y, z)→ π2(∇(x,z)(x, y))

is continuous and surjective on W. Here, πj is the projection on the
j-th factor. A stronger version would demand that D ⊂ Q where D
is the diagonal. Given that a topological space has no orientation, it
is impossible to define a rotation; therefore, a general definition for the
commutator between two elements in R(x, ·) would read as

[(x,w), (x, v)] = ((v, x) ◦ P (∇(x,v)(x,w)))](∇(x,w)(x, v) ◦ (x,w))

waarbij (w, z)](x, v) =
(
∇(w,v)(w, z)

)
◦ (x, v) and P (x,w) = (w, x). Note

that, in a sense, our connection is “torsion free” which is logical given that
the standard definition of a commutator depends upon the algebraic and
topological structure of Rn. Since the latter does not exist in the general
case, we have no choice but to define it by means of the connection. We
call a function F : X → Y topologically differentiable in a surrounding of
x ∈ X, with respect to a continuous scaling functions h, g : R, T → R+

satisfying g(x, x) = 0 = h(x′, x′) and h(x′, y′), g(x, y) > 0 for x 6= y, x′ 6=
y′, in case for any open V ⊂ T (F (x), ·) there exists an open neighborhood
O ⊂ R(x, ·) as well as a bi-continuous mapping DFw(w, v) : (w, v) ∈
O2 → V2, v, w ∈ O defined by (F (v), F (w)) = DFv(v, w) implying

DFx
((
∇(x,w)(x, y)

)
◦ (x,w)

)
= DFw(∇(x,w)(x, y)) ◦DFx(x,w)

and satisfying the demand

g(P (DFx(x, v))]DFx(x,w))

h(v, w)
≤ C

for some constant C > 0. We have used both arguments v, w in contrast
to the standard definition with w = x in order to ensure “differentiability”
of ∇ as well as the linearity of DFx. Here, the composition ◦ on R (T )

1In order to make transport symmetrical and to have a notion of zero transport.
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is defined as (w, z) ◦ (x,w) = (x, z) and is therefore a kind of sum. This
constitutes one way of approaching the matter which is still too close to
the old fashioned metric approach to my liking; in general, one introduces
the notation

(x, v)⊕ (x,w) = ∇(x,w)(x, v) ◦ (x,w)

and
(x,w)	 (x, v) = P (x, v)](x,w).

Therefore,

DFx((x, v)⊕ (x,w)) = DFw(∇(x,w)(x, v)) ◦DFx(x,w)

meaning the∇ operation shifts trough F . Now, one may look at DFx(x, v)
and utter further that it satisfies

g(DFx(x, v)	 (∇DFw(w,x)DFw(∇(x,w)(x, v)))) ≤ Ch(x, v)h(x,w)

where C is some constant. This definition differs from the previous but
captures better the linearity. A connection is called metric constant if and
only if

d(∇(xy)(xz)) = d((xz))

which does not imply that∇(x,w)(x, ·) : v ∈ R(x, .)→ X : v → π2(∇(x,w)(x, v))
is differentiable with respect to the scaling function d since

d(P (π2(∇(x,w)(x, v)), π2(∇(x,w)(x, z)))](π2(∇(x,w)(x, v)), π2(∇(x,w)(x, y))))

cannot be written in terms of original ∇(x,w)(x, q). Given that we have a
notion of addition on R, it is possible to define a functional ωX to be a
∇-symmetric continuous function on the displacements (x, y) satisfying

ωX((y, z) ◦ (x, y)) = ωX((x, y)) + ω((y, z))

and
ωX((x, y)) = −ωX((y, x)), ω(∇X(x, y, z)) = ωX((x, z)).

For general spaces X, a curve is a one dimensional object without “holes”;
more concretely γ ⊂ X is a curve if and only if there exists a homeo-
morphism ψ from γ to a subset A ⊂ R such that for r < s ∈ A the
displacement (ψ−1(r), ψ−1(s)) is irreducible in the limit for s to r in A.
A displacement is irreducible if and only if

lim
s→>rr

∣∣∣∣ωX(Dψ−1
r (r, s))

s− r

∣∣∣∣ < C(ψ−1, ωX)

for any continuous functional ωX . This is logical because the definition of
an irreducible hole requires some notion of displacement which is thightly
associated to the definition of a differential.

We therefore obtain a notion of forward differential equations

d

ds
F (ψ−1(s)) = g(ψ−1(s))

for all continuous functions F, g : X → C where d
ds

stands for

lim
r→>s

f(r)− f(s)

r − s
and everything is assumed to be ψ independent. This signifies that the last
expression remains invariant under order preserving diffeomorphisms φ :
A→ A in the sense that the equation is invariant under the substitution
ψ → ψ ◦ φ.
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3 Riemannian geometry.

