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Abstract. In this paper, by the method of heat flow and the method of exhaustion, we
prove an existence theorem of Hermitian-Yang-Mills-Higgs metrics on holomorphic line
bundle over a class of non-compact Gauduchon manifold.

1. Introduction

Let X be a complex manifold of dimension n and g a Hermitian metric with associated
Kähler form ω. g is called Kähler if dω = 0; balanced if dωn−1 = 0; Gauduchon if
∂∂̄ωn−1 = 0. A Hermitian-Yang-Mills-Higgs metric is a Hermitian metric on holomorphic
vector bundle E over X satisfying the following vortex equation which was introduced by
Bradlow [3]:

(1.1) 2
√
−1ΛωFH + φ⊗ φ∗H − τ · IdE = 0,

where Λω is the contraction operator with respect to ω, FH is the curvature of the Chern
connection with respect to the metric H, φ is a non-trivial holomorphic section of E,
and τ is a real number. The vortex equation (1.1) is a generalization of the Hermitian-
Yang-Mills equation (i.e. φ = 0). By the classical Donaldson-Uhlenbeck-Yau theorem
[6, 23], the existence of the solution to the Hermitian-Yang-Mills equation relates to the
stability of the underlying bundle over compact Kähler manifold. The classical Donaldson-
Uhlenbeck-Yau theorem has many interesting and important generalizations [1, 2, 4, 5, 8,
11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 25, 26].

Let L be a holomorphic line bundle over complex manifold (X, g), given any initial
metric H0, let H = efH0, then solving the vortex equation (1.1) is equivalent to solving
the following equation:

(1.2) ∆̃f − |φ|2H0
ef − (2

√
−1ΛωFH0 − τ · IdL) = 0,

where ∆̃ is the complex Laplace operator, acting on functions given by ∆̃f = −2
√
−1Λω∂̄∂f .

As usual, we denote the Beltrami-Laplcaian operator by ∆. It is well known that the d-
ifference of the two Laplacians is given by a first order differential operator as follows

(1.3) (∆̃−∆)f = 〈Vg, df〉g,
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where Vg is the unique 1-form satisfying dωn−1 = ωn−1∧Vg. Clearly, ∆̃f and ∆f coincide
provided X is balanced. Once we set h = −|φ|2H0

and k = 2
√
−1ΛωFH0 − τ · IdL, (1.2) is

just

(1.4) ∆̃f + hef − k = 0.

When (X, g) is a Kähler manifold, of course X is balanced in this setting, then Eq. (1.4)
turns out to be precisely of the form considered in [9, 10]:

(1.5) ∆f + hef − k = 0,

which is known as Kazdan-Warner equation. In [15], Liu and Yao solved Eq. (1.4)
on compact Gauduchon manifolds by means of the upper and lower solution method.
Then the solvability of the vortex equation (1.1) in holomorphic line bundle over compact
Gauduchon manifolds stands out. Later, Wang and Zhang discussed Eq. (1.5) on a class
of non-compact Riemannian manifold by the method of heat flow [24]. As an application,
they solved the vortex equation (1.1) in holomorphic line bundle over a class of non-
compact Kähler manifold. Then, one may well ask: can we solve the vortex equation
(1.1) in holomorphic line bundle over the non-compact Gauduchon manifold? Before we
state the answer of this question, we need some requirements.

In the following, we always suppose that (X, g) is a Gauduchon manifold unless other-
wise stated. Following [21], we will make the following three assumptions:

Assumption 1. (X, g) has finite volume.
Assumption 2. There exists a non-negative exhaustion function ψ with

√
−1Λω∂∂̄ψ

bounded.
Assumption 3. There is an increasing function a : [0,+∞) → [0,+∞) with a(0) =

0 and a(x) = x for x > 1, such that if f is a bounded positive function on X with√
−1Λω∂∂̄f ≥ −B then

sup
X
|f | ≤ C(B)a(

∫
X

|f |ω
n

n!
).

Furthermore, if
√
−1Λω∂∂̄f ≥ 0, then

√
−1Λω∂∂̄f = 0.

We fix a background metric H0 in the bundle L over X, and suppose that

sup
X
|ΛωFH0 |H0 < +∞.

Following [21], define the analytic degree of L to be the real number

degω(L,H0) =
√
−1

∫
X

ΛωFH0

ωn

n!
.

