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Abstract: Itwill be showed based on the ground of pure reasoninad classical spacéme as
derivedfrom Einstein’s Field Equation($$ notin conformity with anexactrelativistic theory of
Gravitation(surprisirgly!), contrary to usual beliefAlso it signs for a distanegcale, for which
the exact nature of spatime, and as found from FieBHquatims must have a significant
discrepancybetween themAnd most importantlythis will be showed WITHOUT using any-ad
hoc basis assumption or hypothesisuatestedheories.Only known and unambiguous laws

of Physics will be usedn a coherent and consistent manner to arrive at thisonclusion The
author strongly believes in the fact that all deep and beautiful things in nature must be simple
enough! Therefore simplicity has been tried at best to preserve everywhere. Firshjgisuce
will be proved for Schwarzschild spatime, one of the simplest solutions of Einstein’s Field
Equation(s). Later same will be shown for other known spiaees, pointing to the fact that the
trouble is not inherent in solution(s), but in the demuation (EFE) itselfFinally experimental
support towards this proposition will also be presented; it will be showed that, the key
ingredient (of a relativistic-theory of gravity) which is proposed to be missing in General
Relativity, if we include its effect correctly to the solutions of the fieldequations, it can
properly describe some gravitational anomaly quantitatively ot describable by GR), long
been superseded from Scientific Community.

In 1915, Albert Einstein published his General TheorRefativity'?, which is the most accurate
theory of gravitation known still. Certainly a great deal of work has been spent for extending his
theory for incorporating additional facilities, like in KaluKdein theory, Scalail ensorVector
theory, Supergraty etc., though (so far as | kngwhere’s still not anyenoughevidence to
consider any of thersuperiorto that of Einstein. Even works are in progress to quantize General
Relativity from different approaches like Causal dynamic triangul@johoop Quantum
Gravity® etc. Though a “true” quantized version of GR still appears to be outside the scope of
present research.

A subtle property of a Relativistic Gravitation:

One crucial property of a gravitational field is thamitistbe a selinteractve field (We shall
argue below) This is a feature which is not shared with electromagnetic field, but certain
classes of noabelian gauge fielf& Roughly speaking, by seifteracting field we mean, a
field which also interacts with self, or in other nde field itself may act as its source. Even
outside the regime of GR, one can easily guess why gravitational field should-in¢esatitive.
Before the advent of special relativity, masmsd energy were separate entiti@ut special
relativity reconciéd them in a unified framework stating them to be equivalent. In Newton’s law
of gravitation, mass is coupled to gravity. But if energy is equivalent to mass, then all forms of
energy should also be coupled with gravity, including energy of gravitatimhalitself! Since

GR is a relativistic theory of gravity, its solution therefore must showirgelfaction. Now
given this fact, is it possible that in arelativistic theory of gravitation, gravitational
potential (or field) should fall off exactly in a similar way just like anon-relativistic theory?



From a priori reasoning, it's not. Since as we move toward the gravitating object, there is more
and more field to intact with itself, making the field growing in a faster rate than the non self
interactive(or nonrelativistic) field, makinghe functional dependeneery different.Hencewe
conclude the following:

It is obvious that a gravitating object in GR shoulcewer give birth of a potential which grows

(as we move towards the source) at the same spatial rate as a Newtonian one, rather it's
obvious to grow rapidly, if GR is a correcelativistic theory of Gravitation at an arbitrary
scale.Thus potential can beonsidered as a fingerprint of selhteraction!

So far we have provided linguistic argument of the abowegsition we arrived. Now we shall
check if our intuition is correct from mathematical viewpoint.

tApart from its property of finite propagatieelocity as that of light

Making Newton’s Gravitation Selinteractive
The Lagrangiardensity for Newton’s Gravitation is given by,
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Here Ux,t) is some source of Gravitation. Now if we consider a gravitatibelal, which is

selfcoupled and source function due to matter is zero everywhere (except the origin), then the
Lagrangian can be written as,

8332( fot)) o) 5(

Now the EL equations give,
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Using suitable boundargonditions, we can writdhe solution M) in a nice form:
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Clearly this potential agreewell with Newtoniarmpotential M G—M atr G'Z/I
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this potential together with the Newtonigotential (with c=1, GM=1) we can clearly find the
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difference which becomes more and more prominent at the V|C|n|tcy;—9f:
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This graph clearly shows thtte potential of aelf-interactivegravitational field must grow at a
faster spatial rate, more and more we move towards the grawsatimge. Clearly, any
relativistictheory of gravitatioomustproduce thifeatureof the potential we just observebhe
validity of the d@ove potential will be found when the experimental consequences of our
proposition will be discussed.