Consider a (locally) compact path metric space (X, d), where the path
metric property signifies that for any x, y ∈ X holds that there exists a
z ∈ X such that

d(x, z) = d(y, z) =
d(x, y)

2
.

The latter is equivalent to stating that there exists a curve, called a
geodesic, γ : [0, 1] → X which minimizes the length functional L for
paths with endpoints x, y and, moreover, L(γ) = d(x, y). The latter is
defined by

L(γ) = sup
0=t0<t1...<tn=1,n>0

n−1∑
j=0

d(γ(tj), γ(tj+1))

and γ can be parametrized in arc-length parametrization by means of
the Radon Nikodym derivative. We shall henceforth define all important
quantities as well as derive some results.

• Consider a point x ∈ X and take a sequence of points yn, zn placed
on two half geodesics emanating from x converging in the limit for
n to infinty towards x. In case the limit

lim
n→∞

d(x, yn)2 + d(x, zn)2 − d(yn, zn)2

2d(x, yn)d(x, zn)

exists, we define the angle θx(y, z) between both geodesics by equat-
ing the latter expression to cos(θx(y, z)).

• Alexandrov curvature: in flat Euclidean geometry, the midpoint r
of a line segment [ab] satisfies

~xr =
1

2
( ~xa+ ~xb)

for any x. Hence, one arrives at

d(x, r)2 =
1

4
(d(x, a)2 + d(x, b)2 + 2d(x, a)d(x, b) cos(θx(a, b))).

Considering sequences yn, zn as previously and defining rn as a mid-
point of the geodesic segment [ynzn] consider the sequence

Rn(y, z) =
−d(x, yn)2 − d(x, zn)2 − 2d(x, yn)d(x, zn) cos(θx(yn, zn)) + 4d(x, rn)2

d(x, yn)2d(x, zn)2 sin2(θx(yn, zn))

or alternatively

Rn(y, z) =
−2d(x, yn)2 − 2d(x, zn)2 + d(yn, zn)2 + 4d(x, rn)2

d(x, yn)2d(x, zn)2 sin2(θx(yn, zn))

both quantities having dimension of m−2. For differentiable, metric
compatible and torsionless theories, one has in general that

d2(x+w, x+v) = gx(v−w, v−w)+γ(N)gx(Rx(v, w)v, w)+δ(N)gx(Cx(v, w)v, w)+

κ(N)Rx(gx(v, v)gx(w,w)− g(v, w)2) + higher order terms

where Rx is the Ricci scalar and Cx the Weyl tensor. A term of the
form ζ(N)(Rx(v, v)gx(w,w) + Rx(w,w)gx(v, v)) is forbidden given
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that it does not vanish for v = w. However, it is easily argued
from the geodesic equation that the coefficients must be dimension
independent and that therefore δ(N) = κ(N) = 0 whereas γ(N) = γ
some constant. Logically, the expression

−2d(x, yn)2 − 2d(x, zn)2 + d(yn, zn)2 + 4d(x, rn)2

has therefore the structure

γ̃(N)gx(Rx(v, w)v, w)+δ̃(N)gx(Cx(v, w)v, w)+κ̃(N)Rx(gx(v, v)gx(w,w)−g(v, w)2)+ higher order terms

given that it vanishes in the flat limit and the midpoint

rn =
vn + wn

2
+ third order corrections vanishing when vn = wn.

Moreover, we have that δ̃(N) = κ̃(N) = 0 and that γ̃(N) is N
independent, given that the midpoint depends upon the Riemann
tensor only given that no metric contractions take place. In order
to substract the Riemann tensorial part, one might take midpoints
of midpoints and points, and so on, in order to obtain distinct coef-
ficients.

• In case R < 0, then we call the space Alexandrov hyperbolic; in the
other case it is Alexandrov spheric and otherwise flat.

• We now define a volume form akin to a determinant; given that we
do not consider n-beins, we have no notion of orientation. Hence,
the only natural candidate is symmetric in the arguments instead of
antisymmetric. Consider therefore

Vn,x(a1, . . . , an)2 =

(
n∏
i=1

d(x, ai)

)2 ∑
σ∈Sn

sign(σ)

n∏
i=1

cos(θ(i, σ(i))).

One verifies that

V4(a, b, a, b)2 = d(x, a)4d(x, b)4
(
2− 4 cos(θx(a, b))2 + 2 cos(θx(a, b))4

)
= 2V2(a, b)2

and therefore the odd terms in cos(θ) vanish which is logical given
that the expression must be invariant under θ → π − θ.