In this paper, we prove the following theorem:

Theorem 1.1. Let (X, g) be a non-compact Gauduchon manifold satisfying Assumptions
1,2,3 and |dωn−1|g ∈ L2(X). Let L be a holomorphic line bundle with a nontrivial holo-
morphic section φ on X. Suppose that there exists a Hermitian metric H0 satisfying that
supX |ΛωFH0| < +∞, supX |φ|2H0

< +∞ and degω(L,H0) <
τ
2
Vol(X). Then there exists

a unique Hermitian metric H satisfying the vortex equation (1.1).
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To prove Theorem 1.1, we only need to solve (1.4) on the non-compact Gauduchon
manifold. We will use the method of heat flow and the method of exhaustion to solve
(1.4). We can not directly apply Wang and Zhang’s approach in [24] since the complex
Laplace makes a huge difference (1.3). By considering the heat flow satisfying the Dirichlet

boundary condition, we solve the perturbed equation ∆̃f − εf + hef − k = 0 with ε ≥ 0
on any exhaustion subset Xϕ of X. Noting that the C0-bound of the solution fϕ on each
Xϕ depends only on ε−1 and the initial date. One can pass to limit and eventually obtain
a solution on the whole manifold X provided ε > 0. At last, we complete the proof by
showing that the C0-bound of the solution of the perturbed equation on X is independent
of ε. The approach used in this paper is more natural and it can be used to deal with the
equation (1.5). This approach arises from the study of the Hermitian-Einstein equation
discussed in [25], in which the Hermitian-Einstein equation is different from the vortex
equation (1.1).

2. Kazdan-Warner type equation on the non-compact manifold

The aim of this section is to solve Eq. (1.4) on the non-compact manifold. We first solve
the Dirichlet problem for Eq. (1.4) on a compact Hermitian manifold with non-empty
boundary. To be specific, we prove the following theorem.

Proposition 2.1. Let (M, g) be a compact Hermitian manifold with non-empty boundary

∂M . Suppose that h, k ∈ C∞(M), then for any function f̃ on the restriction to ∂M , there

is a unique function f ∈ C∞(M) which satisfies the equation ∆̃f = εf −hef +k for ε ≥ 0

and f = f̃ on ∂M .

Proof. We consider the following heat flow with Dirichlet boundary condition:
∂f
∂t

= ∆̃f − εf + hef − k, ε ≥ 0,

f(0) = 0,

f |∂M = f̃ .

This is a parabolic equation, so we have a short-time solution. Suppose that the solution
f(·, t) exists for [0, T ). Direct calculation shows that

(∆̃− ∂

∂t
)(∆̃f − εf + hef − k)2 = 2|d(∆̃f − εf + hef − k)|2

− 2hef (∆̃f − εf + hef − k)2

+ 2ε(∆̃f − εf + hef − k)2

≥ 0.

(2.1)

On the other hand, (∆̃f − εf + hef − k)2|∂M = 0. By the maximum principle, we have

(2.2) max
M
|∆̃f − εf + hef − k| ≤ max

M
(|h|+ |k|) < +∞.

From Eq. (2.2), we know that |∂f
∂t
| is bounded uniformly in t. Then it is easy to conclude

that f(·, t) converge in C0 to a continuous function f(T ) as t → T . On the other hand,
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from Eq. (2.2), we have

(2.3) sup
M
|∆̃f |(·, t) ≤ C1,

where C1 is a constant depending only on ε, T and maxM(|h| + |k|). Elliptic estimates
with boundary condition show that f(·, t) is bounded in C1 and also bounded in Lp2 (for
any 1 < p < +∞) uniformly in [0, T ). We can apply Hamilton’s method ([7]) to deduce
that f(·, t)→ f(·, T ) in C∞, and the solution can be continued past T . That is, the flow
has a solution defined for all time. Let f1 and f2 be two solutions of the flow with the
boundary condition, one can easily obtain

(∆̃− ∂

∂t
)(f1 − f2)2 ≥ 0.

Then by (f1 − f2)2|∂M = 0 and the maximum principle, we have the uniqueness of the
long-time solution.

From Eq. (2.1), we have

(2.4) (∆̃− ∂

∂t
)|∆̃f − εf + hef − k| ≥ 0.

By [22, Chapter 5, Proposition 1.8], one can solve the following Dirichlet problem on M :{
∆̃v = −|h− k|,
v|∂M = 0.

Set

w(x, t) =

∫ t

0

|∆̃f − εf + hef − k|(x, ρ)dρ− v(x).

From the boundary condition satisfied by f implies that, for t > 0, |∆̃f−εf+hef−k|(x, t)
vanishes on the boundary of M . Then, combining (2.4), it is easy to check that w(x, t)
satisfies

(4̃ − ∂

∂t
)w(x, t) ≥ 0, w(x, 0) = −v(x), w(x, t)|∂M = 0.

