Zero Dark Matter and Zero Dark Energy

The origin of things

Gene H Barbee
Revised March, 2020
Is there an overarching theory that will finally allow us to fully understand nature? What is the universe made out of? Where do the laws of physics reside? What is space-time? Quantum mechanics applies at the small scale but the general theory of relativity is large scale gravitational theory. Are they compatible?

Cosmology discoveries provide useful clues for building a full model of nature. The core of the author's cosmology model is based on information from a mass model of the proton. This information represents reality through the Schrodinger equation. The proton model energy values describe space and time around the proton and scale to the universe since the relationships are everywhere the same. The beginning could have started with zero energy and probability 1 . Information processes I call the Mind of creation separated energy into equal and opposite parts. Probability 1 was separated into many ($\exp (180)$) neutrons each with probability ($1 / \exp (180)$).

A neutron \rightarrow proton mass model and cellular cosmology were combined into what the author believes is a first principles cosmology model that resolves many questions. Some of the current challenges in cosmology are listed below:

Flat galaxy rotation curves were observed in the 1930's by Dutch Astronomer Jan Oort. Most cosmologists today attribute the difference between observed flat and calculated declining Newtonian velocity curves to dark matter despite decades of failed efforts to identify it. There are other difficulties:

Recent WMAP [4] and PLANCK mission scientists believe neutrons and protons are only 4.6% of critical density (the total mass and energy in the universe).

What is dark energy and why is it 72% of critical density?
Understanding space and gravity more thoroughly than Einstein's general theory of relativity requires bridging small and large scale physics.

These are not easy problems to solve. Any claim regarding different percentages of critical density must address baryon/photon ratios that determine observed fractions of Deuterium, Helium3 and Lithium7. Different claims must also address conditions at equality of photon and mass density and the temperature anisotropy observed at decoupling (where the plasma clears and electrons can orbit protons).

Background

Apparent creation strategy

Start with zero energy, probability 1 and creative acts that separate information related to energy into equal and opposite components.

Note: Shannon [6] defined information is a number N related to probability (p). The equation is $(\mathrm{N})=-\ln (\mathrm{p})$ where \ln means "the natural logarithm". By this equation there is zero information in probability 1. Information is created when p is separated into $\mathrm{p}=$ one thing/everything. Example: if probability $=1 / 2, \mathrm{~N}=-0.693$.

Creation appears to be a two level process; (1) information separation and (2) use of the information in a quantum mechanical equation to represent energy reality.

Level 1---information. It appears there was original information (the Mind of creation) that we learn about by "reverse engineering" energy data with Shannon based probability [19]. Information specifies mass, kinetic energy and fields of the neutron (that decays to the proton, electron and anti-electron neutrino).

Level 2- energy based reality through the Schrodinger equation.
Schrodinger equation derivation [5]:
$1=\exp \left(-\mathrm{i}^{*} 1\right)^{*} \exp \left(\mathrm{i}^{*} 1\right)$. The imaginary number i is separation of 1 into two parts.
$1=\exp \left(-\mathrm{i}^{*} \mathrm{Et} / \mathrm{H}\right) * \exp \left(\mathrm{i}^{*} \mathrm{Et} / \mathrm{H}\right)$, where $\mathrm{Et} / \mathrm{H}=1$ means Energy*time/Planck's constant.
This equation is one basic equation for quantum mechanics. The components $\exp (-i * E t / H)$ and $\exp \left(i^{*} \mathrm{Et} / \mathrm{h}\right)$ are known as complex conjugates or wave functions. The result of the multiplication is Probability $=1$ but it represents perceived information about the energy components.

Note: $\exp \left(\right.$ power) means the natural number e to a power. Example $\exp (-0.693)=\mathrm{e}^{\wedge}(-0.693)=$ $1 / 2$, where e is the natural number 2.712 .

Level 1 probabilities $(\mathrm{p}=1 / \exp (\mathrm{N})$) define energy $\mathrm{E}=\mathrm{e} 0 * \exp (\mathrm{~N})$. The Schrodinger equation uses $\exp \left(i^{*} \mathrm{Et} / \mathrm{H}\right)$ for the mass and kinetic energy components and $\exp (-\mathrm{i} * \mathrm{Et} / \mathrm{H})$ for field energy components. After addition of energy components, these values are multiplied. For example if the energy components are for the proton, multiplying the wave functions (by design of the proton system of components) is probability 1 . This represents our reality of the proton at level 2 based on its component energies, replete with space time properties. The mass plus kinetic energy components are positive and the field energy components are equal and opposite.

The energy plus mass components of the proton are improbable $\mathrm{p}=1 / \exp (90)$. Likewise the field energy components of the proton are improbable $\mathrm{p}=1 / \exp (90)$. These are probability separations of $1=\exp (180) /(\exp (90) * \exp (90))$. The related energy separation is $0=$ mass + kinetic energy minus field energy.

Step 3-create the electron and the electromagnetic field by neutron decay.
Step 4---fuse neutron and protons into atoms that create sophisticated electron orbitals.
The universe consists of $\exp (180)$ proton-electrons that each have a probability $1 / \exp (180)$. Conceptually the particles are part of an entire information system (probabilities) that represent the energy of each proton-electron. These energies are $\mathrm{Et} / \mathrm{H}=1$ in complex conjugates (wave functions) $\exp (\mathrm{iEt} / \mathrm{H})$ and $\exp (-$ $\mathrm{iEt} / \mathrm{H})$. After addition of all the $\exp (180)$ individual proton energies, the overall complex conjugate multiplication equals 1 . This GREAT probability 1 represents the universe with overall zero energy.

The Proton model

Component probabilities for the proton and electron are listed in Appendix 1 of this document. They are called "Fundamental N values". The probability core (level 1) is defined by N= $-\ln (\mathrm{p})$. Energy is defined by $\mathrm{E}=\mathrm{e} 0 * \exp (\mathrm{~N})$. The Schrodinger multiplication ($\mathrm{iEt} / \mathrm{h}$) times ($-\mathrm{iEt} / \mathrm{h}$) represents energy reality.

The model gives the mass and kinetic energy of the proton 938.27201 MeV (in red) accurate to within 2e8 MeV . This value is sum of component energies values above it. The fundamental N values totaling 90.0986 and related probability $7.42 \mathrm{e}-40$ are at the bottom of the two columns. There is energy outside the proton, listed on the left hand side under the Proton mass and the total energy 959.985 MeV is at the bottom of the two outside columns (equal and opposite). The other energy components of the model underlie the laws of nature [11].

Energy values for the four interactions in nature originate in the table. If the original information had been different the laws of nature would be different.

The equal and opposite electromagnetic fields are created from zero by separation when $27.2 \mathrm{e}-6 \mathrm{MeV}$ is borrowed from the proton. There are other separations and the "borrowed negative values" marked in grey have positive counterparts.

The subject of interest here are the laws that underlie cosmological observations. There are only a few values in the proton model (highlighted in red) required for an excellent cosmology model.

1) The gravitational field energy 2.801 MeV .
2) The value 10.15 MeV near the bottom of the diagram is the kinetic energy of the neutron at the big bang. Gravitational attraction associated with 2.801 MeV resists expansion, converting kinetic energy to potential energy (the subject of cosmology [12]).
3) The value 10.15 MeV labelled strong residual kinetic energy (fusion energy).
4) The value 0.11 MeV is the energy required to initiate fusion.

Quantum circles

Space and time originate with a quantum circle related to the gravitational field energy 2.801 MeV .

$\mathrm{Et} / \mathrm{H}=1$ with $\mathrm{t}=2 \mathrm{pir} \mathrm{r} / \mathrm{C}$ leads to $\mathrm{r}=\mathrm{HC} /(2$ pi)/E. $\mathrm{H}=$ Planck's constant=4.14e-21 MeV-sec.
$\mathrm{r}=\mathrm{HC} / 2 \mathrm{pi}=1.973 \mathrm{e}-13 / 2.8011=7.0445 \mathrm{e}-14$ meters
Fundamental time increment $=2$ pi $\mathrm{R} / \mathrm{C}=\mathrm{H} / 2.801 \mathrm{MeV}=1.476 \mathrm{e}-21 \mathrm{sec}$
Fundamental time*C defines fundamental space increment. Space/time=C.
The quantum radius $7.045 \mathrm{e}-14$ meters and time $1.476 \mathrm{e}-21$ seconds are fundamental to space and time. Time progresses in increments of fundamental time around the quantum circle.

There is a space-time-energy representation of the GREAT probability 1 . The huge number of protons $\exp (180)$ and their associated space are contained in a sphere we call the universe. The space associated with each proton is called a quantum sphere (a quantum circle in three dimensions). If you place $\exp (180)$ quantum spheres in a large sphere, time and distance for the universe are defined.

The spheres above are empty but the volumes are equal. The large volume is $\exp (180)$ small volumes, yielding the relationship $\mathrm{R}=\mathrm{r}^{*} \exp (60)$. We will show below that these volumes increase with time, expanding the universe. Time will be measured around the large circle. Distance around the circle is C*time. "Around" is a fundamental concept in cosmology.

Cellular Cosmology

If mass is distributed uniformly within a sphere the mass toward the outside will be in a preferred position. Since Newtonian gravity is based on central mass, the mass toward the outside will move toward the center. This would make gravitational laws non-uniform throughout the sphere. A model with no preferred position places the mass on the surface of a sphere. But it doesn't have to be a large sphere. It can be many small spheres that have the same surface area. The author developed a concept called cellular cosmology that defines space as $\mathrm{N}=\exp (180)$ spherical "cells" each with a proton.

Gravitational relationships define geodesics that are surfaces where particles orbit. Equating a large surface area with many small surface areas yields the following relationship discussed below under the heading "Cellular Cosmology": Area= area*exp(180) yielding $\mathrm{R}=\mathrm{r} * \exp (90)$

Cellular cosmology obeys the rule "there can be no gravitational preferred position for mass" because all mass is on the equivalent of a large sphere. The number of cells in large R (representing the universe) is $\exp (180)$ [Appendix 2].

$$
\begin{aligned}
& \text { Area }=4^{*} \mathrm{pi}^{*} \mathrm{R}^{\wedge} \wedge 2 \\
& \mathrm{Area}=4^{*} \mathrm{pi} \mathrm{i}^{*} \wedge 2^{*} \exp (180) \\
& \mathrm{A} / \mathrm{A}=1=\mathrm{R}^{\wedge} 2 /\left(\mathrm{r}^{\wedge} 2^{*} \exp (180)\right. \\
& \mathrm{R}^{\wedge} 2=\mathrm{r}^{\wedge} 2^{*} \exp (180) \\
& \mathrm{r}=\mathrm{R} / \exp (90) \quad \text { surface area substitution } \\
& \mathrm{M}=\mathrm{m}^{*} \exp (180) \text { mass substitution }
\end{aligned}
$$

For gravitation and large space, we consider velocity V , radius R and mass M as the variables (capital letters for large space and lower case r , v and m for cellular space) that determine the geodesic (the radius with balanced inertial and gravitational force). G large space $=\mathrm{G}$ cellular space with mass substitution $\mathrm{M}=\mathrm{m} * \exp (180)$ and surface area substitution is $\mathrm{R}=\mathrm{r} * \exp (90)$.

At any time during expansion		
Large space		Cellular Space
		With substitutions:
		$\mathrm{R}=\mathrm{r}^{*} \exp (\mathbf{9 0})$ and $\mathrm{M}=\mathrm{m}^{*} \exp (180)$
$\mathbf{R}^{*} \mathrm{~V}^{\wedge} \mathbf{2} / \mathrm{M}=$	G=G	$\mathbf{r}^{*} \exp (90)^{*} \mathbf{V}^{\wedge} \mathbf{2 / (m}{ }^{*} \exp (180)$)
$\mathbf{R}^{*} \mathrm{~V}^{\text {® }}$ //M $=$	G=G	$\left(\mathbf{r}^{*} v^{\wedge} 2 / m\right) / \exp (90)$

The extremely small value $1 / \exp (90)$ is the coupling constant for gravity. When measurements are made at the large scale to measure G, the above derivation indicates that we must multiply cellular scale values $\left(r^{*} \mathrm{v}^{\wedge} 2 / \mathrm{m}\right)$ by $1 / \exp (90)$ for equivalent G . Geometric and mass relationships give the cell "cosmological properties". Velocity $\mathrm{V}=\mathrm{v}$ for small cell orbits and large scale cell orbits.

Calculating the gravitational constant G

Important cell properties quoted above originate in a Schrodinger based mass model of the neutron (that decays to a proton, etc.) [Appendix 1 and 2]. The specific values 2.801 MeV for the gravitational field energy and 10.15 MeV of kinetic energy allow the gravitational constant to be calculated.

The neutron at Velocity $\mathrm{V}=(2 * 10.15 / 1.67 \mathrm{e}-27 * 1.6 \mathrm{e}-13)^{\wedge} 0.5=4.4 \mathrm{e} 7 \mathrm{~meters} / \mathrm{sec}$ circles the small radius $7,045 \mathrm{e}-14$ meters producing inertial force $\mathrm{f}=3.78 \mathrm{e}-38 \mathrm{Nt}$ opposing the 2.801 MeV gravitational field. The gravitational constant $G=F R^{\wedge} 2 /(\mathrm{M} / \mathrm{g})^{\wedge} 2=6.69 \mathrm{e}-11$ [16]. The left column below determines the gravitational constant [9][10] based on the cell above containing one neutron with kinetic energy 10.15 MeV . The second column indicates that G is almost constant throughout expansion of the universe except for small effects related to gamma.

Note: as expansion occurs KE decreases with $\mathrm{R}^{\prime} / \mathrm{R}$ and gamma (g) becomes 1.0. G was slightly lower at the beginning but approaches the value above.

In three dimensions the relationships give G for the surface of a sphere (or the equivalent area of many small spheres). If not it violates the "no preferred position" principle.

Potential energy defining relationship for \mathbf{G}

Expansion is resisted by the force of gravity. Over time, kinetic energy is converted to potential energy and KE is now $2 \mathrm{e}-12 \mathrm{MeV}$ (but in addition there is some energy release from stars). $\mathrm{PE}=20.302 \mathrm{MeV}$. (Excerpt from the Proton model is shown below).