• We now arrive to the notion of Riemann curvature; consider a point
x as well as points am, bn, cn, dn on four geodesics emanating from x.
Denote by âb the midpoint between a and b. Note first that we can
define a quantity, which is not a tensor in an appropriate limit but
which has the symmetries of the metric, torsionless Riemann tensor
and reduces in the “sectional case” to the Alexandrov curvature. It
is,

Tn(a, c, b, d) = 4
d(x, an)d(x, bn)− d(x, an)d(x, dn)− d(x, cn)d(x, bn) + d(x, cn)d(x, dn)

Vx(an, bn, cn, dn)

+4
d(x, ânbn)d(x, cn)− d(x, ânbn)d(x, dn) + d(x, ĉndn)d(x, an)− d(x, ĉndn)d(x, bn)

Vx(an, bn, cn, dn)

+4
−d(x, b̂ncn)d(x, an) + d(x, b̂ncn)d(x, dn)− d(x, ândn)d(x, cn) + d(x, ândn)d(x, bn)

Vx(an, bn, cn, dn)

+4
2d(x, ânbn)d(x, ĉndn)− 2d(x, ândn)d(x, b̂ncn)

Vx(an, bn, cn, dn)
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−2
d(an, dn)d(bn, cn)− d(an, bn)d(cn, dn)

Vx(an, bn, cn, dn)
.

This results in

Tn(a, c, a, c) = 2
d(x, an)2 − 2d(x, an)d(x, cn) + d(x, cn)2

Vx(an, cn)2

+
4d(x, an)d(x, cn)− 4d(x, âncn)2 − d(an, cn)2

Vx(an, cn)2
= Rn(a, c)

which is the correct expression and an easy calculation shows that

Tn(a, c, b, d) + Tn(c, b, a, d) + Tn(b, a, c, d) = 0.

Before we proceed, it is good to understand the following result.

• Given α = (12), β = (34) and τ = (13)(24), then α, β, τ generate
a subgroup K of the permutation group with following relations
α2 = β2 = τ2 = 1 and α ◦ β = β ◦ α, α ◦ τ = τ ◦ β, β ◦ τ =
τ ◦ α. These relations have meaning in physics where α, β could
indicate rotation of a spinorial point particle around the z-axis for
360 degrees, whereas τ could indicate spatial rotation around the
midpoint of both particles with respect to the z-axis for 180 degrees.
K has in total six elements. Suppose we are given a function

H(ai; i = 1 . . . 4) =
∑
σ∈K

Sign(σ)F (aσ(i))

whereby F remains invariant with respect to a particular odd per-
mutation ρ ∈ S4 which is not in K. Then, H(ai; i = 1 . . . 4) obeys
the first Bianchi identity∑

σ∈S3

Sign(σ)H(a0, aσ(i)) = 0.

Proof: let ρ ∈ S3, then with G(a0, ai) =
∑
σ∈S3

Sign(σ)H(a0, aσ(i))
we have that

G(a0, aρ(i)) =
∑
σ∈S3

Sign(σ)H(a0, aσ(ρ(i))).

The group S3 is generated by r = (123), t = (23) where

(123)(23) = (12), (23)(123) = (13)

and (123)3 = e the identity element. Every element is therefore of
the form rjtp with j = 0 . . . 2; p = 0, 1; hence

G(a0, ai) =
∑
σ∈S3

Sign(σ)
∑
κ∈K

Sign(κ)F (aσ(κ(i)))

which is further reduced to

2

2∑
j=0

∑
κ∈K

Sign(κ)F (arj(κ(i))).

Group theoretically, rκr2 ∈ K+ for κ ∈ K+ even and rκr ∈ K− for
κ ∈ K− odd. Hence, the latter sum reduces to two times∑

κ∈K+

Sign(κ)F (aκ(i)) +
∑
κ∈K−

Sign(κ)F (aκ(i))
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+
∑
κ∈K+

Sign(κ)F (aκ(r(i))) +
∑
κ∈K−

Sign(κ)F (aκ(r2(i)))+

∑
κ∈K+

Sign(κ)F (aκ(r2(i))) +
∑
κ∈K−

Sign(κ)F (aκ(r(i))).

Hence, we have that

G(a0, ai) = 2

2∑
j=0

∑
κ∈K

Sign(κ)F (aκ(rj(i))) = 2
∑
ρ∈S4

Sign(ρ)F (aρ(i))

which proves that the averaging procedures commute. Note that
(13) = (12)(23)(12). We now use the symmetry σ′ of F ; in case F
has (14) or (24) we conjugate it by means of an element in K to (23)
meaning σ′ = s(23)s−1 with s ∈ K; hence, a small calculation using
the above commutation property of symmetrization reveals that

G(a0, a(23)(i)) = G(a0, ai) = −G(a0, ai) = 0.