Connection between metric of a given spaoee and
gravitational potential:

We can make the following conclusions based on our proof:

1) GR must be aelfinteractive theory of gravitation, if it’'s an exact relativistic theory (in
classical domain)

2)A seltinteracting potential of gravitation caxeverbe Newtoniarone, rather should grow at a
faster rate as one moves to gravitating object, owing ® fdrct that field of gravitation is
coupled to itself.

Now an exact solution of GR, must therefore give birth of a gateracing potential
(Fortunately we can calculate potential from the mEtras we shall see). Otherwise it miestd
to the fact thait’s not in conformity withthe properties of relativistic gravitation.

Now let’s take a general spherically symmetric static metric, which can be written as,
d edt e® df A(dP sin? T3
Now we cosider equation(s) of geodesic,
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We are using here c=1. Sis is d WNow we imagine an object freely falling in a spherically
symmetric gravitational field from infinity. If we can calculate the work done by the field when



the object is at some point rthen clearly it will be the potential at that field, which will be
simply the integral of the proper acceleration over radiadi@bnate. So we get,

With J o 0, the integral becomes,
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Wheref(r) Q ', g(r) Qe “ands %/ This integral is equal to,

ttTFor our purpose, it is enough to do so at the Unot0 . This is justified, because sklfinteraction is inscribed
in the metric, the potentimhustbehave differentifrom the Newtonianirrespective ofts linear or agular motion
(Potential, beingort of energy, we can always define even in framework of Ed&t)similar reason, usirgpherical
symmetry is also justified.
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This is a Bernoulli's equation, which can be readily solved to yield,
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Here

| F(r)dr
Hence we get,
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Now inserting ¢ and C, N becomes,
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Concerning Potential of Gravitation in various space
time’s :

Exterior Schwarzschild Solution:

The Schwarzschild (ext.) metric is given by,
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Hence we get,

o § 26M
© T
e i
©

1

2GM
ro -1

Subgituting these in expression &f, we get finally

M G_M k(k E)
r 2

This is simply the Newtonian potential, with an additive cong(aiitich can be always
eliminatel having no obseable effecth\ll our calculations simply lead to the fact that
Schwarzschild metric involves no seiteraction in the gravitational field, follang the
argument we madeT he potentialdoesn’tclearly show any special character of gravitational
interaction at short distance, which is expected due to itsistdfactive nature, as we proved
before.

Interior Schwarzschild Solution:

As is well known, there is another kind of Schwarzschild Solution valid in the interior of-a non
rotating body consisting soniecompressible fluit?:
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with X? %l’ L being density of matter. By slightly rearranging, we can also write this as,
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r, and r being value of “r” coordinate on body’s surface andvgatzschild radius respectively.
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The Gravitational Potential corresponding to interior metric becomes,
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The potential from exterior metric is
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Now equality of these twol's (potential must be single valued) r r,clearly demands that
“d” must be zero (since “r" is a variableshereasr_,r are arbitrary parameters). Hence, the
potential in the interior of a mass distribution becomes (neglecting the coidgnt
1r7r
M = 3
21,

Now this is simply the NewtoniaRotential formula for the interior of a spherical mass of
constant density of radiug . Hence again, no difference is being found in the potential from that

of Newton'’s theory, even in the presence of matter, which could show up angteedttion
effect, the key ingredient of a ativistic theory of Gravitation.

ReissneNordstrom Soltion:

The ReissneNordstrom metric @,
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from which the potential comes out to be,
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which shows a differenbehaviour of the potential arou ASt But this is simply due to
electromagnetic coupling of gravity, rather than a-sgéfraction effect we are in search of; that
2
can be easily checked letting the electromag+egiigling constantf—sgo to zero (clearly any

seltinteraction effect of gravity must not vanish if we let artlger parameter go to zero other
than gravitational one), in which case we get back usual Newtonian Potential.