	E=2.02e-5*, Diff KE		N	P	$\mathrm{N} \longrightarrow \mathrm{E}=2.02 \mathrm{e}-5^{*} \exp (\mathrm{~N})$			
Proton M	938.27206	MeV				MeV	MeV	
E/M field	$2.72 \mathrm{E}-05$		0.296					
electron	0.511		10.136					
Kinetic E	0.111							
v neutrino	0.671		10.408					
t neutrino	0.740		0					
e neutrino	0		0					
Fusion release		0				E*Pfusion=	10.151*(1	-exp(-2/2))
Expansion KE	outside	2.00E-12						
Expansion PE	Proton	20.302					Grav Field	Total
Total M+KE	959.9859	sum m+ke	90.10		90.10	959.986	2.801	

The total expansion energy is converted from kinetic energy to potential energy.
The defining relationship below for the gravitational constant G uses potential energy value 20.3 MeV from the neutron/proton models in Appendix 2. (Expansion of the universe starts with 10.15 of potential energy and 10.15 of kinetic energy but in the fully expanded condition each proton contains 20.3 MeV of gravitational potential energy. It is shown that G is simply potential energy $20.3 \mathrm{MeV}^{*}$ radius $7.045 \mathrm{e}-14$ m . It depends on the small factor $1 / \exp (90)$ from cellular cosmology, the conversion constant $1.6 \mathrm{e}-13 \mathrm{Nt}-$ $\mathrm{m} / \mathrm{MeV}$ and the mass of two attracting neutrons $(1.675 \mathrm{e}-27 \mathrm{~kg})$. Cellular cosmology is based on area equivalence $r=R / \exp (90)$ and $\exp (180)$ protons.

$\mathrm{G}=10.15124 * 2 * 7.045 \mathrm{e}-14 * 1.602 \mathrm{e}-13 / E X P(90) / 1.675 \mathrm{e}-27^{\wedge} 2$

6.69E-11 Grav Const Nt m^2/Kg^2

Cells contain protons and they allow us to understand the large universe with principles established at the small scale. This equation can also be written without the small factor $1 / \exp (90)$ and a central mass of $\exp (180) * 1.67 \mathrm{e}-27=2.49 \mathrm{e} 51 \mathrm{~kg}$ attracting a proton.

$\mathrm{G}=20.3^{*} 1.6 \mathrm{e}-13^{*} 8.59 \mathrm{e} 25 /(2.49 \mathrm{e} 51 * 1.67 \mathrm{e}-27)$

$\mathrm{G}=6.69 \mathrm{e}-11 \mathrm{Nt} \mathrm{m}{ }^{\wedge} 2 / \mathrm{kg}^{\wedge} 2$
The large circle has radius $7.045 \mathrm{e}-14 * \exp (90)=8.59 \mathrm{e} 25$ meters, consistent with gravity being a long range force. Gravity is determined by the large scale and cellular cosmology is the small scale equivalent. This provides an understanding of gravity and a bridge from the quantum scale.

Cells contain one proton each and they allow us to understand the large universe with principles established at the small scale. This equation can also be written without the small factor $1 / \exp (90)$ and a central mass of $\exp (180)^{*} 1.67 \mathrm{e}-27=2.49 \mathrm{e} 51 \mathrm{~kg}$.

$G=20.3^{*} 1.6 \mathrm{e}-13 * 8.59 \mathrm{e} 25 /(2.49 \mathrm{e} 51 * 1.67 \mathrm{e}-27)$

Why would this work? Solve the above equation for kinetic energy.
$k e=10.1=6.69 \mathrm{e}-11 / 2 /(1.602 \mathrm{e}-13 * 8.6 \mathrm{E}+25 /((2.49 \mathrm{E}+51) * 1.675 \mathrm{E}-27))$
$\mathrm{Ke}=0.5 * \mathrm{GMm} / \mathrm{R}$
But ke is also $0.5^{*} \mathrm{~m}^{*} \mathrm{~V}^{\wedge} 2$.
$0.5^{*} \mathrm{~m}^{*} \mathrm{~V}^{\wedge} 2=0.5^{*} \mathrm{GMm} / \mathrm{R}$
$\mathrm{G}=\mathrm{V}^{\wedge} 2 /(\mathrm{M} / \mathrm{R}) \quad$ and this reduces to:
$V=(G M / R)^{\wedge} .5$
But this is the velocity required to achieve an orbit. It is half the escape velocity. Our universe is built with the concept that a proton would orbit all the mass of the universe $(\exp (180) * 1.675 \mathrm{e}-27=2.49 \mathrm{e} 51 \mathrm{Kg})$ at a radius $7.045 \mathrm{e}-14^{*} \exp (90)=8.6 \mathrm{e} 25$ meters with original velocity associated with 10.15 MeV . According to the above equation, velocity would be reduced to $0.44 \mathrm{~m} / \mathrm{sec}$ at radius 8.6 e 25 meters because all the original kinetic energy would be converted to potential energy. We haven't expanded that far.

The large circle has radius $7.045 \mathrm{e}-14^{*} \exp (90)=8.59 \mathrm{e} 25$ meters, consistent with gravity being long range. Gravity is determined by the large scale and cellular cosmology is the small scale equivalent.

Expanding cells maintain G

Understanding that the gravitational constant G can be calculated with $\mathrm{ke} 0=10.15 \mathrm{MeV} /$ proton of kinetic energy in a cell of radius $\mathrm{r} 0=7.045 \mathrm{e}-14$ meters allows further development of cellular cosmology gravitational relationships. As kinetic energy decreases and potential energy increases each cell expands. Kinetic energy associated with each of $\exp (180)$ cells is related to pressure acting outward on the surface. This expands the universe (small m below for the proton $=1.67 \mathrm{e}-27 \mathrm{Kg}$).

G remains constant during expansion		
$\mathrm{ke} 0=10.15 \mathrm{MeV} /$ neutron		
$\mathrm{r} 0^{*} \mathrm{~V}^{\wedge} 2 / \mathrm{m}=\mathrm{r}^{*} \mathrm{~V}^{\wedge} 2 / \mathrm{m}$		
$(\mathrm{mv} / \mathrm{mV})^{\wedge} 2=(\mathrm{r} / \mathrm{r} 0)$		
$\mathrm{ke} / \mathrm{ke} 0=(\mathrm{r} / \mathrm{r} 0)$		
$\mathrm{r}=\mathrm{r} 0^{*} 10.15 / \mathrm{ke}$		

What is Dark Matter?

Example of a flat galaxy velocity curve

All of the following galaxy profiles (search Wiki for velocity curves) are nearly flat:

Caution about adding velocities

The example below is for a proton with kinetic energy that gains additional kinetic energy.
Kinetic energy $=0.5 * \mathrm{mV}^{\wedge} 2$ and nature conserves energy. This means that we may add two kinetic energy components and calculate a correct velocity from the total but we cannot add velocity components ($4 \mathrm{e} 7+4 \mathrm{e} 7=8 \mathrm{e} 7 \mathrm{~m} / \mathrm{sec}$) and then calculate kinetic energy. Gamma associated with $4 \mathrm{e} 7 \mathrm{~m} / \mathrm{sec}$ yields gamma $=0.991$. If there is an additional energy that also has gamma $=0.991$ multiplying gamma 1^{*} gamma2 yields a good approximation for gamma associated with the total energy.

m		$\mathrm{ke}=.5 \mathrm{mv} \mathrm{V}^{\wedge} 2$			$\mathrm{m}^{\wedge} 2$		$(\mathrm{PC})^{\wedge} 2$	$\mathrm{E}^{\wedge} 2$			
MeV									gamma $=m(m+k e)$		
1.67e-27/1.78e-30		Velocity $\mathrm{M} / \mathrm{sec}$		$\left(1-(\mathrm{v} / \mathrm{c})^{\wedge} 2\right)^{\wedge} .5$							
938.27		$8.35 \mathrm{E}+00$	$4.00 \mathrm{E}+07$	0.99105		880351	15973	896323	0.991	gamma1	
938.27		$8.35 \mathrm{E}+00$	$4.00 \mathrm{E}+07$	0.99105		880351	15973	896323	0.991	gamma2	
	\downarrow	add ke abc	$\mathrm{v}=\mathrm{f}$ (ke)	gamma from V					0.982442	gamma1*	gamma2
938.27	ok	$1.67 \mathrm{E}+01$	$5.66 \mathrm{E}+07$	0.982018		880351	32536	912886	0.983	gamma to	

The columns on the right calculate $\mathrm{E}^{\wedge} 2=\mathrm{M}^{\wedge} 2+(\mathrm{PC})^{\wedge} 2=\mathrm{E}^{\wedge} 2$ for mass $938.27 \mathrm{MeV}(1.67 \mathrm{e}-27 \mathrm{~kg})$ that gains additional kinetic energy. But two (PC) ${ }^{\wedge} 2$ components cannot be added since $15973 * 2=31945$ not 32536 . Starting from energy to determine velocity yields accurate results.

We often measure the velocity of a mass by measuring gamma (redshift). If gamma is the result of two additive energy components we need a way of separating the individual components.

Flat velocity rotation curves for Galaxies

The analysis below is for a galaxy similar to our Milky Way. It has 2 e 41 Kg mass and has a flat rotation curve. The radius 2.58 e 20 meters is where a proton with velocity $227437 \mathrm{~m} / \mathrm{sec}$ orbits according to $\mathrm{V}=(\mathrm{GM} / \mathrm{R})^{\wedge} .5$. But luminosity measurements indicate that there is mass in "improper" orbits if redshift (the gamma measurement) is interpreted as Newtonian velocity. Many have said that the velocity measurement is correct and to justify the orbits observed "missing mass" must exist in the galaxy.

The analysis below is for a proton falling due to gravitation toward a galaxy of 2 e 41 kg . The proton will gain kinetic energy by falling from its expansion determined position toward the galaxy.

The fall starts well above the eventual orbit. The proton has been dominated by expansion and is losing expansion kinetic energy and gaining potential energy. These will be reversed by the 2 e 41 mass. If the proton falls to the radius where the velocity is $\mathrm{V}=(\mathrm{GM} / \mathrm{R})^{\wedge} 0.5$ it will orbit there. This was reviewed above when the following equation was introduced:
$(\mathrm{R}=\mathrm{r} 0 * 10.15 / \mathrm{ke} *($ Mgalaxy $/ 1.67 \mathrm{e}-27) *(1 / \exp (90))$ where $\mathrm{r} 0=7.045 \mathrm{e}-14)$

Orbit	10.15/ke	Mass Central K	N central	Vel m/sec	ke	cell r (m)	Orbital R (m)	1-gamma	ntral/1.67e-27)*1/exp(90)
star/galaxy	$3.77 \mathrm{E}+04$	$2.00 \mathrm{E}+41$	$1.57 \mathrm{E}+02$	$2.27 \mathrm{E}+05$	$2.694 \mathrm{E}-04$	$2.65 \mathrm{E}-09$	$2.60 \mathrm{E}+20$	$2.87 \mathrm{E}-07$	$9.81 \mathrm{E}+28$

Again, this is another way of writing the Newtonian relationship $\mathrm{R}=\mathrm{GM} / \mathrm{V}^{\wedge} 2$ and $\mathrm{r}=7.024 \mathrm{e}-$ $14 * 10.15 / \mathrm{ke}$. The values V , ke and r are in the table above for this orbit.

The situation is diagrammed as follows:

The red orbit is in the table above; $\mathrm{V}=2.27 \mathrm{e} 5 \mathrm{~m} / \mathrm{sec}$. With this velocity a proton will follow this curvature. It is a proper (Newtonian) orbit. The curvature represented by circles above is due to mass. We will set potential energy to zero at that point. (to distinguish between " potential energy due to mass" and "expansion potential energy).

There will also be mass in the outer circles and we would expect the Newtonian velocity to decrease with distance away from the center $\mathrm{V}=(\mathrm{GM} / \mathrm{R})^{\wedge} 0.5$. But measurements indicate that velocity curves around galaxies are flat. Our goal is to understand these measurements.

The analysis below does not assume dark matter, nor does it violate Newtonian gravitation. In the table below the distance from the center of the galaxy to edge is shown vertically. The bottom line is the orbit at 2.58 e 20 meters that everyone agrees should have $228000 \mathrm{~m} / \mathrm{sec}$. The kinetic energy column is for Newtonian orbits. If the potential energy is zero for that orbit increasing radius increases potential energy. In fact, since there is no friction, the potential energy plus kinetic energy is constant. We can assign gamma to energy with the equations: gamma $1=\mathrm{m} /(\mathrm{m}+\mathrm{ke})$ and gamma $2=\mathrm{m} /(\mathrm{m}+\mathrm{pe})$. If gamma is the measurement, we can assign a velocity to the measurement $\left(\mathrm{V}=\mathrm{C} *\left(1-\text { gamma }^{\wedge} 2\right)^{\wedge} 0.5\right)$.

The question that remains is "why is a portion of the gamma measurement potential energy?"

The potential energy is proportional to the radius of the circles, represented by the line A-B. There is a component of this energy in the vertical direction labelled with the Potential Energy arrow. Less curvature (toward the outside) increases the potential energy component and decreases the kinetic energy component. We measure a Doppler effect of the kinetic energy along a vector (the arrow). But recall what gamma is.

Gamma $1=\mathrm{t} 0 / \mathrm{t} 1$ and gamma $2=\mathrm{t} 1 / \mathrm{t} 2$. Overall gamma $=$ gamma $1 *$ gamma2 $=\mathrm{t} 0 / \mathrm{t} 2$.
The potential energy component is a scalar. This means that the kinetic energy gamma is a time ratio multiplied by a time ratio already modified by potential energy. If we are trying to measure the height of a mountain we start from sea level, not partway up the mountain. The direction of the vector (other side of the galaxy) becomes a blue shift but measured from the same modified time base referenced to t0.

When the proton (star) is in orbit around a distant star we measure gamma not realizing that there are two components. We interpret the signal as a flat velocity curve (gamma converted to velocity below).

In the example above we observe (1-gamma)=2.89e-7. If we trust Newtonian gravity, we know gamma ke (based on Newtonian velocity $\mathrm{Vn}=(\mathrm{GM} / \mathrm{Rn})^{\wedge} .5$) and can calculate the potential energy gamma. Gamma pe=gamma total/gamma ke.

In the graph below, mass has fallen into orbits outside the 2.58 e 20 meters. But there are many possible Newtonian orbits. The flat velocity associated with the constant kinetic energy agrees with measurements. The data and analysis above is plotted below. The top line (in green is the flat velocity curve we measure) with total energy associated with $\mathrm{V}=2.8 \mathrm{e} 5 \mathrm{~m} / \mathrm{sec}$.