By the maximum principle, we have

(2.5)

∫ t

0

|∆̃f − εf + hef − k|(x, ρ)dρ ≤ sup
y∈M

v(y),

for any x ∈M , and 0 < t < +∞. Let t1 ≤ t, then

|f(t)− f(t1)| ≤
∫ t

t1

|∂f(ρ)

∂ρ
|dρ =

∫ t

t1

|∆̃f − εf + hef − k|(x, ρ)dρ→ 0 as t1 → +∞,

which means f(t) converge in the C0 topology to some continuous function f∞. Then,
the standard elliptic theory implies that there exists a subsequence f(t) → f∞ in C∞

topology. From Eq. (2.5), we know that f∞ is the desired function satisfying the boundary
condition. Let f1 and f2 be two solutions of the elliptic equation satisfying the boundary

condition. One can check that ∆̃(f1− f2)2 ≥ 0, then by the maximum principle we prove
the uniqueness. �



Vortex equation in holomorphic line bundle 5

Let (X, g) be a non-compact Gauduchon manifold with finite volume and a non-negative
exhaustion function ψ. Fix a number ϕ, let Xϕ denote the compact space {x ∈ X|ψ(x) ≤
ϕ}, with smooth boundary ∂Xϕ. By Proposition 2.1, we know that the following Dirichlet
problem is solvable on Xϕ, i.e.{

∆̃fϕ − εfϕ + hefϕ − k = 0, ∀x ∈ Xϕ,

fϕ(x)|∂Xϕ = 0.

By simple calculations, we have

∆̃|fϕ|2 ≥ 2ε|fϕ|2 − 2|k||fϕ| − 2hfϕe
fϕ

≥ 2ε|fϕ|2 − 2|k||fϕ| − 2hfϕ

≥ 2|fϕ|
(
ε|fϕ| − (|k|+ |h|)

)
.

We assume that ε > 0, the maximum principle implies:

max
Xϕ
|fϕ| ≤

1

ε
max
Xϕ

(|k|+ |h|).

By ∂∂̄ωn−1 = 0 and fϕ|∂Xϕ = 0, we have∫
Xϕ

|dfϕ|2
ωn

n!
= −

∫
Xϕ

fϕ∆̃fϕ
ωn

n!

≤ −
∫
Xϕ

(
εf 2

ϕ + (k − h)fϕ
)ωn
n!

≤ 1

ε
max
Xϕ

(|k|+ |h|)2Vol(Xϕ).

Then, by using the standard elliptic estimates, we can prove that, by choosing a subse-
quence, fϕ converge in C∞loc-topology to a solution on whole X, i.e. we prove the following
proposition.

Proposition 2.2. Let (X, g) be a non-compact Gauduchon manifold with finite volume
and a non-negative exhaustion function ψ. Suppose that h, k ∈ C∞(X) and sup

X
(|h|+|k|) <

+∞. For any ε > 0, there is a function f ∈ C∞(X) which satisfies the equation

(2.6) ∆̃f = εf − hef + k

with

(2.7) sup
X
|f | ≤ 1

ε
sup
X

(|h|+ |k|)

and

(2.8)

∫
X

|df |2ω
n

n!
≤ 1

ε

(
sup
X

(|h|+ |k|)
)2

Vol(X).

Now we are ready to solve the Kazdan-Warner type equation on the non-compact
Gauduchon manifold.
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Theorem 2.3. Let (X, g) be a non-compact Gauduchon manifold satisfying Assumptions
1,2,3 and |dωn−1|g ∈ L2(X). Suppose that h, k ∈ C∞(X) and sup

X
(|h| + |k|) < +∞. If

h ≤ 0, h is not identically zero and
∫
X
k < 0, then there is a function f ∈ C∞(X) which

satisfies (1.4) with supX |f | < +∞.

Proof. From Proposition 2.2, for any ε > 0, we have a solution f of the equation (2.6)
and f satisfies (2.7). By direct calculations, we have

∆̃ log(ef + e−f ) =
ef − e−f

ef + e−f
∆̃f +

4

(ef + e−f )2
|df |2

≥ ef − e−f

ef + e−f
(∆̃f − εf + hef − k) +

ef − e−f

ef + e−f
εf

− ef − e−f

ef + e−f
h(ef − 1) +

ef − e−f

ef + e−f
(k − h)

≥ −|∆̃f − εf + hef − k| − (|h|+ |k|)
≥ − sup

X
(|h|+ |k|).

On the other hand, the following is well-known:

|f | ≤ log(ef + e−f ) ≤ |f |+ log 2.