Kerr-Solution:

The Keremetic®” is written as,
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where ' r? 2GMr a®, 6 r? a’cos’7anda &

Clearly this metric deviates from spherisginmetry, being the solution axisymmetric due to the
presence of angular momentum. But following our previous argument, as JiroitOwill
suffice our purpose, we can take the zamgularmomentum limit of KerSolution:
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which is simply the SchwarzschilBolution(exterior) for a mass M. Hencesopeeding like
before, wearrive at the same Newtonian result.

Kerr-Newman Stution:

The KereNewman metri® is
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Clearly atJ o 0, this solution merges with ReissAdordstrom metric, and we already
discussed this case.

Cosmological Solutions:

The famous cosmological solutions of EFE e.g. Einstein’s universgitter’s universe, FLRW
universe, all can be written in the fdfin
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In this metric, though a(t) is a time varying sefdetor (in general), it is enough to consider the
solution at a particular time, since selferaction, if present, should persist at each moment; it
can’t disappear and reappear at random!

The potentiabecomes,
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which is again a Newtaolike potential inside a sphere.

From the above consideration we find, no spheriesylymetric solutiofor any
solution,consequenflyof Einstein’s Field Equations gives birth such a potential, which is
radically different from Newtonian one, carrying tfiegerprint of selfinteraction.Hence,we

are to arrive at the conclusion that Einstein’s Field Equations cannot provide anetatagstic
descripion of the GravitationaField, the seHinteraction being absent in the theory.

Concerning disturbindeature of energynomentum
conservation in Einstein’s Field Equation(s):

The fact that, the same trouble is being manifested in each of the solutions of the field equations
convinces that there is some issue in the key equation itself. Clearly all of them are solutions of



G,, 89 .. Hence, one gets the consdiva of energymomentum when a gravitational field
IS present,
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In this form, this does not express any conservation 48w This is because the integral
I*,/ gd$S becomes conserved only if the condition,
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is satisfied, which is not clearly same as the condition above. Such an error is related to the fact
that in a gravitational field, the four momentum of the matter alone should not be conserved; the
total four momentum of matter plus gravitation field musicbnserved, which is not included in

the stresenergy tensor of Einstein’s Field Equations. Hence we see, this is the inherent trouble

which is giving rise of “incorrect” spae@me, in General Relativity.

We can estimate a distanseale at which onean expect a significantly different result between
spacetime given by EFE and actual spaaee. In the case of interigschwarzschild solution,

we take Ur) as stressensor componeiit’,. Clearly we should expge a large discrepancy,
when this L will be comparable to gravitational energy density. The gravitational energy density
around a mass “m” can be estimated as (in vacuum),
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Now ifat r r,, the energsdensity of matte% is same as the density of the gravitational
C

field, we get, Thus at distances of order S¢rzschildRadius, the solutions of EFE
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should be significantly incorrect.

Concerning experimental verifications:

From the Schwarzschild metric, the usual geodesic equation of motion for planets can be written
as,

u" u P§u2
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with u fsandP r;; , Where r, is Schwarzschild radius of the Sun and J is angular
r

momentum per unit mass of the planet. Here a “prime” denotes the differentiation with respect to
azimuthalanglel .

As is well known, the secorgrm at the r.h.s. of the above equation gives the second
approximation to the Newtonissolutionu, A1 ecos |). The complete solution can be
written as,
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Hence the perihelion precession per revolution turns out 3aSher 5.01866u 10 radians per
revolution or 42.98 arc seconds per century.

It is widely believed by Scientift€ommunity that this amount of perihelion precession due to
spacetime curvature caused by Sun is in complete conformity with experimental data. The
perihelion pecession of Mercury per Julian Century is found to be 52041 arc seconé?.
Precession due to gravitational effect of other planets are calculated to be 531.9 ar¢'8econds
and General Rativity gives 42.98 arc secondsumming we get, 574.88 aseconds which is in

well conformity with experimental data.