Appendix 4 contains data and analysis for five galaxies with flat rotation curves. They all follow the physics above and this resolves the flat velocity curves for galaxies. Dark matter is not required.

Problem Resolution; What is Dark Matter?

When we look at a galaxy we observe real distances and real velocities. They have flat velocity curves. If all else fails, believe the data (flat rotation curves). Also believe Newtonian gravity and the constant relationship between kinetic energy and potential energy. The calculations presented are straightforward and allows one to calculate the flat rotation curve. The proposal above explains flat velocity curves without inferring dark matter.

Hubble distances

For the moment we will use two facts from WMAP:
The age of universe is 13.7 billion years.
Density of the universe is $9.14 \mathrm{e}-27 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$.
If the universe is now 13.7 billion years old, we can calculate distance by multiply time*C. This value is called Hubble distance. Time below is calculated with fundamental time. $\mathrm{T}=1.47 \mathrm{e}-21^{*} \exp (\mathrm{~N})$ seconds. There are two interpretations of this distance.

88.572	N			
1.48E-21 fund time				
$4.32 \mathrm{E}+17$ time=exp(N) fund time				
$1.30 \mathrm{E}+26$ distance light travels				
13.69	time Byrs			
if Hubble distance is R		If Hubble distance is circumference/pi		
$1.30 \mathrm{E}+26 \mathrm{R}$		$4.12 \mathrm{E}+25$ radius $\mathrm{M}=\mathrm{dist} /(\mathrm{pi})$		
$9.14 \mathrm{E}-27$	dens	9.14E-27	density $\mathrm{kg} / \mathrm{m}^{\wedge} 3$	
$9.10 \mathrm{E}+78$	vol	$2.94 \mathrm{E}+77$	volume	
8.32E+52	wrong mas	: $2.683 \mathrm{E}+51$	mass=vol*density	
		$2.495 \mathrm{E}+51$	$\exp (180)$)*1.67e-27 kg

After 13.7 billion years, distance times $\mathrm{C}=1.36 \mathrm{e} 26$ meters. Many cells have been combined above but each quantum cell defined space and time by a circle; i.e. fundamental time is around a circumference and fundamental time* ${ }^{*}$ defines fundamental distance.

We can compare the two columns by knowing that critical density is $9.28 \mathrm{e}-27 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$. The column of calculations on the left yields the volume of the associated sphere. Multiplying vol*dens= 8.52 e 52 kg . But the column on the right is calculated with radius $=1.3 \mathrm{e} 26 / \mathrm{pi}=4.1 \mathrm{e} 25$ meters. From the radius, we can calculate the volume and mass (vol $*$ density $=2.94 \mathrm{e} 77 * 9.14 \mathrm{e}-27=2.68 \mathrm{e} 51 \mathrm{~kg}$. This compares favorably with $\exp (180)$ protons each with mass $1.67 \mathrm{e}-27 \mathrm{~kg}$. The value 2.5 e 51 kg is fundamental in the Proton model. There is no mass in the universe that is not specified by the Proton model. It is an information/energy model of the universe.

From this we conclude that the entire mass of the universe is accounted for with baryons. The other estimate of mass (8.32 e 52 kg) leaves most cosmologists with a big problem. Where is all the missing mass?

The age of the universe is the amount of time that cells have had to expand. We can learn a great deal about the universe by creating a cellular model (later).

Many will disagree with the above simple calculation of 4.12 e 25 meter radius. The problem is they associate the Hubble time*C with light. I associate Hubble time*C with distance, not light. I agree that there is light being emitted from cells and that the universe is now transparent to light. It can move in any direction. The argument will be that we are just seeing light from distant objects formed only 375,000 years after the beginning. They assume that light traveling for 13.7 billion years establishes the Hubble distance across a diameter. But this does not agree with the fundamentals of space and time as circles. The large "surface" of cellular cosmology is related to fundamental distance $(\exp (\mathrm{N})$ *fund time*C) associated with the quantum circle. Time moves forward in increments of $1.48 \mathrm{e}-21 \mathrm{sec}$. Each cell is larger and this means the number of time increments around the circle have increased (distance is just C*time).

Everyone agrees that light is deflected by curved space time. The extreme case is a black hole but Einstein's calculations predict deflections around massive objects. It is clear however that light does not orbit galaxies like mass. Could light curvature be $1 / 4.1 \mathrm{e} 26$ reciprocal meters? For the radius of a galaxy (2.6 e 20 meters), the curvature would only be $1 \mathrm{e}-6 * 2.6 \mathrm{e} 20$ meters different than a straight line. Would we notice this deviation?

Constructing the expansion radius

A first principles cellular expansion model with the following capabilities was used to determine cosmological parameters.

1. Early history of helium formation including Deuterium, Helium3 and Lithium7 residuals.
2. History of the period from equality (matter and photon density) to decoupling (clearing of the plasma and cosmic background radiation pictures).
3. History of energy additions during expansion.
4. Star formation and its effect on expansion.

An expansion model calculates the radius of the universe as a function of time.
There is uncertainty in current literature regarding the initial radius of the universe. Some say it was a point and an exponential expansion known as inflation quickly increased the radius. The WMAP [4] expansion model (called the concordance model or Lambda Cold Dark Matter model) calculates expansion with $\mathrm{R}^{\prime}=\mathrm{R}^{*}\left(\text { time }{ }^{\prime} / \text { time }\right)^{\wedge} 2 / 3$ plus a second component based on a constant called lambda suggested by Einstein.

Expansion model based cellular cosmology

An expansion model can be constructed with a few facts (results of huge efforts throughout history):
Facts from WMAP and Planck [14]: The current temperature called Cosmic Background Radiation (CBR) temperature $=2.801 \mathrm{~K}$. The current Hubble constant $=2.26 \mathrm{e}-18 / \mathrm{sec}$. The Hubble constant is strongly associated with the current density $9.14 \mathrm{e}-27 \mathrm{Kg} / \mathrm{M}^{\wedge} 2$ in a flat universe. This is also considered critical density. The current age of the universe $=13.7$ billion years.

Facts from Proton model: Values in the neutron mass model determine the starting radius ro=7.045e-14 M. The gravitational field energy $\mathrm{E}=2.8012 \mathrm{MeV}$ determines r 0 . $\mathrm{R} 0=7.045 \mathrm{e}-14 * \exp (60)=8.04 \mathrm{e} 12$ meters. The Proton model provides the initial kinetic energy $=10.15 \mathrm{MeV} /$ proton.

Based on probabilities for the neutron components the number of protons= $\exp (180)$ and the mass of the universe $=\exp (180) * 1.673 \mathrm{e}-27=2.49 \mathrm{e} 51 \mathrm{Kg}$. [Appendix 2 topic entitled "The number of neutrons in nature"]. Cellular cosmology places N cells in a large sphere. For this calculation we will assume that the critical density is neutrons but this will be checked several ways. This means that one cell of radius r represents the universe with $\mathrm{R}=\mathrm{r} * \exp (60)$. Initially all $\exp (180)$ cells are identical and one cell provides a great deal of information if we know the properties of the cell.

Facts from Astrophysics: During early expansion the temperature falls to 8 e 8 K and the SAHA equilibrium value approaches unity where He 4 is readily formed [1][5][6][7]. The measured fraction of He4 is in the range 0.23 to 0.27 .

Radius and temperature history from beginning to He4 fusion

First we construct a time scale based on the age of the universe (13.8 billion years $=4.33 \mathrm{e} 17 \mathrm{sec}$).
Fundamental time $7.045 \mathrm{e}-14 * 2 * \mathrm{pi} / 3 \mathrm{e} 8=1.47 \mathrm{e}-21$ seconds (nature counts forward as this time repeats). Logarithms will be used to decrease the number of computational iterations. Natural $\log (4.33 \mathrm{e} 17 / 1 / 5 \mathrm{e}-$ $21)=88.6$ will be the current time. Natural $\log 45$ is a good starting point $(\exp (45) * 1.47 \mathrm{e}-21=0.051 \mathrm{sec})$. Time in seconds for the x axis will be $\exp (45+\text { increment })^{*} 1.47 \mathrm{e}-21$ seconds. The increment is the number of calculation columns from 45 to 88.6 .

Next we will calculate the cell radius (r) as a function of time. The force f on the cell surface is calculated two ways and is equal: $\mathrm{f}=(\mathrm{m} / \mathrm{g})^{*} \mathrm{~V}^{\wedge} 2 / \mathrm{r}^{*}(1 / \exp (90))=\mathrm{G}(\mathrm{m} / \mathrm{g})^{\wedge} 2 / \mathrm{r}^{\wedge} 2$ where $\mathrm{m}=1.673 \mathrm{e}-27 \mathrm{Kg}$. Gamma $\mathrm{g}=938.27 /(938.27+\mathrm{ke})$ and velocity $=\mathrm{C}^{*}\left(1-\mathrm{gamma}^{\wedge} 2\right)^{\wedge} .5$ in meters/sec. Each cell is an expanding orbit with $\mathrm{ke}^{\prime}=\mathrm{ke}^{*}(\text { time } / \text { time' })^{\wedge} 0.5$ and $\mathrm{r}=\mathrm{r} 0^{*} 10.15 / \mathrm{ke}$ (primed values mean the next value in an incremental calculation over time) Velocity is calculated from $V=C^{*}\left(1-g^{\wedge} 2\right)^{\wedge} 0.5$ or $V=((2 * \mathrm{ke} / \mathrm{m}) / 1.6 \mathrm{e}-13)^{\wedge} 0.5$ when g becomes very close to 1.0 . G was slightly different at the beginning but calculations near the end of expansion $\mathrm{G}=6.6743 \mathrm{e}-11 \mathrm{Nt} \mathrm{M}^{\wedge} 2 / \mathrm{Kg}^{\wedge} 2$.

Energy changes during expansion

The initial radius of each small sphere is, as explained above, $\mathrm{r} 0=7.045 \mathrm{e}-14$ meters. This means that the initial radius is $7.045 \mathrm{e}-14 * \exp (60)=8.25 \mathrm{e} 12$ meters (in three dimension, $\exp (180) / 3=\exp (60)$. This same sphere has a surface area $=4 \mathrm{pi}^{*} \mathrm{r}^{\wedge} 2^{*} \exp (180)=4 \mathrm{pi}{ }^{*} \mathrm{R}^{\wedge} 2$. The gravitational constant G remains constant throughout expansion. Kinetic energy follows the relationship below:

The proton mass model has initial kinetic energy $=10.15 \mathrm{MeV} /$ neutron associated with the measured value $\mathrm{G}=6.674 \mathrm{e}-11 \mathrm{Nt} \mathrm{M}^{\wedge} 2 / \mathrm{Kg}^{\wedge} 2$. Expansion converts kinetic energy to potential energy (10.15 MeV total energy/proton is constant). This calculation is made possible by the use of the simple equation $\mathrm{f}=$ $\left(\mathrm{mV}^{\wedge} 2 / \mathrm{r}\right)^{*} 1 / \exp (90)$ and potential energy $=$ integral $\mathrm{F}^{*} \mathrm{dR}, \mathrm{dR}$ is the increase in gravitational radius of each cell.

For convenience cosmologists use ke' $=$ ke $^{*}(\text { time } / \text { time })^{\wedge}(2 / 3)$. (Primed values mean the next value in incremental calculations across time). The universe expands because kinetic energy is being converted to potential energy. Cell radius increases as kinetic energy decreases $r^{\prime}=r^{*} k e / k e '$. Combining the relationships above, $\mathrm{r}^{\prime}=\mathrm{r}^{*}\left(\text { time }{ }^{\prime} / \text { time }\right)^{\wedge}(2 / 3)$. The gravitation constant $\mathrm{G}=\mathrm{Fr}^{\wedge} 2 /(\mathrm{m} / \mathrm{g})^{\wedge} 2$ is maintained throughout expansion where lower case $\mathrm{g}=$ gamma $=938.27 /(938.27+\mathrm{ke})$.
Potential energy $(\mathrm{PE})=0.5 * \mathrm{~F}^{*}($ delta R$) /(1.6 \mathrm{e}-13 \mathrm{Nt}-\mathrm{m} / \mathrm{MeV})$.

Temperature changes

Initial temperature $=10.15 /(1.5 \mathrm{~B})=7.6 \mathrm{e} 10 \mathrm{~K}$, where $\mathrm{B}=$ Boltzmann's constant $8.6 \mathrm{e}-11 \mathrm{Mev} / \mathrm{K}$ and $T^{\prime}=T^{*}\left(R / R^{\prime}\right)$. The calculations below are the first few steps. Lower case letters will be used to represent cellular values and upper case letters will be used for the large sphere (the universe). The equations are shown. If you are following this with an Excel® spreadsheet, copy these equations to 809 seconds. The information in green exists in each proton. The proton provides further cosmology properties as subsequent events occur.

Note: The reader may have to move back and forth in the document. For example, the finding that this is the proton is discussed further in the section entitled "Conclusions".

Potential energy + kinetic energy (MeV)	20.30	20.34	20.36	20.39
Potential energy (MeV)=.5FdR/1.6e-13	10.15	12.49	14.30	15.70
$\mathrm{r} 0=7.22 \mathrm{e}-14^{*} 10.15 / \mathrm{ke}$	7.22E-14	$9.34 \mathrm{E}-14$	$1.21 \mathrm{E}-13$	$1.56 \mathrm{E}-13$
ke=10.15*(time/time')^0.5	10.150	$7.85 \mathrm{E}+00$	$6.07 \mathrm{E}+00$	$4.69 \mathrm{E}+00$
$\mathrm{g}=938.27 /(938.27+\mathrm{ke})$	$9.8930 \mathrm{E}-01$	9.9170E-01	$9.9357 \mathrm{E}-01$	9.9502E-01
$\mathrm{V}=\left(1-(\mathrm{g})^{\wedge}\right)^{\wedge} 0.5^{*} \mathrm{C}$	4.3742E+07	3.8536E+07	3.3935E+07	$2.9874 \mathrm{E}+07$
fgrav=(1.673E-27*V^2/(r0*EXP(90))	3.6702E-38	$2.1973 \mathrm{E}-38$	1.3152E-38	7.8700E-39
time (seconds)	0.052	0.076	0.111	0.164
$\mathrm{G}=\mathrm{fgrav}{ }^{*} \mathrm{r}^{\wedge} 2 /(\mathrm{m} / \mathrm{g})^{\wedge} 2$	$6.681 \mathrm{E}-11$	6.722E-11	$6.754 \mathrm{E}-11$	$6.778 \mathrm{E}-11$

Facts from Appendix 4:
Increased radius $\mathrm{dR}=\mathrm{de} / \mathrm{fcell} * \exp (60)$ where de is the energy available for expansion/proton. Force resisting expansion is fcell $=\mathrm{f}$ grav* $\exp (90)$. Pressure inside the cell $\mathrm{p}=\mathrm{fcell} /\left(4 \mathrm{pi}{ }^{*}{ }^{\wedge} 2\right)$. Temperature $(\mathrm{T})=$ $\mathrm{p} /(\mathrm{nB})$ where p is pressure, n is the number density of neutrons and B is the Boltzmann constant.