Now, we have learned so far that the metric easily allows for such
symmetric terms each with a distinct symmetry of course to recu-
perate the full Riemann tensor.

• We now return to our analysis of the Riemann tensor. Actually,
our choice is not a very good one exclusively due to the presence of
non-quadratic metric terms of the kind d(bn, an) in the last term of
the nominator which gives it a nondifferentiable character near the
origin. Although this edifice is easily repaired, we shall consider the
following, far more general, case

T ε,α,β,κ,δ,λ,γ,µ,ζ,ρ,ν,σ,ψ,φ,πx (a, b, c, d) =
1

ε4

(
α(d(b̂d, âc)2 − d(b̂c, âd)2) + β(d(x,

̂̂
acb̂d)2 − d(x,

̂̂
adb̂c)2)

)
+

1

ε4

(
κ(d(a, c)2 − d(a, d)2 − d(b, c)2 + d(b, d)2) + δ(d(a, b̂d)2 − d(a, b̂c)2 − d(b, âd)2 + d(b, âc)2)

)
+

1

ε4

(
λ(d(x, âc)2 − d(x, âd)2 − d(x, b̂c)2 + d(x, b̂d)2) + γ(d(x, âc)d(x, b̂d)− d(x, âd)d(x, b̂c))

)
+
µ

ε4
(d(x, a)d(x, c)− d(x, a)d(x, d)− d(x, b)d(x, c) + d(x, b)d(x, d))

+
ρ

ε4
(d(x, âd)d(x, b̂c)− d(x, âc)d(x, b̂d))

+
ζ

ε4
(d(x, a)d(x, âc)−d(x, a)d(x, âd)−d(x, b)d(x, b̂c)+d(x, b)d(x, b̂d)+d(x, c)d(x, âc))

+
ζ

ε4
(−d(x, c)d(x, ĉb)− d(x, d)d(x, d̂a) + d(x, d)d(x, d̂b))

+
ν

ε4
(d(x, ââc)d(x, b̂c)−d(x, b̂b̂c)d(x, âc)−d(x, ââd)d(x, b̂d)+d(x, b̂b̂d)d(x, âd))

+
ν

ε4
(d(x, ĉâc)d(x, d̂a)−d(x, d̂âd)d(x, âc)−d(x, ĉb̂c)d(x, b̂d)+d(x, d̂b̂d)d(x, b̂c))

+
σ

ε4
(d(x, a)d(x, d̂ĉb)−d(x, a)d(x, ĉd̂b)−d(x, b)d(x, d̂ĉa)+d(x, b)d(x, ĉd̂a))

+
σ

ε4
(d(x, c)d(x, b̂âd)−d(x, c)d(x, âd̂b)−d(x, d)d(x, b̂ĉa)+d(x, d)d(x, âb̂c))

+
ψ

ε4
(d(x, a)d(x, d̂âb)−d(x, a)d(x, ĉâb)−d(x, b)d(x, d̂b̂a)+d(x, b)d(x, d̂d̂b))

+
ψ

ε4
(d(x, c)d(x, b̂ĉd)−d(x, c)d(x, âĉd)−d(x, d)d(x, d̂ĉd)+d(x, d)d(x, b̂d̂b))
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+
φ

ε4
(d(x, a)d(x, b̂ĉb)−d(x, a)d(x, b̂d̂b)−d(x, b)d(x, âĉa)+d(x, b)d(x, âd̂a))

+
φ

ε4
(d(x, c)d(x, d̂âd)−d(x, c)d(x, d̂b̂d)−d(x, d)d(x, ĉĉa)+d(x, d)d(x, ĉĉb))

+
π

ε4
(d(x, a)d(x, âĉb)−d(x, a)d(x, âd̂b)−d(x, b)d(x, b̂ĉa)+d(x, b)d(x, b̂d̂a))

+
π

ε4
(d(x, c)d(x, ĉâd)−d(x, c)d(x, ĉb̂d)−d(x, d)d(x, d̂ĉa)+d(x, d)d(x, d̂ĉb)).