But there’s an important fallacy in the game! We are to emphasize the fact thamlyhe
observable number related to perihelmmecession is the number 5741D91. We can’t
observe separatethe precession due to planets and precession due to General relativity by our
instruments; instead we calculate those numbers to make ourselves convinced that their sum
matches with observation. So we shall attempt to review those calculations once more.

The calculation of the number 42.98 arc seconds originated from GR, we already discussed.
What is left, is the calculation of the number 531.9 arc seconds, which comes from Newtonian
effect of other planets. The obvious approximation which is used tolatdhe perturbations

due to the other planets, can be said “gitmnet model approximatioft®.

If Cis the angle between two consecutive apsis in the orbit (at which radius vector assumes an
extremum value), we can writ8
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Here (4is the contribution from the Sun ar{@ 3 is the contribution from other planet§ 35 is
written as,
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(Here “m” and “a” is the mass and radius of the Planet conceRad the radius of-th planet
contributing to precession an@is its linear mass density)

The rate of precession is obtained as,

Z %S 531.%rcs /century

P being the orbital period ofercury.

In the above calculation, actually contributions up to Saturn have been taken, the outer planets
being less massive and more distant, giving no significant contribution. However, if we add the
contributions from Uranus and Neptune, the value tesoclose to 532.08 arc seconds/century.

Invalidity of the RingModel:

There is no doubt in the fact that, taking all planets as rings, we made a strange approximation, to
be able to do the calation by hand. But fortunately, at present tim&ng poverful softwares,

we can well accomplish all such calculations very exactly, without any requirement of strange
approximation. It is possible to determine the perihelion precession rate directly from solutions
of the differential equations of the systemywasshall see below.

First let's check, how far the riaglanet assumption works in the calculation of perihelion
precession of a planet. To do this, we shall first numerically solve the differential equations of a
toy solar system in two dimensions caniag “Sun” and two planets “Mercury” and “Venus”,

and shall find perihelion positions of “Mercury” over time using codes showed below (clearly,
no approximation will be involved to find the perihelprecession rate). We shall use
“Wolfram-Mathematica” ¢ solve the problem. We attach the script belath reference of the
parameters

GM GM
7= G=1; M=50; M1 =1/100; M2 = 2; R1 = 1; ec1 = 0.4; VI:J (1+ecl) R_ jR2=7;5ec2=0; V2:1’ (1+ec2) — ; period = 600;
1 R2

result = NDSolveH

e GMx1[t] GM2 (x1[t] -x2[t]) e GMy1[t] GM2 (y1[t] - y2[t])
X - - - y - _ :
(Mt syae1?) 2 (0art] -xart))? + (yafe] -y2(en)?) ¥’ (Rt ey [6)7) 2 ((xA1t] -x20t])? s (yalt] -y2(t))2)
Mx2 M1 (x2[t] - e
X2 [t] = GMx2[t) GM1 (x2[t] - x1[t]) 2 = GMy2[t) GML (y2[t] -y1[t])

l@rtenrt?) (el - s (21t -yae)?) T prti?ey2rt}) (0l -xalt))? + y2rt] -yafe?)2

x1[0] = R1, x1' [0] = 0, y1[0] = 0, y1'[0] = V1, x2[0] = R2, x2' [0] = 0, y2(0] = 0, y2'[0] = vz}, {x1, y1, X2, y2}, {t, @, period}, MaxSteps-»mm];

76)= ParametricPlot[{Evaluate[{x1[t], y1[t]} /.result], Evaluate[{x2[t], y2[t]} /.result]}, {t, O, period}, PlotPoints - 500]

The parametric plot gives the orbits:



The orbit of “Mercury” is clearly showing here a perihelion precession. The rate of perihelion
precession can be obtained if wi#tach a “periheliotiinder” code with the above script, which
exploits the fact that the “toward velocity” of a planet suffers a change in sign (from negative to
positive) when it just crosses the perihelion position. For that we first write a codeaairdto
velocity” of the planet together with the angle of revolution in arc seconds:

VelTud([t ] := (xL[t] X1'[t] +yA[t] yl'[t])/\}xl[tlztyllt]z J result[A]; Anghrcsec(t ] := ArcTan[xL[t], y1[t]] /7 180 3600 /. result[1];



The perihelion finder code we use, is as follows:

Pering = {}; StdPeriod = 27/ (R1/ (1-ec1))?/ (GM) ;
prevMidT = @; firstAng = True; prevAng = 0; startAng = 1/ 3600 AngArcsec[0]; tt = 0; divn = 0.001;
While[tt < period - divn,
While[tt > divn && VelTwd[tt - divn] > 0, tt -= divn];
While[tt < period - divn && VelTwd[tt + divn] < 0, tt += divn];
If[firstAng == False, lowerT = tt - divn; upperT = tt + divn, lowerT = @; upperT = 2divn];
middleT = lowerT + (upperT - lowerT) (VelTwd[lowerT] / (VelTwd[lowerT] - VelTwd [upperT]));
If[middleT > © && middleT < period,
thisAng = AngArcsec [middleT]; ,
thisAng = AngArcsec[lowerT] + (AngArcsec[upperT] - AngArcsec[lowerT]) (middleT - lowerT) / (upperT - lowerT) ;
15
thisAng /= 3600;
AppendTo [PeriAng, {middleT /60, thisAng - startAng}];
tt = middleT;
If[firstAng == False, StdPeriod = middleT - prevMidT] ;
prevMidT = middleT;
firstAng = False;
tt += StdPeriod;
]

The validity of the above code can be easily found, if we solve the system with only “Sun” and
“Mercury” with same parameters and find the slope of perihelion line, wdiiegds a slope of
very nearly zero:

nj72)= ListPlot [PeriAng, Joined - True]

n[72)= Normal[LinearModelFit [PeriAng, x, x]]1[[2]] /x
Dut[72)= ©.000284285

Now we plot the perihelion position vs. time of our original system, we get like following:
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or

Inj22)= Normal [LinearModelFit [PeriAng, x, x]11[[2]] /X
Out[23)= 4.28025

The line of best fit gives the average perihelion precession 4.28 (degrees/minute).

Now we shall construct a second system with almost exactly same with the previous one, but this
time the mass of “Sun” will be seven units. Then according to “Ring ptaadel” we should

clearly get again perihelion advance of Mercury with quite an increasedIratlee (expression

of Uin the previous section, will change to some extent due to changg in

Now we get the orbit of mercury as following:



with periheion plot as below:

e
Out[91}

ni21= Normal [LinearModelFit [PeriAng, x, x]]1[[2]]/x
Out{32)= -4.22939

Hence we see\@r a sufficient amount of time, the perihelion is recessing instead of getting advanced
in an increased rateand this clearly exhibits that ring model approximation is not a valid approximation
in general, which clearlcan’t produce any such effect of recession of perihelion, as may occur in reality,
as showed by exact calculation.

Now we shall consider a case, when the orbital plane of “Venus” is not in the same plane of “NMercury
but tilted at a certain angle. Fthat purpose, we use usual orbit transformation equations in three
dimensiongo have desired tilted orbit.



nie}:= Gg = 13
Msun = 50;
Mmercury = .01; RPmercury = 1; Emercury = 0.4; wmercury = 0; Qmercury = 0; wmercury = 0;
Mvenus = 2; RPvenus = 7; Evenus = 0.0; Lvenus = 60; Qvenus = 0; wvenus = 0;
Pperihel = {RPmercury, RPvenus}; Peccen = {Emercury, Evenus};

We expect get the same rate of precession from ring Planet maslel zero inclinatiofthe expression
of Ucontains no information regarding inclination of orbit). What we get instead is like following:

Inj258)= ListPlot [PeriAng, Joined - True]

(]
of

2 < C

n259):= Normal [LinearModelFit [PeriAng, x, x]1[[2]] /x

Jut[359)= -5.08956

Again the perihelion is recedinig, an interesting pattern! Clearlye see the orbital inclination is also a
very important factor to determine the precessi rate, not accounted in the “Ring Model".