The He4 transition

The calculations for the cellular base with decreasing kinetic energy continue across the time axis until the period below is reached. The calculation column for the He4 transition at 1190 seconds is shown in
yellow below. When the temperature decreases to slightly lower than 8 e 8 K , He 4 fuses (due to free neutrons and reduced Deuterium photodisintegration [15]).

After the He 4 transition

The He4 transition is an explosion (0.25 of all matter releases fusion energy) and the initial result is an increase in radius but conditions stabilize at 539 seconds. The release of 2.55 MeV fusion energy/proton increases the temperature from 7.7 e 8 K to 2.18 e 10 K . This establishes the required baryon/photon ratio.

At 4.3 e 17 seconds, the universe reaches the radius 3.55 e 25 meters and temperature 2.58 K . This radius will increase to 4.02 e 25 meters and the temperature will increase to 2.73 K after the second component of expansion is added. This is the subject of Problem 4 below.

Consequences of Baryon/Photon ratio

The calculation above at the He4 transition gave a baryon/photon ratio $=4.0 \mathrm{e}-10$. This meets the astrophysical requirement with $\exp (180)$ neutrons. This means there is no missing matter. The residuals are formed in proportion to the He 4 fraction and are relative fixed (see the discussion on the point in Peebles [1]). The values below under the heading "Calculated" agree with the measured values.

[^0]Summary of expansion and temperature history
Overall, the expansion radius and temperature is represented by the following graphs.

The temperature after the He 4 transition is due to heat addition from He 4 primordial fusion. As expansion occurs the temperature falls as Rh / R and yields 2.801 K as the current value. Orbital KE (MeV) determines the temperature $(\mathrm{T}=\mathrm{KE} /(1.5 * 8.6 \mathrm{e}-11) \mathrm{K}$. The slope following the spike is (time/time') ${ }^{\wedge}(2 / 3)$

Energy history summary

Energy is available at the beginning and added at two additional places in the expansion curve. The original kinetic energy of $10.15 \mathrm{MeV} /$ proton comes from the proton mass model [1] [10](Appendix 2). Secondly He4 fusion releases 2.7 MeV /proton when He 4 forms (called primordial nucleosynthesis in the literature). Finally, stars light up and release radiation energy. The arrows labelled reduced show the change in the energy value/proton due to expansion. The kinetic energy can be calculated from the Boltzmann relationship; $\mathrm{ke}=1.5 * \mathrm{~B} * \mathrm{~T}$, where B is $8.62 \mathrm{e}-11 \mathrm{MeV} / \mathrm{K}$.

Problem Resolution; Where is all of the normal matter (only 4\% discovered)? What conditions existed when residual D, He3 and Li7 formed?

WMAP starts at a different radius and, as far as I can tell, does not add energy to account for primordial He 4 formation $(2.5 \mathrm{MeV})$. WMAP analysis used the astrophysics literature value of $4.4 \mathrm{e}-10$ baryons/photons because it explains the measured residual isotopes. But they reduced the baryon content of the universe to a very low value (0.046) to meet the criteria. They didn't have the radius and temperature histories associated with cellular cosmology and, as discussed above, it appears that they misinterpreted Hubble distance. Using cellular cosmology, the temperature and radius calculations at this transition combine in a way that yield a baryon/photon density ratio of $4.4 \mathrm{e}-10$ with $\exp (180)$ baryons. X is 1.0 in the following calculation, not 0.046 . The critical density is $\exp (180) * 1.67 \mathrm{e}-27$
$\mathrm{Kg} /\left(4 / 3^{*} \mathrm{pi}^{*} 4.02 \mathrm{e} 25^{\wedge} 3\right)=9.14 \mathrm{e}-27 \mathrm{Kg} / \mathrm{M}^{\wedge} 3$.
Baryon/photon $=\left(\mathrm{x}^{*} \operatorname{EXP}(180) /\left(4 / 3 * \mathrm{PI}()^{*} \mathrm{R}^{\wedge} 3\right)\right) /\left(8 * \mathrm{PI}() /(4.31 \mathrm{e}-21 * 3 \mathrm{e} 8) \wedge 3 *(1.5 * 8.62 \mathrm{e}-11 * \mathrm{~T})^{\wedge} 3\right)$
Overall, the baryon/photon ratio does not cause baryons to be severely limited like WMAP [4] and other documents suggest. ($\mathrm{X}=1.0$)

What is Dark Energy?
Observations of the universe's expansion created discussion regarding dark energy. There is consensus that late stage expansion currently is more linear than the equation $\mathrm{R}^{\prime}=\mathrm{R}^{*}$ (time'/time) ${ }^{\wedge}(2 / 3)$. Since this equation represents conversion of kinetic energy to potential energy and is a curve, data [3] showing that late stage expansion is linear or expanding appears to violate energy conservation and require a dark (unknown) energy source. Two literature proposals (cosmological constant Lambda and quintessence) attempt to account for this unknown energy source.

This paper presents calculations indicating that energy produced by stars causes the linear expansion curve. The analysis draws on the rate of star formation and the energy they release. A calculation procedure for expansion was developed that allows one to add energy and predict its effect on late stage expansion. It was surprising that a small amount of energy has a large effect on expansion. In fact, it will be shown that the energy addition is required to match the current temperature $(2.801 \mathrm{~K})$ since the above models ended at 2.45 K . Energy produced by stars is fusion energy and provides a physical alternative to dark energy. Concordance models use Lambda as the second expansion component but WMAP analysis concluded that there was dark energy and it was a large fraction (0.719) of critical density. The expansion curve, energy release points and associated temperature curve is presented. Analysis shows that although the density is $9.14 \mathrm{e}-27 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, the mass fractions should be all normal matter.

Background

Expansion and cosmology parameters are currently based on differential radiometer projects known as COBE, WMAP [3][4], and Planck [14]. They are compared to supernova data from Cmagic [3] that suggest an accelerating universe. Expansion follows $R=R^{\prime}\left(\text { time }{ }^{\prime} / \text { time }\right)^{\wedge}(2 / 3)$ throughout almost all of expansion. But this gives the wrong Hubble constant (slope of the expansion curve/divided by the radius at the present time). The Hubble constant has been accurately measured by many projects and is equal to
$2.26 \mathrm{e}-18 / \mathrm{sec}[4]$). This means that a second expansion component is increasing the radius, but what causes it? The graph below shows the problem. Data suggests the upper curve but this requires an unknown energy source. The concept "dark energy" is a placeholder and the author explored the possibility that energy produced by stars is the unknown energy source.

Exploration

The sky temperature is 2.725 K [2]. Star formation starts at about $\mathrm{z}=16=(\mathrm{Rf} / \mathrm{R}-1)$. The average star is about 5 e 29 Kg [4] but there are potentially a significant fraction $2.49 \mathrm{e} 51 / 5 \mathrm{e} 29=1.2 \mathrm{e} 21$ stars if their mass is 2 e 30 kg similar to our sun (fraction is about 0.1 of potential). The sun emits $2.37 \mathrm{e} 39 \mathrm{MeV} / \mathrm{second}$ and has a lifetime of about 10 billion years. Since early star formation many atoms have moved through a well-documented solar burning cycle. Our sun is mainly hydrogen but a supernova in our vicinity produced the heavier elements that make up the earth and other planets. Heavier elements are measured throughout the universe and NIST publishes data regarding elemental abundance.

Our goal is to determine the expansion energy available after stars form. This expansion component will be called R3. The question is can this replace what cosmologists call the Lambda component of expansion? One might think that this energy is redshifted away but in cellular cosmology expansion is driven by energy, energy related to temperature and the energy is inside the cell. We will base our estimate on stars that are similar to our sun. The first step is to determine the number of stars as a function of time.

Star energy is added starting at $\mathrm{z}=16$ where stars light up [Wiki]. Papers also present the rate of star formation. Each has a surface area and in cellular cosmology the surface area is mathematically the surface of a large sphere.

The basic equation for $\mathrm{MeV} /$ meter $^{\wedge} 2=3.54 \mathrm{e} 5 * \mathrm{~T}^{\wedge} 4$, where T is the surface temperature (K).
The surface area of all the stars with surface temperature 5778 K is giving off photons at $3.54 \mathrm{e} 5 * 5778^{\wedge} 4=3.59 \mathrm{e} 20 \mathrm{MeV} / \mathrm{M}^{\wedge} 2$ but the remaining dark sky area is only giving off $3.54 \mathrm{e} 5^{*} 2.44 \wedge 4=$ $1.25 \mathrm{e} 7 \mathrm{MeV} / \mathrm{M}^{\wedge} 2$.

Area overall sky $=4 *{ }^{*}{ }^{*} 4.02 \mathrm{e} 25^{\wedge} 2=6.77 \mathrm{e} 51 \mathrm{M}^{\wedge} 2$
Calculate the average temperature $=(1.97 \mathrm{e} 7 / 3.54 \mathrm{e} 5)^{\wedge} .25=2.801 \mathrm{~K}$. The average temperature is a composite of $\mathrm{T}=5778 \mathrm{~K}$ and 2.44 K .

area ($\mathrm{M}^{\wedge} 2$)	3.54e5*5778^4 (Mev/M^2)				
$3.67 \mathrm{E}+38$	$3.95 \mathrm{E}+20$		1.45E+59 area*mev/area		
$2.03 \mathrm{E}+52$	$1.25 \mathrm{E}+07$		$2.55 \mathrm{E}+59$ area*mev/area		
			$6.77 \mathrm{E}+51$	total area	
Temp (K)	Temp (K)		$1.97 \mathrm{E}+07$ mevtotal/area total		
2.44		5778	$2.73 \mathrm{E}+00$	(1.97e07/3.5	4e5)^. 25

In cellular cosmology all added energy counts and the stars add a significant amount of energy. Delta E is the difference between sky temperature with stars $(2.801 \mathrm{~K})$ and the temperature without stars (2.45 K). These values apply to the end of expansion at 4.02 e 25 M . Delta $\mathrm{E}=(2.801-2.45) /(1.5 * 8.6 \mathrm{e}-11)=3.63 \mathrm{e}-11$ MeV . This delta E increases the radius. Delta $\mathrm{R}=$ Delta $\mathrm{E} / \mathrm{F} * 1.6 \mathrm{e}-13=3.63 \mathrm{e}-11 / 6.69 \mathrm{e}-49 * 1.6 \mathrm{e}-13=$ 8.67 e 24 M .

The calculations below represent energy released by stars as a function of time. The calculation procedure is an incremental calculation using the force in the cell and the energy addition by stars. Delta $\mathrm{R}=\mathrm{dE} / \mathrm{F} * 1.6 \mathrm{e}-13$ ($1.63 \mathrm{e}-13$ is an energy conversion constant).

The expansion curve for star energy

1.19E-02	$1.53 \mathrm{E}-02$	$1.98 \mathrm{E}-02$	$2.56 \mathrm{E}-02$	3.32E-02	4.29E-02	$5.54 \mathrm{E}-02 \mathrm{rgrav}=7.22 \mathrm{e}-14 * 9.87 / \mathrm{ke}$		
6.01E-11	$4.65 \mathrm{E}-11$	3.60E-11	$2.78 \mathrm{E}-11$	2.15E-11	$1.66 \mathrm{E}-11$	$1.29 \mathrm{E}-11$	ke (MeV)	
1.0000E+00	$1.0000 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	1.0000E+00	$1.0000 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	gamma	
$1.07 \mathrm{E}+02$	$9.43 \mathrm{E}+01$	$8.29 \mathrm{E}+01$	7.29E+01	$6.41 \mathrm{E}+01$	$5.64 \mathrm{E}+01$	$4.96 \mathrm{E}+01$	Velocity (M/s	
$1.3306 \mathrm{E}-60$	7.9592E-61	$4.7608 \mathrm{E}-61$	2.8476E-61	1.7033E-61	1.0188E-61	$6.0941 \mathrm{E}-62$	Fcell $=m V^{\wedge} 2 / r^{*}$	xp(90))
$6.67 \mathrm{E}-11$	$6.67 \mathrm{E}-11$	6.67E-11	6.67E-11	$6.6743 \mathrm{E}-11$	$6.67 \mathrm{E}-11$	6.6743E-11		
3.67E+00	$2.61 \mathrm{E}+00$	$1.80 \mathrm{E}+00$	$1.16 \mathrm{E}+00$	$6.72 \mathrm{E}-01$	2.93E-01	$0.00 \mathrm{E}+00$	$\mathrm{Z}=$ Rfinal/R-1	$1.21 \mathrm{E}+00$
$6.73 \mathrm{E}+24$	$8.72 \mathrm{E}+24$	1.13E+25	1.49E+25	$1.98 \mathrm{E}+25$	$2.74 \mathrm{E}+25$	4.03E+25	R1+R3	$9.30 \mathrm{E}+07$
$1.293 \mathrm{E}-01$	$1.000 \mathrm{E}-01$	7.734E-02	5.981E-02	$4.626 \mathrm{E}-02$	$3.578 \mathrm{E}-02$	$2.767 \mathrm{E}-02$	star growth	-1.00E+00
$5.82 \mathrm{E}+18$	$8.56 \mathrm{E}+18$	$1.26 \mathrm{E}+19$	$1.85 \mathrm{E}+19$	2.72E+19	$4.00 \mathrm{E}+19$	$5.88 \mathrm{E}+19$	stars	$3.69 \mathrm{E}+08$
$6.08 \mathrm{E}+09$	$2.18 \mathrm{E}+09$	$7.78 \mathrm{E}+08$	$2.78 \mathrm{E}+08$	$9.96 \mathrm{E}+07$	$3.56 \mathrm{E}+07$	$1.28 \mathrm{E}+07$	$3.54 \mathrm{e} 5^{*} 2.73^{\wedge} 4$	$1.00 \mathrm{E}+00$
$3.95 \mathrm{E}+20$	$3.54 \mathrm{e} 5^{*} 5778{ }^{\wedge} 4$							
$9.3006 \mathrm{E}+50$	$1.5549 \mathrm{E}+51$	$2.5995 \mathrm{E}+51$	$4.3460 \mathrm{E}+51$	7.2657E+51	$1.2147 \mathrm{E}+52$	$2.0308 \mathrm{E}+52$	Area sky w/o stas	ars area
$3.54 \mathrm{E}+37$	$5.20 \mathrm{E}+37$	$7.65 \mathrm{E}+37$	$1.13 \mathrm{E}+38$	$1.65 \mathrm{E}+38$	$2.43 \mathrm{E}+38$	$3.58 \mathrm{E}+38$	Area sky with	
1.15E+01	8.87E+00	$6.87 \mathrm{E}+00$	$5.34 \mathrm{E}+00$	$4.19 \mathrm{E}+00$	$3.33 \mathrm{E}+00$	$2.73 \mathrm{E}+00$	Temp with Star	
$1.14 \mathrm{E}+01$	8.85E+00	$6.85 \mathrm{E}+00$	$5.30 \mathrm{E}+00$	$4.10 \mathrm{E}+00$	$3.17 \mathrm{E}+00$	$2.45 \mathrm{E}+00$	Temp w/o stars	
$9.11 \mathrm{E}-13$	1.73E-12	$3.28 \mathrm{E}-12$	$6.18 \mathrm{E}-12$	$1.15 \mathrm{E}-11$	$2.10 \mathrm{E}-11$	$3.63 \mathrm{E}-11$	Delta E (MeV)	
$1.02 \mathrm{E}+22$	$3.25 \mathrm{E}+22$	$1.03 \mathrm{E}+23$	$3.25 \mathrm{E}+23$	$1.01 \mathrm{E}+24$	$3.08 \mathrm{E}+24$	8.92E+24	dR=de/f* $\exp (60$	*1.6e-13