The reader notices that all terms up to the ρ term satisfy our cri-
terium for the first Bianchi identity and that the subsequent terms
do not. Explicit computation reveals that, indeed, all those terms
are first Bianchi violating. “Ricci-Alexandrov” contraction provides
one with

T ε,α,β,κ,δ,λ,γ,µ,ζ,ρ,ν,σ,ψ,φ,πx (a, b, a, b) =
1

ε4
(
(2δ − 2κ+ α) d(a, b)2 + (λ+ µ+ 2ζ)(d(x, a)2 + d(x, b)2)

)
+

1

ε4

(
−(2λ+ γ − ρ)d(x, âb)2 + (γ − 2µ− ρ− 4φ)d(x, a)d(x, b)− δ(d(a, âb) + d(b, âb))

)
+

2((ν − σ)− ζ)
ε4

(
d(x, a)d(x, âb) + d(x, b)d(x, âb)

)
+

2((σ − ν) + φ− (π − ψ))

ε4

(
d(x, a)d(x, b̂âb) + d(x, b)d(x, ââb)

)
+

2(π − ψ)

ε4

(
d(x, a)d(x, ââb) + d(x, b)d(x, b̂âb)

)
Therefore, −2λ− γ + ρ = 4, λ+ µ+ 2ζ = −2, ζ − ν + σ = 0 and

2δ − 2κ+ α = 1, γ − 2µ− ρ− 4φ = 0, δ = 0 = π − ψ = ζ − φ

which leaves six free parameters of in total of fourteen parameters
given that the system has no degeneracy. α, β, ν however appear to
be redundant given that the total number of letters in the d argu-
ments is bigger than four which leaves for three free parameters. In
differential geometry, we have two ambiguities up to second order
with the symmetries of the Riemann tensor, which produce a van-
ishing sectional term: they are given by R

√
gεµ1µ2µ3µ4 ,

√
gεµ1µ2µ3µ4

which suggests another parameter should be fixed.

The last three coefficients of our “Ricci contraction” given by

(π − ψ), (σ + φ)− (π − ψ),−(σ + φ)

reveal a cycle structure in the sense that they sum up to zero. This
is a kind of vanishing of the edges condition over a triangle given by

0, (π − ψ), (σ + φ).

It suggests that some related area quantity vanishes which is pre-
cisely the case due to the dissapearance of the associated contribu-
tion to the Alexandrov curvature by means of “Ricci contraction”
and it merely creates a diagonal term

(d(x, a)− d(x, b))2

by means of φ which is what it was supposed to do. We are therefore
left with ψ, φ, µ, σ, α, β and moreover

δ = 0, π = ψ, ζ = φ, ν = ζ+σ, λ = −2−µ−2ζ, γ = 2µ+ρ+4φ, κ = −1

2
(1−α).
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There is, moreover, something really embarrasing about the µ, γ, ρ
terms which is that they represent simple coordinates and are in
a form pure gauge to be absorbed into a gauge piece of the other
tensors; therefore µ = γ = ρ = α = β = ν = δ = 0 and we are left
with the tensor

T ε,α,β,κ,δ,λ,γ,µ,ζ,ρ,ν,σ,ψ,φ,πx (a, b, c, d) = T
ε,0,0,− 1

2
,0,−2(1+ζ),4ζ,0,ζ,0,0,−ζ,π,ζ,π

x (a, b, c, d)

and the reader verifies that the sum of all coefficients equals − 5
2

+
3ζ+ 2π which provides for another cocycle identity for four volumes
in case

3ζ + 2π =
5

2
.

Obviously, this case is forbidden as it would remove the Riemann ten-
sor from our curvature expression; therefore, we have some “critical
value” left with vanishing curvature corresponding to a combination
of our previous two volume forms (which is well known to be true
in four dimensions). The right value clearly corresponds to ζ = 0 as
there should be no zero’th order contributions left whereas π rep-
resents a kind of scale freedom which is not present in continuum
theories. It must depend upon the fine grained details of our geom-
etry as well as ε and we shall fix it in the upcoming paragraph.

• We shall now work towards the Einstein tensor and show that it is
God given upon a constant. Define the “metric”

gεx(a, b) =
d(x, a)d(x, b) cos(θx(a, b))

ε2

and consider the unique inverse gεx(â, b̂) on a general locally compact
path metric space with duality relation â(b) = δ(a, b) where we shall
shortly define the equation∫

V

dµd(a)f(a)δ(a, b) = f(b)

with dµd the Hausdorff measure defined by the metric d and V con-
tains a as well as b. The Hausdorff measure is defined by stacking
balls of radius r with balls of smaller radius and by asserting that

Vol(x, r) = α(x)rdH (x)

in the limit for r to zero and dH(x) is the so called Hausdorff dimen-
sion of x. Both α(x), dH(x) are assumed to be continuous functions
almost everywhere and they are partially determined by means of∑

Small balls stacking big ballB(xi,ri)∈B(y,r)

αir
dH,i

i = αyr
dH,y

in the limit for r to zero. The reader verifies that this fixes dH and
α up to a constant. The definition now is that∫

B(x,ε)

dµd(b)g
ε
x(â, b̂)gεx(b, c) = δ(a, c).