Then by Assumption 3, we have

(2.9) sup
X
|fε| ≤ sup

X
log(efε + e−fε ) ≤ C̃1

∫
X

|fε|2 + C̃2,

where constants C̃1 and C̃2 depend only on supX(|h|+ |k|) and Vol(X).
In the following, we will use a contradiction argument to prove that ‖fε‖C0 is uniform

bounded. If ‖fε‖C0 is unbounded, then there exists a subsequence εi → 0, i→ +∞, such
that ιi := ‖fεi‖L2 → +∞. Set

fi := fεi , ui := uεi =
fεi
‖fεi‖L2

.

It follows that

‖ui‖L2 = 1 and sup
X
|ui| < C̃3 < +∞,

where C̃3 is a uniform constant depending only on supX(|h|+ |k|) and Vol(X).
Let us recall a useful lemma.

Lemma 2.4 ([21, Lemma 5.2], [25, Lemma 2.5]). Suppose (X, g) is a non-compact Gaudu-

chon manifold admitting an exhaustion function φ with
∫
X
|∆̃φ|ωn

n!
< +∞, and suppose η

is a (2n− 1)-form with
∫
X
|η|2 ωn

n!
< +∞. Then if dη is integrable,∫

X

dη = 0.
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Using the conditions ∂∂̄ωn−1 = 0, |dωn−1|g ∈ L2(X), (2.7), (2.8), and Lemma 2.4, one
can check that

(2.10)

∫
X

fi∆̃fi
ωn

n!
= −

∫
X

|dfi|2
ωn

n!
.

Substituting the perturbed equation into (2.10), we have

(2.11)

∫
X

|dfi|2 = −
∫
X

fi(εifi + k − hefi)ω
n

n!
,

which implies ∫
X

|dui|2
ωn

n!
≤ −εi −

1

‖fi‖L2

∫
X

ui(k − h)
ωn

n!
.

Then, by passing to a subsequence, we have that ui converge weakly to u∞ in L2
1 as

i → +∞, and u∞ is constant almost everywhere. Note that for any relatively compact
Z ⊂ X, L2

1 → L2(Z) is compact. So∫
Z

|ui|2 →
∫
Z

|u∞|2.

Recalling supX |ui| < C̃3 < +∞ and X has finite volume, so for a small ε > 0, we have∫
X\Z
|ui|2 < ε,

when Z is big enough. Thus 1 ≥
∫
Z
|u∞|2 ≥ 1− ε. So, we have

u∞ = const. 6= 0 a.e..

In the following, we will follow Wang and Zhang’s arguments in [24].
Suppose u∞ = C∗ > 0. Choose 0 < ε < C∗ and a non-negative smooth function

ζ : R→ R by

ζ(x) =

{
1, x ≥ C∗;

0, x ≤ ε.

Choose ι0 such that ι0 >
2
ε

and ε e
ι0ε

ι20
> sup(ζ). Then for x > ε and ι ≥ ι0, we have

ζ(x) ≤ sup(ζ) < ε
eι0ε

ι20
< ε

eιε

ι2
< x

eιx

ι2
.

Clearly, the above inequality holds for 0 < x ≤ ε. Having in mind that u∞ > 0, thus
ui > 0 provided i is sufficiently large. Thus we have

ζ(ui) ≤ ui
eιiui

ι2i
,

for large enough i. Therefore,∫
X

ζ(ui)(−h) ≤
∫
X

(−h)ui
eιiui

ι2i
≤ −

∫
X

uik

ι2i
,
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where we used (2.11). Since L2
1(Z) ⊂ L2

0,b(Z) is a compact embedding, where L2
0,b = {f ∈

L2(Z)||f | ≤ b a.e.} and Z is an arbitrary subset of X. Then ui → u∞ strongly in L2
0,b(Z)

for some b. Therefore∫
Z

(−h) =

∫
Z

ζ(u∞)(−h)

= lim
i→+∞

∫
Z

ζ(ui)(−h) + lim
i→+∞

∫
Z

{ζ(u∞)− ζ(ui)}(−h)

≤ lim
i→+∞

∫
X

ζ(ui)(−h)

≤ 0.

Since h ≤ 0 and h is not identically zero. We thus get a contradiction, so we must have
u∞ = C∗ < 0.

On the other hand, from (2.11), we have∫
X

C∗k =

∫
X

u∞k = lim
i→+∞

∫
X

uik ≤ lim
i→+∞

∫
X

huie
uiιi → 0.

This contradicts the assumption
∫
X
k < 0. So we have proved that ‖fε‖C0 is bounded

uniformly when ε goes to zero. By standard elliptic estimates, we obtain, by choosing a
subsequence fε must converge to a smooth function f∞ in C∞loc-topology as ε → 0, and
f∞ satisfies the equation (1.4). This completes the proof of Theorem 2.3.

�
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