The radius without stars would be $\mathrm{R} 1=3.68 \mathrm{e} 25$ meters at the present time if stars did not add energy. The calculations above show Delta E for earlier R where there were fewer stars and the associated Delta R (called R3). Adding R1 and R3 gives expansion with stars as a function of time.

Stars have a significant effect on expansion because the star Delta $\mathrm{E}(\mathrm{MeV})$ is a sizable fraction of normal expansion energy. Calculations show that this keeps the expansion curve from following the curve proportional to $\mathrm{R}^{\prime}=\mathrm{R}^{*}\left(\text { time }{ }^{\prime} / \text { time }\right)^{\wedge}(2 / 3)$ after stars. But considering energy from stars an expansion curve is produced that replaces the Lambda component. It considers the rate the rate of star formation.

Hubble Check

We subtract the last two radius columns and divide by the difference in the last two times. The check Hubble, we divide again by R. The WMAP Hubble value was $2.26 \mathrm{e}-18 / \mathrm{sec}$. The values match.

$2.74 \mathrm{E}+25$	4.03E+25 R1+R3	9.27E+07 Delta R
$2.96 \mathrm{E}+17$	$4.35 \mathrm{E}+17$ Delta time	2.31E-18 H=Delt

Dark Energy Resolution

Currently very little energy is required for expansion since most of the original and He 4 fusion kinetic energy has been converted to other forms of energy. The energy produced by stars as they light up must be considered in cellular cosmology. Delta R expansion from star energy is on the order of R3=4e24 meters. The concept of dark energy was a place holder until the true cause was uncovered. Stars produce enough energy to explain observations. Photon energy released by stars flattens (or accelerates) the curve like the WMAP Lambda expansion component or the data reported by expansion model CMAGIC [3].

Baryon fraction at equality

Another limitation is related to the radius and temperature where equality of radiation and mass occurs. The thought was that baryons had to be limited so that equality occurred early enough to allow development of the measured primary hot spot at decoupling. After equality waves occur. Their speed in the plasma is $\mathrm{V}=\mathrm{C} / 3^{\wedge} .5$ meters $/ \mathrm{sec}$. The wave progression radius $\mathrm{R}=\mathrm{V}^{*}$ delta time $=$ $2.31 \mathrm{e} 21 /(\mathrm{pi} * \mathrm{Ru})=0.0106$ radians at decoupling [4] (pi is used because they are measuring distance in radians against the radius of the universe at that point). WMAP data was updated for 9 years as additional data came in [4]. But listen to the language in the report: "The peak at 74.5 micro-degrees K is due to the baryon-photon fluid falling into pre-existing wells resulting from Gaussian disturbances from inflation and dark matter". Really?

WMAP interpretation that ratio of peaks determines dark/light ratio

The WMAP limitation on baryon fraction was based on the interpretation of hot spots measured by WMAP and refined by PLANCK scientists. We will first review the WMAP data [4] reduction (a power spectrum expected from acoustic waves).

	L*(L+1)/2pi*cl					
L	micro K^2	La	L* $\mathrm{L}+1) / 2 \mathrm{pi}$	cl	delta temp K	radius (meters
		0.735				$5.10 \mathrm{E}+23$
220	5580.1	299.32	7738.11	0.72	7.47E-05	$2.32 \mathrm{E}+21$
412	1681.0	560.54	27081.17	0.06	$4.10 \mathrm{E}-05$	$1.24 \mathrm{E}+21$
531	2601.0	722.95	45022.14	0.06	$5.10 \mathrm{E}-05$	$9.60 \mathrm{E}+20$
850	2500.0	1156.46	213038.79	0.01	0.00005	$6.00 \mathrm{E}+20$
1200	1020.0	1632.65	424496.26	$2.64 \mathrm{E}-03$	$3.34664 \mathrm{E}-05$	$4.25 \mathrm{E}+20$

The WMAP power spectrum for the above measurements is shown below:

Results from cellular cosmology model:
The calculations below show the period from equality to decoupling with 1.0 baryon critical density. Equality and decoupling occur at the correct radius and temperature combinations and wave progression produces the same primary 0.0106 radian hot spot.

$3.05 \mathrm{E}+22$	
1029.61	$3.94 \mathrm{E}+22$ 15.89
$2.52 \mathrm{E}+03$	$1.95 \mathrm{E}+03$
$4.58 \mathrm{E}+17$	$2.12 \mathrm{E}+17$
$2.09 \mathrm{E}-17$	$9.68 \mathrm{E}-18$
$2.66 \mathrm{E}-19$	$9.52 \mathrm{E}-20$
$1.27 \mathrm{E}-02$	$9.84 \mathrm{E}-03$
$1.30 \mathrm{E}+21$	$1.84 \mathrm{E}+21$
0.0136	0.0148

Calculation of dt

The temperature peaks called dt are in micro degrees $(2.8010074 \mathrm{~K})$. The thermal peaks are a function of density. There is a misunderstanding that progression of the wave causes densification. In fact the density of the universe (decoupling and slightly sooner) is recorded in the wave. The waves at that point become visible (the plasma clears). That period is recorded by radiometers but the radiation has been
highly red shifted to 2.801 degrees, Density near the decoupling radius is provided by the cosmology model. This density is the key to understanding WMAP temperature anisotropy.

```
dt=2.73*(1.2* (9.14e-27/4.33e-18)^.5+1)^.333-2.73
```

Delta $\mathrm{t}(\mathrm{dt})$ is calculated from the density near decoupling compared to the final density (also critical density). Spots inside larger spots are earlier densities that are visible to radiometers in the CMB as time and the wave progresses. The following combinations of wave progression and temperature produce the power spectrum below. The important combination at decoupling yields exactly 74 micro degrees from first principles!

wave progress	$5.30 \mathrm{E}+19$	1.31E+20	$\begin{array}{r} \hline 2.46 \mathrm{E}+20 \\ 0.0042 \end{array}$	$20 \quad 4.14 \mathrm{E}+20$	$6.62 \mathrm{E}+20$	$\begin{array}{r} \hline 1.03 E+21 \\ 0.0082 \end{array}$	$1.56 \mathrm{E}+21$	$2.35 \mathrm{E}+21$
radians	0.0015	- 0.0029		420.0055	0.0068		0.0096	0.0112
Delta t (dt)		7.299E-06	1.073E-05	$05 \quad 1.578 \mathrm{E}-05$	$2.320 \mathrm{E}-05$	$3.411 \mathrm{E}-05$	5.015E-05	$7.373 \mathrm{E}-05$
model result	wave R	wave R		$L^{*}(\mathrm{~L}+1) / 2 \mathrm{pi*}$ cl La		$L^{*}(L+1) / 2 p i$	cl d	delta temp K
dt (K)	progression	with harmonic $5.1 \mathrm{e} 23 / \mathrm{prog}$		micro K^2	0.735		$\mathrm{cl}=(\mathrm{dt} * 1 \mathrm{e} 6)^{\wedge} 2 /\left(\left(\mathrm{L}^{*}(\mathrm{~L}+1) / 2 \mathrm{pi}\right)\right.$	
73.73	$2.35 \mathrm{E}+21$	$2.35 \mathrm{E}+21$	217	5436.1	295.38	7536.01	$\longrightarrow 0.72$	7.373E-05
		$1.17 \mathrm{E}+21$	434	1156.0	590.75	30074.94	0.04	$3.400 \mathrm{E}-05$
50.15	$1.56 \mathrm{E}+21$	$1.56 \mathrm{E}+21$	327	2514.8	444.31	17025.16	0.15	$5.015 \mathrm{E}-05$
50.15	$1.56 \mathrm{E}+21$	$7.81 \mathrm{E}+20$	653	2514.8	888.62	125816.33	0.02	$5.015 \mathrm{E}-05$
34.11	$1.03 \mathrm{E}+21$	$5.13 \mathrm{E}+20$	994	1163.4	1352.41	291312.81	0.004	$3.411 \mathrm{E}-05$
23.20	$6.62 \mathrm{E}+20$	$3.31 \mathrm{E}+20$	1541	538.2	2096.74	700029.01	0.001	$2.320 \mathrm{E}-05$
10.73	$4.14 \mathrm{E}+20$	$2.07 \mathrm{E}+20$	2463	115.2	3351.22	1787946.28	0.000	$1.073 \mathrm{E}-05$
7.30	$2.46 \mathrm{E}+20$	$1.23 \mathrm{E}+20$	4153	53.3	5650.66	5082714.20	0.000	7.299E-06

Result of possible baryon limitation from hot spot data
The entire equality to decoupling analysis was based of 1.0 baryon fraction of critical. The hot spots measured by WMAP were calculated. The density of the universe and how waves progress are the two variables of interest. There is no reference to dark matter in the calculation and the ratio of the first and second spots is NOT the dark to normal matter ratio (contrary to a WMAP statement). I believe I have characterized the hot spots and they do not limit baryon fraction to 0.046 fraction of critical density.

Mass Accumulation

At decoupling the plasma clears and normal matter can accumulate. The first accumulation is densification into a volume that will form clusters of galaxies. The wave (velocity $=\mathrm{C} / 3^{\wedge} .5$) that starts at equality and progresses to decoupling determines the first accumulation. The wave starts as high density
and progresses outward. As it reaches decoupling, it determines central mass because matter inside the wavelength radius has more density than the outside radius (all gravitation is based on central mass and this defines what is central). Here is the calculation:

```
6.67E+22 R decoupling (M)
2.29E+04 N clusters
2.35E+21 Jeans at decoupling (M)
1.09E+47 Avg mass of cluster (Kg)
```

This determines the number and mass of clusters $\left(\mathrm{N}=2.29 \mathrm{e} 4=(6.67 \mathrm{e} 22 / 2.35 \mathrm{e} 21)^{\wedge} .33\right)$ and mass/galaxy=2.49e51/N=1.09e47 Kg).

Mass accumulation starts at this point and the equation derived below determines acceleration (a) toward the central mass (M) for a time period (t).

Touch down equation

```
L=at^2/2=1/2*GM/R^2*(2R/at)^2=GM/(at^2)
at^2=2GM/(at)^2
a^3*t^4=2GM
a=(2GM/t^4)^. 333
```

Mass M can be cluster central mass 1.09 e 47 Kg , galaxy central mass or star central mass.
Next, the radius that "reaches out" from (a) and "pulls in" mass during the time period (delta t) is calculated:
$\mathrm{R}($ reach $)=\mathrm{a}^{*}(\text { delta time })^{\wedge} 2 / 2$.

From this the volume $\left(4 / 3 \mathrm{piR}^{\wedge} 3\right)$ multiplied by the density available determines the developing central mass for this time period.

Mass moved to center= volume*density.
The calculation is repeated, adding mass as time progresses (line 2):

$4.24 \mathrm{E}+46$	$6.91 \mathrm{E}+46$	$1.09 \mathrm{E}+47 \mathrm{M}$ Cluster	$1.70 \mathrm{E}+02$
$3.67 \mathrm{E}+44$	$7.37 \mathrm{E}+44$	$1.28 \mathrm{E}+45$ Mc accumulation=M+dM	
$9.35 \mathrm{E}-18$	$4.33 \mathrm{E}-18$	$2.00 \mathrm{E}-18$ density	
$2.65 \mathrm{E}-05$	$1.87 \mathrm{E}-05$	$1.30 \mathrm{E}-05$ touch dwn	
$1.85 \mathrm{E}+20$	$2.73 \mathrm{E}+20$	$4.01 \mathrm{E}+20$ Reach	
$3.70 \mathrm{E}+44$	$5.44 \mathrm{E}+44$	8.00E+44 Vol*dens	

However, for clusters the reach is limited to $\mathrm{R}=\mathrm{Vdt}$ where V is limited to $4.4 \mathrm{e} 7 \mathrm{~m} / \mathrm{sec}$ (the kinetic energy of the fall cannot exceed 10.15 MeV). In addition, reach is later limited to 2.35 e 21 meters since that determined the central mass at decoupling. Clusters do not densify mass because they do not create an orbit. For stars, once a stable orbit is reached, expansion within the orbit stops. Recall that expansion is pressure driven. If there is no orbit, the pressure (and density) will everywhere be the same.

Galaxy Mass Accumulation

Galaxies form by the above process except the Jeans wavelength drops. The wave progression velocity was $\mathrm{C} / 3^{\wedge} .5$ before decoupling but after the plasma clears the speed drops to the speed of sound and the Jeans wavelength falls to approximately 1.9 e 19 meters.