The construction of a δ function is totally obvious and the exis-
tence of a unique inverse follows from the fact that gεx(b, c) defines a

Toeplitz operator with vanishing kernel, gεx(â, b̂) is then the standard
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Green’s function with respect to the Hausdorff measure. As a proof,
just remark that the functions gεx(b, c) separate the points meaning
that the functions

gεx(b, ·) : B(x, ε)→ R : c→ gεx(b, c)

constitute a basis with respect to the ordinary Hilbert space scalar
product.

• Before we define contractions with the metric tensor, we must be a
bit careful given that the expression∫

B(x,ε)

∫
B(x,ε)

dµd(b)dµd(a)gεx(â, b̂)gεx(b, a)

is ill defined which suggests a point splitting and limiting procedure
providing for the correct answer. In either, we take∫
B(x,ε)

∫
B(x,ε)

dµd(b)dµd(a)

∫
B(a,δ)

∫
B(b,δ)

dµd(d)dµd(c)g
ε
x(â, b̂)gεx(c, d) ∼

α2(x)δ2dH,x(1 + epsilon, delta corrections)

which suggests to take the δ derivative and divide this expression
through

2α2(x)δ2dH,x−1

when taking the limit δ → 0. In that vein, define the “Alexandrov
Ricci tensor” on a scale ε by means of

T ε,πx (a, b) := lim
δ→0

1

2α2(x)δ2dH,x−1

d

dδ

∫
B(x,ε)

dµd(k)

∫
B(x,ε)

dµd(l)

∫
B(k,δ)

dµd(r)

∫
B(l,δ)

dµd(s)g
ε
x(k̂, l̂)

T
ε,0,0,− 1

2
,0,−2,0,0,0,0,0,0,π,0,π

x (r, a, s, b)

and a Ricci scalar T ε,πx by means of a similar contraction. The
Einstein tensor is then defined as

Gε,πx (a, b) = T ε,πx (a, b)− 1

2
gεx(a, b)T ε,πx .

Now, we come to the crucial part which should extract the real
Riemann tensor and remove any further discrete ambiguity; the trace
of the Einstein tensor, Gε,πx must satisfy

Gε,πx = −dH,x − 2

2
T ε,πx

exactly which turns π into a function of x and ε. The reader might
argue that the presence of Bianchi violating terms due to the π
coefficient are a consequence of non-smoothness and should vanish
in the appropriate limit.

• Define gε geodesics as curves γ which minimize the length fiunctional

L(γ) = sup
0=t0,...tn=1,n>0

n−1∑
j=0

√
gεγ(tj)(γ(tj+1), γ(tj+1)) ε.

It is clear that this definition coincides with the usual case.
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• We now come to the definition of the Levi Civita transporter using
results from the previous section. We call a transporter∇ε,δ(x,a) metric
compatible if and only if

∇ε,δ(x,a) (gεx(b, c)) = gεa(π2(∇ε,δ(x,a)(x, b)), π2(∇ε,δ(x,a)(x, c))) = gεx(b, c)

for all x and a, b, c ∈ B(x, ε) with 0 ≤ θx(a, c), θx(a, b) < π−δ
2

.
Clearly, all the ∇-ε dependency hides in the condition that a, b, c are
sufficiently close to x and δ serves to allow for conal singularities.
Obviously, d(x, a) = d(∇ε,δ(x,b)(x, a)) for all x, a, b for which ∇ε,δ has

been defined. On a conal space, plenty of ∇ε,δ’s exist whereas 2δ
exceeds the deficiency angle in case of a spherical cone.

• A ∇ geodesic is an autoparallel curve in arclength parametrization:
that is

∇(γ(t),γ(t+ε))(γ(t), γ(t+ ε)) ◦ (γ(t), γ(t+ ε)) = (γ(t), γ(t+ 2ε)).

Show, by means of an example, that not every geodesic is a ∇-
geodesic for a given ∇ such as occurs in spaces with hyperbolic
conal singularities. Reversely, not every ∇-geodesic is a geodesic in
the sense that

d(γ(t), γ(t+ 2δ)) < 2δ

what often happens globally for Riemannian manifolds or in case of
spherical conal singularities where plenty of ∇ geodesics exist which
are not geodesics. Obviously, every geodesic is a ∇-geodesic for some
∇; the very fact that every ∇-geodesic should always be a geodesic
locally imposes the condition that

θy(x, π2(∇(x,y)(x, z))) = π − θx(y, z)

for θx(y, z) < π− δ which is a forwards-backwards condition related
to differentiability. Moreover, the demand that every geodesic is a
∇ geodesic for any ∇ imposes that no hyperbolic conical singulari-
ties may occur. Therefore, coincidence of both notions suggests the
condition that space is locally Rn.