Solving the Real Sol&ystem:



Solving numerically our toy systems, we showed why the “Riaget” model should not be
considered as a good approximation to calculate-na@ativistic precession rate of plareetand
hence our expectation to have same amount of precessie (nonrelativistic) as predicted
by the model gets pulverized. Therefore now we attempt to determine the perihelion
precession rate of real Mercufyaking into account all the orbital eleents)using real dat&®
of the Solar system.

Gg = 6.674 10'“‘; xgravitational constantx
OneYear = 31557600; (+in secondsx
Msun = 1.9885 - 10*°;

Mmercury = 3.3011 - 102;
RAmercury = 5.791 - 10'%;
RPmercury = 4.600 16“;

Emercury = 0.20563069;

Pmercury = 87.969;

Lmercury = 7.00487;

omercury = 48.33167;

wmercury = 29.12478;

Mvenus = 4.8675 - 10%*;

RAvenus = 1.0821 10“;

RPvenus = 1.0748 - 10*';

Evenus = 0.00677323;

Pvenus = 224.701;

Lvenus = 3.39471;

Qvenus = 76.68069;

wvenus = 54.85229;

Mearth = 5.9723 - 10** + 7.346 - 10%%;
RAearth = 1.4960 - 10'*;

RPearth = 1.4709 - 10'*;

Eearth = 0.01671022;

Pearth = 365.256;

cearth = 0.00005;

Qearth = -11.26064;

wearth = 114.20783;

Mmars = 6.4171 - 10°>; RAmars = 2.2792 - 10*%; RPmars = 2.0662 - 10''; Emars = 0.09341233; Pmars = 686.98; tmars = 1.85061; Omars = 49.57854; wmars = 286.4623;
Mjupiter = 1.89819 - 10%7;
RAjupiter = 7.7857 - 10%;
RPjupiter = 7.4052 - 10'';

Ejupiter = 0.04839266;

Pjupiter = 4332.589;



Ljupiter = 1.30530;
Qjupiter = 100.556;
wjupiter = 274.1977;
Msaturn = 5.6834 - 10°%;
RAsaturn = 1.43353 - 10'%;
RPsaturn = 1.35255 - 10*%;
Esaturn = 0.05415060;
Psaturn = 10759.22;
tsaturn = 2.48446;
Qsaturn = 113.71504;
wsaturn = 338.7169;
Muranus = 8.6813 - 10%°;
RAuranus = 2.87246 - 10'%;
RPuranus = 2.74130 10“;

Euranus = 0.04716771;
Duranue - IAARE A4

Now firstwe write the acceleration equations in such a way, so that we can put the differential
equations in the form of arrays.

Unfortunately, while solving the equations, Mathematica doesn’t allewo have the required
precision in the calculation. To overcome this, we add a “ghost planet” H in our system, which
by no means affect the other objects in our calculatias §ne carclearlyfind in the code
containing the differential equations givéxelow), but it turns out that it only increases the



accuracy of the whole calculation to a very good amount, as weedse its distance from the
Surt. To include that, we write the acceleration code for it as above:

&ince when bodieare closer to on@nother,gravity changes more rapidly in smaller distance due to its inverse
square law, and Mathematicautomatically decreases its tirrstep.

Next we create arrays containing the planets’ masses and positions:

Then we write the initial conditions @fosition and velocity of the planets (including the “Ghost
Planet”), in proper orientatioifirst we choose the initial positions of the planets at their
perihelion; other cases will also be considered later)



Then we write the differential equations:

Together with assigning the initial conditions:



After doing all these, when we calculate the perihelpmecession rate (in the unit of arc
secondsyear) by a linear fit as beforese get the following:

The line fits very well (which is why we selde planet Mercury), as is manifested in the
following plot of the “FittedModel” together with data:



We tabulate several other slopes with some different ghpstameters( p R, / RPmercury:

Ghost Parameter Slopd Arcg year Average
0.345 5.29059

0.344 5.28972

0.343 5.29017

0.342 5.29022

0.341 5.29067 5.29028
0.340 5.2899

0.339 5.29057

0.338 5.29027

0.337 5.29113

0.336 5.28973

0.335 5.29

Now considering some other initial conditions, the precession rate as it comestabtlated
below:

Mercury | Venus| Earth | Mars | Jupiter | Saturn| Uranus| Neptune¢| Precession raig ads g
P P P P P P P P 5.29028
P A A A A A A A 5.2959
P A A P P P P P 5.29408
P P P A A A A A 5.28701
P 10° 20° 30° | 40° 50° 60° 70° 5.29099




In the last column, the angles are measured from the corresponding perihelia of the planets.