> | 2.4E+21 R decoupling (M) |
| :--- |
| 1.8E+06 N galaxies in cluster |
| 1.9E+19 Jeans for galaxy (M) |
| $6.0 \mathrm{E}+40$ Avg mass of galaxy (Kg) |

This determines the number and mass of galaxies ($\mathrm{N}=(2.4 \mathrm{e} 21 / 1.9 \mathrm{e} 19)^{\wedge} .33$) and mass/galaxy $=1 \mathrm{e} 47 / \mathrm{N}=6 \mathrm{e} 40 \mathrm{Kg}$ because the Jeans wavelength determines the boundary of the central mass. Mass accumulation is from "virgin density" (2.49e51/total volume).

Star mass Accumulation

The process again repeats determined by waves determining the volume of central mass. The fractional Jeans wavelength (empirical) 4 e 15 meter determines the average mass of the stars.

$1.9 \mathrm{E}+19$	R Jeans for galaxy (M)
1.0E +11	N stars in galaxy
4.1E +15	Jeans for stars (M)
5.2E +29	Avg mass of star (Kg)

Star formation rates

The cosmology model developed above in Problem 3 allows star formation rates to be calculated. The number of stars is used in calculations for expansion component R3 (Problem 4 Dark Energy). The calculation uses the number of clusters, galaxies and stars listed above.

Stars $=\operatorname{sum}\left(2.3 \mathrm{e} 4 *(\mathrm{Mc} / 1.1 \mathrm{e} 47) * 1.8 \mathrm{e} 6^{*}(\mathrm{Mg} / 6.0 \mathrm{e} 40) * 1.2 \mathrm{e} 11 *(\mathrm{Ms} / 5.2 \mathrm{e} 29)\right)$.
The ratios ($\mathrm{Mc} / 1.1 \mathrm{e} 47$), $(\mathrm{Mg} / 6.0 \mathrm{e} 40)$, and $(\mathrm{Ms} / 5.29 \mathrm{e} 29)$ are lower than 1 because R (reach $=\mathrm{a}^{*} \mathrm{t}^{\wedge} 2 / 2$) calculated with acceleration (a) from the touchdown equation is limited to the Jeans wavelength since the central mass was established at earlier points in expansion (Z). As the universe expands, the central mass associated with the wavelength does not change. This leaves some mass out of reach. As stars develop, star number $=\operatorname{sum}$ (stars formed per time increment).

1.14E+47	1.14E+47	1.14E+47	1.14E+47	1.14E+47 M Cluster	$1.70 \mathrm{E}+02$
$2.07 \mathrm{E}+46$	2.07E+46	$2.07 \mathrm{E}+46$	$2.07 \mathrm{E}+46$	$2.07 \mathrm{E}+46 \mathrm{Mc}$ accumula	= $\mathrm{H}+\mathrm{dM}$
$2.80 \mathrm{E}-25$	$1.25 \mathrm{E}-25$	$5.46 \mathrm{E}-26$	$2.29 \mathrm{E}-26$	$9.08 \mathrm{E}-27$ density	
$1.55 \mathrm{E}-10$	9.29E-11	$5.56 \mathrm{E}-11$	3.33E-11	$1.99 \mathrm{E}-11$ touch dwn	
$2.35 \mathrm{E}+21$ Reach					
$6.33 \mathrm{E}+40$	$6.33 \mathrm{E}+40$	$6.33 \mathrm{E}+40$	$6.33 \mathrm{E}+40$	6.33E+40 M Galaxy	
$4.83 \mathrm{E}+39$	$4.83 \mathrm{E}+39$	$4.83 \mathrm{E}+39$	4.83E+39	$4.83 \mathrm{E}+39 \mathrm{Mg}$ accumul	M + dM
2.80E-25	$1.25 \mathrm{E}-25$	5.46E-26	$2.29 \mathrm{E}-26$	$9.08 \mathrm{E}-27$ dens	
$2.26 \mathrm{E}-12$	1.35E-12	$8.11 \mathrm{E}-13$	$4.85 \mathrm{E}-13$	2.90E-13 touch dwn	
$1.90 \mathrm{E}+19$ Reach					
$1.54 \mathrm{E}+05$	$1.35 \mathrm{E}+05$	$1.19 \mathrm{E}+05$	$1.05 \mathrm{E}+05$	$9.22 \mathrm{E}+04$	
$1.78 \mathrm{E}+20$	$2.30 \mathrm{E}+20$	$2.98 \mathrm{E}+20$	$3.85 \mathrm{E}+20$	$4.96 \mathrm{E}+20$	
$2.05 \mathrm{E}-22$	$9.47 \mathrm{E}-23$	$4.38 \mathrm{E}-23$	$2.03 \mathrm{E}-23$	$9.45 \mathrm{E}-24$	
5.42E+29	$5.42 \mathrm{E}+29$	$5.42 \mathrm{E}+29$	$5.42 \mathrm{E}+29$	$5.42 \mathrm{E}+29 \mathrm{M} \mathrm{Star}$	
$3.76 \mathrm{E}+28$	$3.76 \mathrm{E}+28$	$3.76 \mathrm{E}+28$	$3.76 \mathrm{E}+28$	$3.76 \mathrm{E}+28 \mathrm{Ms}$ accumula	= +dM
2.80E-25	$1.25 \mathrm{E}-25$	5.46E-26	$2.29 \mathrm{E}-26$	$9.08 \mathrm{E}-27$ dens	
4.67E-16	2.80E-16	$1.67 \mathrm{E}-16$	$1.00 \mathrm{E}-16$	5.99E-17 touch dwn	
$4.10 \mathrm{E}+15$ Reach					
$5.78 \mathrm{E}+19$	6.13E+19	$6.48 \mathrm{E}+19$	$6.83 \mathrm{E}+19$	7.17E+19 Sum stars	
				$3.48 \mathrm{E}+18$ Stars for dt	
Stars $=1.15{ }^{*} \operatorname{sum}\left(2.3 e 4^{*}(1.37 \mathrm{e} 46 / 1 \mathrm{e} 47)^{*} 1.9 \mathrm{e} 6^{*}(3.32 \mathrm{e} 39 / 6 \mathrm{e} 40)^{*} 1 \mathrm{e} 11^{*}(2.3 \mathrm{e} 28 / 5.2 \mathrm{e} 29)\right)$					

The star numbers calculated above are used (yellow below) for calculating temperature and expansion due to star energy addition (R3). The value 1.15 is in very good agreement with the energy required to raise the temperature from 2.45 K to 2.801 K and accelerate expansion. This model indicates that stars developed earlier than observations, perhaps as early at 2 e 6 years. But the current time is only 13.8 billion years and stars can burn for 10 billion years. Starting early still allows two generations.

$4.20 \mathrm{E}+07$	$1.50 \mathrm{E}+07$
$3.54 \mathrm{e} 5^{*} 2.73^{\wedge} 4$	
$9.95 \mathrm{E}+20$	$3.95 \mathrm{E}+20$
$3.54 \mathrm{e} 5^{*} 5778^{\wedge} 4$	
$1.71 \mathrm{E}+51$	$1.5699 \mathrm{E}+52$
$1.80 \mathrm{E}+38$	Area sky w/o stars area
$3.43 \mathrm{E}+00$	$2.73 \mathrm{E}+00$ Temp with Stars
$3.30 \mathrm{E}+00$	$2.55 \mathrm{E}+00$ Temp w/o stars
$1.35 \mathrm{E}-11$	$1.77 \mathrm{E}-11$
$2.26 \mathrm{E}+24$	$4.94 \mathrm{E}+24$
dR $=$ Eela $\mathrm{E}(\mathrm{MeV})$	

Another interesting value from the cosmology model is; Velocity=a*time calculated with acceleration (a). It shows that the velocity produced by the star central mass and planet central mass is not enough to establish an orbit. This means that "solid" objects form. (Mass densification associated with clusters and galaxies form orbits from which stars develop but they themselves are not solid objects.)

Successive densification and black holes

The cosmology model indicates that stars normally develop from virgin density ($2.49 \mathrm{e} 51 \mathrm{Kg} /$ (Volume of universe). Densification occurs when stars falls into orbits. Successive densification can occur where galaxies form. Taking $\mathrm{Z}=20$ as the reference point (where early mass accumulation has been observed), a galaxy can contain high density. New or interacting bodies can develop from the high density matter. This accelerates mass accumulation and may promote black hole development.

$\mathrm{Z}=20$	Radius	Kg		Density	
R universe		$1.62 \mathrm{E}+24$	$2.49 \mathrm{E}+51$	$1.40 \mathrm{E}-22$	virgin $\left(\mathrm{Kg} / \mathrm{M}^{\wedge} 3\right)$
Rfall Galaxy		$2.28 \mathrm{E}+19$	$6.33 \mathrm{E}+40$	$1.28 \mathrm{E}-18$ galaxy $\left(\mathrm{Kg} / \mathrm{M}^{\wedge} 3\right)$	

Summary; Cosmological parameter comparison

WMAP parameters are compared below with the revised parameters from this document summarized in the rightmost column. The total mass/volume is $\exp (180)^{*} 1.67 \mathrm{e}-27 \mathrm{~kg} / 1 \mathrm{e} 79=9.14 \mathrm{e}-27 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$. Baryon density is given by $\exp (180) /$ volume at each of the radius values with no dark matter. Cosmological parameters with dark energy removed (and replaced with star photon energy) are shown below. The table shows normal matter fraction of critical density (1.0), dark matter fraction of critical density (0) and dark energy fraction of critical density (0).

WMAP		THIS PAPER			
NOW		equality	decoupling	NOW	
published					
$4.02 \mathrm{E}+25$	Inferred Radius (m)	$3.89 \mathrm{E}+21$	$5.08 \mathrm{E}+22$	$4.02 \mathrm{E}+25$	= R1+R3
				$4.94 \mathrm{E}+24$	= R3
2.26E-18	H0			$3.53 \mathrm{E}+25$	= rR1
8809	Temperature at equality (K)	$3.48 \mathrm{E}+04$		2.73	
	Photon mass density				
	Proton mass density				
2973	Temperature (K) decoupling		2668	2.73	
0.0106	Spot angle (radians)		0.0109		
0.254	baryon number density			5.473	
5.77E+08	Photon number density			$5.77 \mathrm{E}+08$	
$4.400 \mathrm{E}-10$	baryons/photon			$4.00 \mathrm{E}-10$	
0.235	Dark matter fraction			0	
6.57E-27	dark matter density in $\mathrm{kg} / \mathrm{m}^{\wedge} 3$			0	
$4.24 \mathrm{E}-28$	baryon matter density in $\mathrm{kg} / \mathrm{m}^{\wedge} 3$			$9.14 \mathrm{E}-27$	
0.719	Dark energy fraction			0	
9.14E-27	critical density			$9.14 \mathrm{E}-27$	
0.0464	Baryon fraction			1.000	
2.72E+77\|	Overall volume ($\mathrm{m}^{\wedge} 3$)		$2.46 \mathrm{E}+65$	$2.72 \mathrm{E}+77$	
$2.814 \mathrm{E}-01$	overall mass density		rhoC	Volume	
			$9.135 \mathrm{E}-27$	$2.72 \mathrm{E}+77$	
			mass=rhoC*V	Volume (kg)	
				$2.486 \mathrm{E}+51$	

Conclusions

WMAP measured a flat universe, what does that mean?
The standard method of simulating expansion involves the Friedmann-Lemaitre-Robertson-Walker (FLRW) model [10]:
$\mathrm{H}^{\wedge} 2=\mathrm{H} 0^{\wedge} 2^{*}\left(\right.$ OmegaMatter* $(1+\mathrm{z})^{\wedge} 3+$ OmegaR $*(1+\mathrm{z})^{\wedge} 2+$ OmegaLambda $)$
Where:
OmegaTotal $=1 \quad$ WMAP result
$\mathrm{RhoC}=\mathrm{H}^{\wedge} 2 /(8 / 3 \mathrm{pi} \mathrm{G}) \quad$ (critical density)
OmegaR $(1+z)^{\wedge} 2=0$ (wrong shape)
OmegaMatter separated into =Omega cold dark matter and baryons
OmegaLambda is the cosmological constant
$\mathrm{H} 0=2.26 \mathrm{e}-18 / \mathrm{sec} \quad$ WMAP 9 year result
$\mathrm{z}=(\mathrm{rf} / \mathrm{r}-1)$ where radius is the developing radius and rf is the final radius.

Ho		$2.26 \mathrm{E}-18$	$(1 / \mathrm{sec})$
rhoC	$8 / 3 \mathrm{pi} \mathrm{G} / \mathrm{Ho}^{\wedge} 2$	$9.124 \mathrm{E}-27$	$\left(\mathrm{Kg} / \mathrm{M}^{\wedge} 3\right)$

Historically, the equations are written to be consistent with geometric models of the universe involving metric tensors that characterize a four dimension universe where $\mathrm{ds}^{\wedge} 2=$ three distances ${ }^{\wedge} 2$ and $\left(\mathrm{C}^{*} \text { time }\right)^{\wedge} 2$. If the overall density equals critical density the universe is considered to be flat. The term flat refers to possible shapes (hyperbolic, etc.) but also means that kinetic energy is converted to potential energy (a fact that most agree on). The model is also known as the Lambda Cold Dark Matter model or the concordance model. Lambda stands for the famous Einstein constant related to the concept of dark energy. WMAP scientists believes that Hubble's constant gives the critical density $9.14 \mathrm{e}-27 \mathrm{Kg} / \mathrm{M}^{\wedge} 3$. They believe in a flat universe but added lambda, dark matter and dark energy to make the total 9.14e-27.
The present work shows that the reason the universe is flat is that the density is actually 9.14e-27 $K^{\prime} M^{\wedge} 3$ but it is $\mathbf{1 0 0 \%}$ baryons.