• Define the scalar product

〈T (·)|g(·)〉x,ε =

∫
B(x,ε

. . .

∫
B(x,ε

dµd(a1) . . . dµd(ak)dµd(b1) . . . dµd(bk)T (ai)g(bi)g
ε
x(κi(ai), κi(bi))

where κi equals the identity or duality operation. Then, this scalar
product is not necessarily positive definite which it should be for
spaces which are positively Alexandrov curved and might not be for
those which are negatively Alexandrov curved. In any case, any con-
nection which minimizes the Ricci contraction of the Einstein tensor
with respect to this scalar product is a candidate Levi-Civita con-
nection.

• Define Torsion now just by substracting other metric compatible
connections from any of the Levi-Civita ones. Therefore, a path
metric metric allows one to naturally define the commutator which
is obvious given that a metric provides us with rulers and angles and
therefore, locally, an orientation.
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4 Simplicial refinements.

Simplicial metric spaces are simple examples of generalizations of Rieman-
nian manifolds and the metric structure is fully characterized by distances
d(v0v1) on the edges (v0v1). Given that one has more structure than usual,
it is possible to get more close to the manifold language which is what we
shall develop partially in this concluding section. We first start by defin-
ing the operators xw(v0 . . . vi) = (wv0 . . . vi) en ∂w(wv0 . . . vi) = (v0 . . . vi)
in case none of the vj equals w. In case this would be true, ∂w(w) = 1,
xw1 = (w) where 1 = () equals the empty simplex. From this follows that
(xw)2 = 0 as well as (∂w)2 = 0 giving rise to a natural point Grasmann al-
gebraic structure. One notices that ∂ =

∑
w∈S ∂w which shows that ∂w is

the correct partial differential operator associated to the Hodge boundary
operator ∂ giving rise to a natural theory of k forms. The empty simplex
constitutes the identity element regarding the cross product ∗ defined by

(v0 . . . vi) ∗ (w0 . . . wj) = (v0 . . . viw0 . . . wj).

One simply verifies indeed that xwxv = −xvxw and likewise for the oper-
ators ∂v, ∂w as well as

∂vxw + xw∂v = δ(v, w)

giving rise to the usual Heisenberg duality where ∂v would be the associ-
ated momentum operator. One verifies that xw, ∂v satisfy the fermionic
Leibniz rule with respect to the ∗ product and that 1 is bosonic with re-
spect to the action of xw regarding ∗. Bosonic operators are then formed
by considering even simplicial structures; the line segment provides one
with

∂(vw) = ∂w∂v

which obeys

∂(vw)(yz) = δ(v, y)δ(w, z)− δ(v, z)δ(w, y)

providing one with an oriented derivative. The simplex algebra is gener-
ated by polynomials constituting of monomials which are free products
of (v0 . . . vj) for all j : 0 . . . n; mind, the formal product does not equal
the cross product implying that 1 is no longer equal to unity. Since on
general metric spaces, bi-relations are merely characterized by means of
a metric d the function algebra is limited to monomials in (v0v1) given
that higher simplices do not provide for independent higher invariants.
Assuming, furthermore, that 1 is bosonic with respect to the action of
xw, also for the free product, taking into account that ∂v, xw are both
fermionic operators, one arrives at

∂v((w)Q) = ∂v((xw1)Q) = ∂vxw(1Q)−∂v(1xwQ) = (k+1)δ(v, w)1Q−xw(1∂vQ)−∂v(1xwQ)

which reduces to

(k+ 1)δ(v, w)1Q− (xw)∂vQ−1xw∂vQ−1∂vxwQ = δ(v, w)1Q− (xw)∂vQ

where k is the degree of the monomial Q, which means the number of fac-
tors. This follows immediately from the Leibniz rule for bosonic operators

xw∂v + ∂vxw = δ(v, w).

12



Henceforth, akin to the ∗ product, the even simplex variables behave
bosonic whereas the odd ones behave fermionic. Indeed,

∂v((wz)Q) = ∂v((xw(z))Q) = ∂v(xw((z)Q)+((z)xwQ)) = −xw∂v((z)Q)−(z)(∂vxwQ)

what reduces to

= xw((z)∂vQ)− (z)(∂vxwQ) = (wz)∂vQ.