From the above table, it's quite conclusive that the precession rate is fairly independent to the
initial position of the planets at their orbits, being alwaysyelose to 5.29arcs/yehr

This precessicmate is almost 3.0&rcs/century less than predicted by RiBtanet nodel

(considering all planets§iven the observed precessioate 574.10 arcs/century to be correct,

it must be that due to Sun the perihefigorecession ree is nearly 45.1 arcs/centurwhich

certainly can’t be explained using General Relativity, which gives a precession rate around 42.98
arcs/century, as we saw above. We shall see below, surprisingly, that if thetsediction

effect is @ded in GR, as | proposed to be missing in it, can almost exactly account for this
discrepancy; which shows all our previous discussions were in the direction of truth. Hence,
there is neither any reason nor any requirement to doubt the result of WoHkkéathematica!

f'While calculating the precession rate from Horizon Ephemeris, one gets precession rate veryheaaity
predicted by ringplanet model, which is clearly not consistent with the conclusion we arrived above, leading the
fact that Horizon data is errones.

Correcting the Schwarzschigkeodesic:

We saw before, the NewtoniaRotential of Gravity when it seilfiteracts, is given by,

™M IGM -,
rc:2 4 rxct =

Mr) CZ§L
©

After expanding up to second order—|]5§|, we get
r

GM 1G’M?

) r 4 r&g?

Since at present we are concerned about gravitational effect at planetary distance, we can use
the relation,

2V
goo Il ?



Whence we can write,

2GM  1G*M?
rc2 4 r¥x?

Ooo 11

This second term, together with a nice factg1/4) is originated purely from seifteraction
effect of Gravity , and it's worth mentioning that it's never originated from the vacuum
2GM

rc’

solution of the field equations, which gives the valueggf exactlyto be %

When we use this newg,,, our equation of motion becomes (up to second order)

u"'u P = R

N w
AR

We already know theontribution coming from the second term at the right hand side of the
equation. To find the effect of the third term, it will be enough and easier to find the second
order correction of the equation,

u"'u P- 8

N

Writingu u, K )where u, is the familiar Newtonian solution and/ )is a small
perturbation coming from the new term, we findif ) satisfies,

M) ) % ’A ecos )
The particular integral gives the required correction, which is,
eP .
— Isin |
H( ) 8
The particular integral from Einstein’s equation gives the correction,
— P
H( ) %e Isin |

Hence the complete solution becomes,



- .1
u ALl ecosl) 13 Pe Isin || Rel ecosy§ 11—3P |
8 = © 8 1,

which gives the perihelion precession rag‘ceg4i‘or almost 1.08 times 42.98 arcs per century,

which is 46.4 arcs/century, 3.4 arcs/century more than predicted by GR, and explgingele
the discrepancy of 3.08rcs/century, the amount by which the neelativistic precession rate
must differ from the value of RirRBlanet model.

Conclusion:

| proved that description of spagene, as emerged from General Relativity is not in complete
conformity as expected from a relativistic theory of Gravitation, since in such a theory, gravity
must interact with self, which appears to be missing in GR, and hence thetapacgolutions

as derived from its field equations, are not correct (though they areecvto a very good
approximation, especially at larger distances). It was also showed, at which distzaleghe
discrepancy should be significant. Finally, the experimental proof of such a proposition has
been presented in which it was showed, the A@tativistic contribution to the precession rate

of Mercury is actually around 529 arcs/century (instead of 532arcs/century, as calculated from
“Ring Model”), as we get by numerically solving the differential equations of the Solar System in
“Wolfram Mathematica”, and in that case the relativistic contribution to the precession rate
should be around 45 arcs/century (instead of 42.98arcs/century), and can be described almost
exactly if the selinteractive correction is added to the solutions of GR, whietws our

proposition is in the direction of truth.
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