What is space-time?
Space is defined by the Proton model gravitational field $\mathrm{r} 0=\mathrm{hC} / 2.801=7.045 \mathrm{e}-14$ meters. Initially space is comprised of $\exp (180)$ cells, each with the radius $7.045 \mathrm{e}-14$ meters. Each cell contains a neutron (that decays to a proton). The cell radius is a balanced force orbit that establishes and maintains the gravitational constant $\mathrm{G}=6.67 \mathrm{e}-11 \mathrm{Nt} \mathrm{M}^{\wedge} 2 / \mathrm{Kg}^{\wedge} 2$. The orbital radius is a function of its original kinetic energy and kinetic energy. As kinetic energy is converted to potential energy the cell (and the universe) expands. This is a function of (time/time' $)^{\wedge}(2 / 3)$. Time is measured around the fundamental cell circumference (cycle time $=2 * \mathrm{pi}^{*} 7.045 \mathrm{e}-14 / \mathrm{C}=1.47 \mathrm{e}-21$ seconds). Time counts forward by repeating this cycle. The value gamma equals (mass+ke)/mass. When performing orbital calculations, the orbital mass is mass/gamma (a result of special relativity). Gamma $=(\mathrm{m}+\mathrm{ke}) / \mathrm{m}$ is related to Schwarzschild $\mathrm{dt}=1 / \mathrm{gamma}-1$. Time is slowed slightly and in this regard space-time is a proper concept. Space-time expands as kinetic energy (ke) is converted to potential energy. Space-time is very close to space since the only relativity effect is gamma and it approaches 1.0 early in expansion. If particles gain a huge amount of kinetic energy gamma becomes significant (mesons and baryons entering our atmosphere and artificially in high energy accelerators).

There is a Schrodinger based energy $=0$, probability $=1$ construct (Appendix 1) associated with orbits defined by the Proton model. These orbits are circular leading to the question what curves space-time? At the quantum level a sine wave varying with time is represented by a circle with one imaginary axis and one distance axis. However, real orbits like those of orbiting stars follow curves because the cells that make up space are curved and G equivalence exists between the large and small scale.

What is quantum gravity?

Gravity is defined and maintained by the neutron and its associated outer orbit (cell). The information we need about gravity is provided by the Proton model, cellular cosmology and the number of initial neutrons determined by probability considerations $(1=\exp (180) /(\exp (90) * \exp (90))$. The Schrodinger equation is based on quantum theory and the Proton model is based on the Schrodinger equation. The Proton model gravitational field energy 2.801 MeV is a quantum value but cellular cosmology provides a bridge between small and large scales $\left(M=m^{*} \exp (180)\right.$ and $\left.R=r^{*} \exp (90)\right)$.

Flat galaxy rotation curves

Flat galaxy rotation curves can be accounted for by including a potential energy gamma effect. As a proton falls toward the galaxy its kinetic energy will increase and its potential energy will decrease. Both energies have an associated gamma that multiply and represent the full time effect. We measure overall gamma that includes both components. The kinetic energy component follows Newtonian (Newtonian) gravity and velocity decreases appropriately with radial distance. Overall since ke $+\mathrm{pe}=$ constant the velocity remains constant regardless of where the mass orbits within the galaxy. There is no need for "missing matter".

What does this model imply regarding creation?

The Proton model is anchored by the Schrodinger equation. The equation also appears to anchor properties of all mesons and baryons. This equation described by MIT as unitary evolution [15] is the basis of a broad theory. The equation gives probability $\mathrm{P}=\exp (\mathrm{iEt} / \mathrm{H}) * \exp (-\mathrm{iEt} / \mathrm{H})$ where $\mathrm{H}=\mathrm{Planck}$'s constant, E is field energy and time t is the time around a quantum circle at velocity C .

Probability in the left hand side of the Schrodinger equation is related to energy and time in the right hand side of the equation. Probability $=1$ occurs at the instant of wave function collapse. Historically observation is fundamental to quantum mechanics and the Copenhagen interpretation indicates that we can only describe the probability of an event within certain limits. If we use Shannon's definition of information (Information = -natural logarithm(Probability), the left hand side of the equation yields information. Many associate quantum mechanical probabilities with the process of observation but some authors [13] call it consciousness. Zero energy and probability 1 appear to be initial conditions [17]. This implies that creation is based on separations from zero and 1 . The Schrodinger equation requires a proper set of probabilities to represent the Proton model. The probability $\mathbf{1}$, zero energy derivation naturally transitions from probability sets ($\mathbf{p} / \mathbf{p},=e / \mathbf{e}^{\prime}$) to energy sets that describes reality through the Schrodinger equation. This is supported by the proton model and cellular cosmology.

Where are the laws of nature?

The proton model is a manifestation of the laws of nature. Time emanates from inside the proton. The sum of kinetic energy and potential energy remain constant over time. Temperature emanates from kinetic energy in the proton and when it reaches 8 e 10 K , part of the fusion energy 10.15 is released to increase the radius of the cell. It is now low, close to 2.801 K . As stars light up, their fusion energy, again part of the value 10.15 MeV , is released to once again increase the radius of the cell. The proton is the cell. Components of the proton are improbable ($1 / \exp (180)$) but there are $\exp (180)$ cells is the universe and the universe is huge (rcell* $\exp (60)$. Overall, the proton and interactions with other protons creates the universe!

References

Some references can be downloaded at http://vixra.org/ . Search at top of page Gene H Barbee.

1. Peebles, P.J.E., Principles of Physical Cosmology, Princeton University Press, 1993.
2. Bennett, C.L. et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Data, Astrophysical Journal, 2001
3. A. Conley, et al, (THE SUPERNOVA COSMOLOGY PROJECT), Measurement of Omega mass and Omega lambda from a blind analysis of Typel a supernovae with CMAGIC.
4. Hinshaw, G. et.al, Nine Year WMAP Observations, draft June 5, 2013. http://arxiv.org/pdf/1212.5226v3.pdf Table 2.
5. Bergstrom, L. and Goobar, A., Cosmology and Particle Astrophysics, $2^{\text {nd }}$ Edition, Springer-Praxis Books in Astrophysics and Astronomy, 2004.
6. http://cds.cern.ch/record/262880/files/940501.pdf Review of work by N. D. Schramm.
7. Patrick Peter, Jean Philippe Uzan, Primordial Cosmology, OUP Oxford, Feb 14,2013.
8. Barbee, Gene H., A Top-Down Approach to Fundamental Interactions, FQXi essay, June 2012, http://www.viXra.org/pdf/1307.0082 ,revised Nov, 2014. Reference Microsoft ${ }^{\circledR}$ spreadsheet Unifying concepts of nature.xls.
9. Barbee, Gene H., On the Source of the Gravitational Constant at the Low Energy Scale, http://www.viXra.org/pdf/1307.0085, revised Sept 2019. Prespacetime Journal Vol. 5 No. 3 March 2014.
10. Barbee, Gene H., Discovery of Quantum Gravity, http://viXra.org/pdf/1508.0120 , Aug 152015. Revised Sept, 2019.
11. Barbee, Gene H., Schrodinger Fundamentals for Mesons and Baryons, http://viXra.org/pdf/1710.15306, October 2017.
12. Barbee, Gene H., Nature and Information, http://www.vixra.org/pdf/1611.0302v1.pdf, December 2016. http://prespacetime.com/index.php/pst/issue/view/91
13. Edwin Klingman, private communication
14. https://web.archive.org/web/20130323234553/http://www.sciops.esa.int/index.php?project=PLA NCK\&page=Planck Published_Papers
15. Search "MIT22 Evolution of Function Chap 6".
16. D. E. Groom et al. (Particle Data Group). Eur. Phys. Jour. C15, (2000) (URL: http://pdg.lbl.gov).
17. Barbee, Gene H., Creation and Schrodinger's Equation, http://www.viXra.org/pdf/1811.0334v1 , January 2018
18. Barbee, Gene H., How Nature Computes, Academia.edu, March 29, 2019.
19. Barbee, Gene H., Life Processes within Mind of Creation, Scientific GOD Journal, December 2019, Volume 10, Issue 8.
20.

Appendix 1 Schrodinger Fundamentals of the Proton model
The work below derives relationships that obey energy zero and probability one initial conditions.
Everything will be created through separation. One result is a model of the neutron, proton and electron that provides insights into physics and cosmology.

Restrictions: $\mathrm{P}=\exp (-\mathrm{i} \mathrm{Et} / \mathrm{H}) * \exp (\mathrm{i} \mathrm{Et} / \mathrm{H})=1$ where $\mathrm{Et} / \mathrm{H}=1$. This means we deal with the unitary point where the wave function collapses on a quantum circle. The time (t) to circle radius $\mathrm{R}=\mathrm{HC} /(2 \mathrm{piE})$ is $\mathrm{t}=2$
pi R / C, where E is field energy and H is Planck's constant ($4.13 \mathrm{e}-21 \mathrm{MeV}-\mathrm{sec}$). We are dealing with circles that represent spheres, not translation of particles (x, y and z) like the Dirac equation.

The RHS of the Schrodinger equation will have pairs of complex conjugates $\exp (\mathrm{iEt} / \mathrm{H}) * \exp (-\mathrm{iEt} / \mathrm{H})$. Each pair of components will represent waves moving through time cycles. A sinusoidal wave is represented on a circle with a vertical imaginary axis and a real horizontal axis ($\exp (\mathrm{i}$ theta $)=\cos$ theta +i sin theta). If there is mass and kinetic energy in the circles with balanced forces they are orbits with real vertical and horizontal axis. Looking ahead, four orbits in the proton mass model represent four fundamental interactions. The $\mathrm{P}=1$ constraint and the $\mathrm{E}=0$ constraint are further defined below.

Probability=1 constraint

The probabilities contain exponential functions $\exp (\mathrm{N})$. The fraction $0.431=1 / 3+\ln (3)-1$.

Probability 1 Constraint

$1=\mathrm{p} 1 * \mathrm{p} 2 /(\mathrm{p} 3 * \mathrm{p} 4)$ but each probability $=1 / \exp (\mathrm{N})$
$\mathrm{N} 1=13.431 \quad \mathrm{~N} 3=15.431$
$\mathrm{N} 2=12.431 \quad \mathrm{~N} 4=10.431$
$\mathrm{p} 1=1 / \exp (13.431) \quad \mathrm{p} 3=1 / \exp (15.431)$
$\mathrm{p} 2=1 / \exp (12.431) \quad \mathrm{p} 4=1 / \exp (10.431)$
$1=1 / \exp (13.431) * 1 / \exp (12.431) /(1 / \exp (15.431) * 1 / \exp (10.431))$
These N values represent $\mathrm{P}=1$, but it has four probability components.
Review of natural logarithms: Multiply probabilities by adding logarithms. Find the result with the anti-logarithm $(\exp (0)=1)$.

P	$p 1 * p 2=\exp (-i E t / H)^{*} \exp (i E t / H)$
	with $E t / H=1$
multiply by adding the logarithms	
In P	$\ln \left(p 1^{*} p 2\right)=-i+i=0$
P	$\exp (0)=1$

Example of exponent sign change:
$\exp (2)=7.39=1 / \exp (-2)$

Evaluate the RHS of the Schrodinger solution

Energy $=0$ constraint
Apply the constraint: Energy components have overall zero energy. Mass and kinetic energy are positive and field energy is negative. It will be shown that the Schrodinger equation becomes relativistic, like the Dirac equation with $\mathrm{P}=1$ and energy $=0$. The example math below is similar to Dirac's development with $\mathrm{Et} / \mathrm{H}=1$. It allows us to separate energy terms from time terms.

Constrain Energy to zero

$1=\exp (\mathrm{itE} / \mathrm{H}) * \exp (-\mathrm{itE} / \mathrm{H})$

take the natural \log and divide boths sides by i

$0=\mathrm{itE} / \mathrm{H}-\mathrm{ttE} / \mathrm{H}$		
$0=\mathrm{t} / \mathrm{H} * \mathrm{E}-\mathrm{t} / \mathrm{H} * \mathrm{E}$	Example:	
take the square root. Since $\mathrm{Et} / \mathrm{H}=1, \mathrm{E}=1 /(\mathrm{t} / \mathrm{H})$	$\mathrm{a}=1 / \mathrm{b}$	$\mathrm{a}=.5$
$0=(\mathrm{E}-\mathrm{E}) *(\mathrm{t} / \mathrm{H}-\mathrm{t} / \mathrm{H})$	$\mathrm{ab}-\mathrm{ba}$	$\mathrm{b}=2$
$0=\mathrm{E} 1-\mathrm{E} 1$	$(\mathrm{a}-\mathrm{a}) *(\mathrm{~b}-\mathrm{b})=0$	$(0.5-0.5) *(2-2)=0$

The example math above is expanded to give the energy $=0$ constraint with four components, each with matching complex conjugates.
$1=\exp (\mathrm{itE} 1 / \mathrm{H}) * \exp (-\mathrm{itE} 1 / \mathrm{H}) * \exp (\mathrm{itE} 2 / \mathrm{H}) * \exp (-\mathrm{itE} 2 / \mathrm{H}) * \exp (\mathrm{itE} 3 / \mathrm{H}) * \exp (-\mathrm{itE} 3 / \mathrm{H}) * \exp (\mathrm{itE} 4 / \mathrm{H}) * \exp (-\mathrm{itE} 4 / \mathrm{H})$
The natural log of the RHS is:

$$
0=(\mathrm{itE} 1 / \mathrm{H})+(-\mathrm{itE} 1 / \mathrm{H})+(\mathrm{itE} 2 / \mathrm{H})+(-\mathrm{itE} 2 / \mathrm{H})+(\mathrm{itE} 3 / \mathrm{H})+(-\mathrm{itE} 3 / \mathrm{H})+(\mathrm{itE} 4 / \mathrm{H})+(-\mathrm{itE} 4 / \mathrm{H})
$$

Using the square root procedure above with each $\mathrm{t} / \mathrm{H}=1 / \mathrm{E}$, we only need the energy terms that are equal and opposite. The square root also has a $(\mathrm{t} / \mathrm{H}-\mathrm{t} / \mathrm{H})=0$ solution that contains inverted terms.

```
E1-E1+E2-E2+E3-E3+E4-E4=0
E1+(E3+E4-E1-E2)+E2-E3-E4=0
```


Evaluating E

Next evaluate E. Looking ahead, there is another meaning associated with $\mathrm{P}=1$. Overall the initial condition of the universe is probability 1 , meaning it does indeed exist. There are many protons, each with mass that make up the universe. Specifically:
$\mathrm{P}=1=$ probability of each proton* number of particles $=1 / \exp (\mathrm{N}) * \exp (\mathrm{~N})$. The probability of each proton is $1 / \exp (\mathrm{N})$. The proton itself is made of improbable components like quarks. We can evaluate the probability of particles that makes up the proton if energy is itself a probability, i.e. $\mathrm{p}=\mathrm{e} 0 / \mathrm{E}=1 / \exp (\mathrm{N})$, where e 0 is a small constant.
$p=e 0 / E=1 / \exp (N)$, i.e. $E=e 0 / p$.
With $\mathrm{p}=1 / \exp (\mathrm{N}), \mathrm{E}=\mathrm{e} 0 * \exp (\mathrm{~N})$.