The reason for introducing the formal product as a supplementary struc-
ture over the ∗ product resides in the fact that the latter allows only for
linear function in the edge variables and the standard operations on real
numbers would have to be recuperated in a rather different fashion by
means of infinite pulverisation (excluding diagonal terms) instead of di-
rect compoarison with the simplicial line segments.

standard derivatives are defined by means of an infinitesimal line segment
(x− |ε|, x+ |ε|) where f(v + ε, v − ε) has been defined by means of f(x).
This is logical because the v ± ε are fermionic and independent whereas
the segments (v − ε, v + ε) ∼ x are bosonic. Note that formal products of
the kind (v − ε)(v + ε) may be further derived and that

∂xf(x) = L
[
∂(v−ε,v+ε)f(v − ε, v + ε)

]
whereby L only retains monomials depending upon the line segments. To
under stand this, consider (vw)2 whose (vw) derivative equals

2(vw)− 2(v)(w).

In order to define the standard bosonic multiplication operator on line
segments (vw), we define

x̂(vw)Q := x(vw)x1Q

where Q is a free polynomial in the line segments (r, s) and x(vw) is a
bosonic Leibniz operator defined by means of

x(vw)(v0 . . . vj) = (vwv0 . . . vj).

By definition, one has that

x(vw)(rs) = 0

if and only if r or s equals v, w as well as

(x(vw) + x(rs))((vw) + (rs)) = 2(vwrs)

which vanishes identically unless (r, s) equals the opposite side of a four
simplex which is never possible for geodesics amongst other curves. For
geodesics

γ(v0vi) := (v0v1) + (v1v2) + . . . (vi−1vi)

we have that

xγ(v0vi) :=

i∑
j=1

x(vj−1vj)

and therefore
xγ(v0vi)γ(v0, vi) = 0.
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Next, we define derivatives

∂γ(v0,vi) :=

i∑
j=1

∂(vj−1vj)

and consider the operator

∂̂γ(v0,vi) = L ◦ ∂γ(v0,vi)

which satisfies

∂̂γ(v0,vi)x̂γ(v0,vi) − x̂γ(v0,vi)∂̂γ(v0,vi) = 1

on the function space of monomials Q of the form (γ(v0, vi))
k where k > 0.

5 The Lorentzian case.

The question now is how to generalize the above setting to spaces equipped
with a Lorentz distance. That is, we consider spaces (X, d) with a compact
topology such that d : X ×X → R+ is continuous and satisfies

• d(x, y) ≥ 0 and d(x, x) = 0

• d(x, y) > 0 implies that d(y, x) = 0

• d(x, y) > 0 and d(y, z) > 0 implies that d(x, z) > 0.

As is well known, this defines a chronology relation y ∈ I+(x) if and only
if d(x, y) > 0 where I+(x) is the set of all events lying in the chronological
future of x. Likewise, one has the chronological past I−(x) containing
all y such that d(y, x) > 0. Now, we assume the following regarding
the partial order ≺ defined by x ≺ y if and only if d(x, y) > 0. That
is, for any open O around x one has points y, z such that y ≺ x ≺ z
and I−(z) ∩ I+(y) ≡ A(y, z) ⊂ O. The sets A(x, y) called the Alexan-
drov sets clearly define the basis for a topology and what we are say-
ing is that the Alexandrov topology must coincide with the space topol-
ogy. Looking back at the construction of the Riemann tensor, taking
into account that only the κ, λ terms do not vanish, one needs either
that a, b ∈ I−(c) ∩ I−(d) ∩ I+(x) where timelike geodesics are defined by
means of a maximization instead of minimization procedure. The other
way around is c, d ∈ I−(a) ∩ I−(b) ∩ I+(x) or two similar options with
a, b, c, d to the past of x. It is well known that a Lorentzian geometry
does not provide for compact neighborhoods but that one can nevertheless
try to define a Hausdorff measure identically than before for Alexandrov
neighborhoods. However, such measure would be direction independent
which is the case for manifolds where the metric exhibits Lorentz invari-
ance but not true for piecewise linear manifolds with conal singularities
where the result may be direction dependent. Henceforth, it is much bet-
ter to choose an additional Riemannian metric d and define the Lorentzian
metric tensor g±ε (a, b) on the pair of points (a, b) ∈ I±(x) for which holds
that d(a, b) > 0 or d(b, a) > 0 so that hyperbolic angles, replancing sine
and cosine by sinh and cosh, and so fortn are well defined. Calling these
regions Z±(x), we may define the inverse g±,ε(â, b̂) by means of integra-
tion over (B(x, ε)×B(x, ε))∩Z±(x) respectively. Herefrom, it is obvious
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to define the remaining contractions and Ricci tensor and scalars. It is
obviuous that for general spacetimes and Riemannian metrics, the limit
of ε to zero is independent of the choice of the latter.

6 Conclusions.

We have made first steps with developing geometry for general metric
spaces as well as a natural gravitational theory defined upon it. It would
be interesting to generalize this to the setting of Lorentz spaces endowed
with a supplementary Riemannian notion of locality provided by a par-
ticular class of metrics.
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