E1-E1+E2-E2+E3-E3+E4-E4=0

Identify E as $\mathrm{E}=\mathrm{e}^{*} \exp (\mathrm{~N})$, using the same N values as the LHS.

```
0=eo*}\operatorname{exp}(13.431)-eo*\operatorname{exp}(13.431)+e0*\operatorname{exp}(12.431)-e0*\operatorname{exp}(12.431)+e0*\operatorname{exp}(15.431)
e0*}\operatorname{exp}(15.431)+eo*\operatorname{exp}(-15.431)+eo*\operatorname{exp}(10.431)-e0* exp(-10.431)
```

Mass plus kinetic energy will be defined as positive separated from equal and opposite negative field energy. E1 is the only mass term, E3 and E4 are field energy and the remainder is kinetic energy.
$E 1+(E 3+E 4-E 1-E 2)+E 2-E 3-E 4=0$ (rearrange)
$E 1$ is mass, (E1+E4-E1-E2)+E2 is kinetic energy.
$E 3$ and $E 4$ are equal and opposite field energies
mass $1+$ kinetic energy- field energy3-field energy4=0

Probability 1 in the LHS gives the probability of finding mass1 with kinetic energy at the collapse point on the circle defined by $\exp (\mathrm{iE} 1 \mathrm{t} / \mathrm{H}) * \exp (-\mathrm{iE} 1 \mathrm{t} / \mathrm{H})^{*} \exp (\mathrm{iE} 2 \mathrm{t} / \mathrm{H}) * \exp (-\mathrm{iE} 2 \mathrm{t} / \mathrm{H})$, etc,.

Summary

The $\mathrm{E}=0$ construct was derived using the N 's from the $\mathrm{P}=1$ construct. We then took the natural \log of both sides of the equation. The (LHS) natural \log of $\mathrm{P}=1$ equals 0 . The RHS natural \log converts the values to additions and subtractions, depending on their sign. We then multiplied each value by e0 which gives $\mathrm{E}=\mathrm{e} 0 * \exp (\mathrm{~N})$ for the eight matched energy values. We rearranged the N values. We define a probability component $\mathrm{p}=\mathrm{e} 0 / \mathrm{E}$ where e 0 is a constant and has the same units as E . This means energy is increased by a low probability, i.e. $\mathrm{E}=\mathrm{e} 0 / \mathrm{p}$. Schrodinger's equation shows $\exp (\mathrm{iEt} / \mathrm{H})$ with the imaginary number i. Using complex probabilities on both sides of the equation eliminates imaginary numbers. The LHS imaginary numbers are eliminated because the four complex probabilities multiply with their four conjugates $\left(1 / 1^{*} 1 / 1=1\right)$. The RHS imaginary numbers are eliminated because the imaginary probability multiples with $\mathrm{iE}(\mathrm{iE} * \mathrm{i} / \mathrm{P})$. This gives $\mathrm{E}=\mathrm{i}^{\wedge} 2 \mathrm{eo} * 1 /(-\exp (\mathrm{N}))=\mathrm{eo}^{*} \exp (\mathrm{~N})$. Energy $\mathrm{E}=\mathrm{e} 0 * \exp (\mathrm{~N})$ can be high since it follows an exponential relationship but $\mathrm{Et} / \mathrm{H}=1$ is maintained because each time t is corresponding low.

Appendix 2 The Proton model

Number of neutrons in nature

There have been several missions (COBE, WMAP [4], HSST, and PLANCK) and earlier work [5] that yield a great deal of information about the universe. Measurements and models allow astronomers, astrophysicists and cosmologists [1][5] to estimate the number of neutrons in the universe.

Neutron components

Components of $\mathrm{P}=1$

	M +KE		Fields	
$N=-\ln (p)$	p	p / p	p	$N=-\ln (p)$
0	1	1	1	0
separation			separation	
90	8.194E-40	1	8.19401E-40	90
22.500	$1.6919 \mathrm{E}-10$	1	$1.6919 \mathrm{E}-10$	22.500
22.500	$1.6919 \mathrm{E}-10$	1	$1.6919 \mathrm{E}-10$	22.500
22.500	$1.6919 \mathrm{E}-10$	1	$1.6919 \mathrm{E}-10$	22.500
22.500	$1.6919 \mathrm{E}-10$	1	$1.6919 \mathrm{E}-10$	22.500
Susequently separate each 22.5 into 11.33+11.167				
11.333	1.1967E-05	1	1.19673E-05	11.333
11.167	$1.4138 \mathrm{E}-05$	1	$1.41377 \mathrm{E}-05$	11.167

The diagram below continues the process.

The above process continues with further separations and rearrangement.

	Add across -				\rightarrow	
			Fundamental $\mathrm{Nm}+\mathrm{Ke}$			
Split 90/4	Split 22.5	Rearrange	Add charge to mass		Fundamental N	
		12.167	Make Ke 3 Dimensional		Fields	
	11.167	${ }^{4.167}$	0.0986	15.43195	17.432	Quad1
22.500	11.333	,	1.0986	12.432	10.432	
	11.167	12.167	0.0986	13.432	15.432	Quad2
22.500	11.333		1.0986	12.432	10.432	
	11.167	/ 2.167	0.0986	13.432	15.432	Quad3
22.500	11.333		1.0986	12.432	10.432	
				-10.333	-10.333	Quad 4
0.0986	0.0986		0.075	10.507	10.507	
22.500	10.333			10.333	10.333	Quad 5
	12.167			0	0	
90.099	90.099			90.099	90.099	Sum

Separation and addition of components culminates in the two columns on the right entitled "Fundamental N values" that we can identify as parts of the neutron fields and mass. The N value $0.0986=\ln (3 / \mathrm{e})$ is associated with fields and is a basic information unit. These probabilities depend on "reverse" engineering the neutron and correlating fundamental data explained in Appendix 1.

There is a remarkable relationship between the natural logarithms 90 and the natural logarithm 180 . Information (N) is a measure of how improbable an event is. It is very improbable that a single proton will form with exactly the N values listed in table 1 . The probability that it will contain the particle and kinetic energy N values is: $\mathrm{P}=1 / \exp (\mathrm{N})=1 / \exp (90)$. Likewise, it is highly improbable that the proton will contain fields with the N values of table 2. Again the probability $\mathrm{P}=1 / \exp (90)$. Probabilities multiply and the probability of a neutron with these particles and field energies is $\mathrm{P}=1 / \exp (90) * 1 / \exp (90)=1 / \exp (180)$.

But we know that neutrons exist. When we know something for certain, its probability is 1.0 . Mass plus kinetic energy is equal and opposite field energy. Both exist and together they make up neutrons. Nature apparently creates mass equal to $\exp (180)$ to maintain probability $=1$ as an initial condition.
$\mathrm{P}=1=1 / \exp (180) * \exp (180)$, where the probability of one mass with kinetic energy and its field is very low but there are many neutrons and fields.

The "big bang" duplicates the zero based neutron many times. Neutrons decay to protons, electrons and neutrinos in space.

Schrodinger's wave functions for the neutron

Details of the Proton model are in Appendix 2 but the table above labelled "Neutron components" specifies quad 2 (one of the quarks) below:

The Proton model energy values (E) are the exponents in the MIT unitary evolution equation [22] with four parts:

The $\mathrm{E}=0$ construct is below with $\mathrm{E}=2.02 \mathrm{e}-5 * \exp (\mathrm{~N}) \mathrm{MeV}$:

$\mathrm{E} 1=2.02 \mathrm{e}-5 * \exp (13.43)=13.79, \mathrm{E} 2=2.02 \mathrm{e}-5 * \exp (12.43)=5.07, \mathrm{E} 3=2.02 \mathrm{e}-5 * \exp (15.43)=101.95, \mathrm{E} 4=$ $2.02 \mathrm{e}-5^{*} \exp (10.43)=0.69($ all in MeV$)$.

Energy zero construct						
E3+E4-E1-E2			E3 field1 E4 field2		Esum	
E1 mass	ke	E2 ke				
mev	mev	mev	mev	mev		
13.80	83.76	5.08	-101.95	-0.69		0.00

Overall, above: $\mathrm{E} 1+(\mathrm{E} 3+\mathrm{E} 4-\mathrm{E} 1-\mathrm{E} 2)+\mathrm{E} 2-\mathrm{E} 3-\mathrm{E} 4=0=(\mathrm{E} 1-\mathrm{E} 1)+(\mathrm{E} 2-\mathrm{E} 2)+(\mathrm{E} 3-\mathrm{E} 3)+(\mathrm{E} 4-\mathrm{E} 4)$
Surprisingly this means mass E1 with kinetic energy (E3+E4-E1-E2) orbiting field E3 and mass +ke also orbiting field E4 with kinetic energy E2. The energy E2 $+\mathrm{E} 2=10.15 \mathrm{MeV}$ is fundamental to atomic fusion and expansion.

Schrodinger equation Left Hand Side:
$\mathrm{P}=1=(1 / \exp (13.43) * 1 / \exp (12.43)) /(1 / \exp (15.43) * 1 / \exp (10.43))$
Schrodinger Equation Right Hand Side:

```
P(RHS)=exp(ieO*exp(N1) t/H)*exp(ieo*exp(N2) t/H)*exp(-ieO*exp(N3) t/H)*exp(-ieO*exp(N4) t/H)
```

$\mathrm{N} 1=13.43, \mathrm{~N} 2=12.43, \mathrm{~N} 3=15.43$ and $\mathrm{N} 4=10.43$ and $\mathrm{e} 0=2.02 \mathrm{e}-5 \mathrm{MeV}$.

Neutron model review

For reference the Neutron model is shown below. The left hand side defines N values for four probabilities associated with three quark (quads 1,2 and 3) and N values that lead to the electron (quads 4 and 5). The right hand side of the table below describes the Energy=0 construct. This model shows 129.54 for the mass of the quarks. Study of mesons and baryons [17] indicated that 129.5 MeV transitions to 9.34 MeV + kinetic energy. The quark masses agree with Particle Data Group (PDG) [23] data, one with 4.36 and two with 2.49 MeV (multiples of 0.622 MeV from Quad 5).

	N for Neutron Energy Interactions					Mass, Kinetic Energy and Fields for Neutron=0					
									Expansion		Gravitational
	mass	Energy	S field	Energy	Mass	Difference I	Weak KE		KE	Strong field	Field
	ke	MeV	G field	MeV							
Quad 1	15.43	101.95	17.43	753.29	101.95	652.03				-753.29	
	12.43	5.08	10.43	0.69			753.98				-0.69
Quad 2	13.43	13.80	15.43	101.95	13.80	88.84				-101.95	
	12.43	$5.08{ }^{\prime \prime}$	* 10.43	0.69							-0.69
Quad 3	13.43	13.80	15.43	101.95	13.80	88.84			10.15	-101.95	
	12.43	5.08 "	- 10.43	0.69		-30.45	10.15		10.15		-0.69
Quad 4	-10.33	0.00	-10.33	0.00		0.00		-0.62	borrow		-0.74
	10.51	$0.74{ }^{\prime \prime}$	10.51	0.74				0.740	v neut ke		
Quad 5	10.33	0.62	10.33	0.62		0.62					
	0.00	0.00	0.00	0.00							
	90.10	sum	90.10	sum	129.54	799.87	939.5653460	0.118	20.30	-957.18	-2.80
							NEUTRON MA		Total m+ke	Total fields	
							939.565346		Total positi	Total negativ	
								\longrightarrow	- 959.99	-959.99	\downarrow

The neutron energy 939.5654 MeV is constant and agrees with the PDG [23] data within many significant digits.

Appendix 3 Orbits associated with the Proton model

The Proton model above is a $\mathrm{P}=1, \mathrm{E}=0$ construct that defines the quarks and their orbits (unification of strong interactions listed as Orbits $1,2 \& 3$ below). Orbit 4 is associated with atomic fusion.

Diagram of Neutron Orbits

Note: change 2.73 above to 2.801 MeV

Appendix 4
Show me the data

Five galaxies with flat rotation curves

Radius (KPC)	NGC 3145	0	5	10	15	20	25	
Radius (meters)	NGC 3145	0	$1.54 \mathrm{E}+20$	$3.08 \mathrm{E}+20$	$4.62 \mathrm{E}+20$	$6.16 \mathrm{E}+20$	$7.7 \mathrm{E}+20$	
Data V (km/sec)	NGC 3145	0	$3.84852 \mathrm{E}+15$	250	260	255	260	
$\mathrm{Vk}(\mathrm{km} / \mathrm{sec})=\left(\mathrm{G}^{*} 1.33 \mathrm{e} 41 / \mathrm{R}\right)^{\wedge} 0.5 / 1000$			$2.40 \mathrm{E}+02$	$1.70 \mathrm{E}+02$	$1.39 \mathrm{E}+02$	$1.20 \mathrm{E}+02$	$1.07 \mathrm{E}+02$	Vk
$k e=G / 2 /(1.602 \mathrm{e}-13 * \mathrm{R} /((1.33 \mathrm{e} 41) * 1.675 \mathrm{E}-27$			$1.8 \mathrm{E}-04$	1.5E-04	1.0E-04	7.6E-05	6.0E-05	ke (MeV)
pe=ke-ke funct r				2.66E-05	7.70E-05	$1.02 \mathrm{E}-04$	1.17E-04	pe (MeV)
$\mathrm{Va}(\mathrm{im} / \mathrm{sec})=\left(2^{*} \mathrm{pe} / 1.67 \mathrm{E}-27 / 6.24 \mathrm{e} 12\right)^{\wedge} 0.5 / 1000$				71.5	121.5	140.0	150.0	Va
$\mathrm{Vt}(\mathrm{km} / \mathrm{sec})=\mathrm{Vk}+\mathrm{Va}$			240.00	241.22	260.11	260.01	257.33	Vt (m/sec)

[^0]: SAHA value $=\mathrm{LN}\left(4 / 3^{\star}\left(\left(1^{\star} 0.8\right) /\left((4.3 E+67) /\left(0.5^{\star} E X P(180)\right)\right)\right)^{\wedge}(3 / 2)\right)+\mathrm{LN}\left(\left(0.697^{\wedge} 2\right)^{*}(8.16 \mathrm{e} 8 / 10000000000)^{\wedge}(3 / 2)\right)-(2.58 /(8.16 e 8 / 10000000000))$

