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Abstract: Recently, anti-de Sitter spaces are used in promising theories of quantum gravity like the anti-de Sit-
ter/conformal �eld theory correspondence. The latter provides an approach to string theorie, which includes more
than four dimensions. Unfortunately, the anti-de Sitter model contains no mass and is not able to describe our
universe adequately. Nevertheless, the rising interest in higherdimensional theories motivates to take a deeper look
at the n−dimensional AdS Spacetime. In this paper, a solution of Einstein's �eld equations is constructed from a
modi�ed anti-de Sitter metric in n dimensions. The idea is based on the connection between Schwarzschild- and
McVittie metric: McVittie's model, which interpolates between a Schwarzschild Black Hole and an expanding global
Friedmann�Lemaître�Robertson�Walker spacetime, can be constructed by a simple coordinate replacement in Schwarz-
schild's isotropic intervall, where radial coordinate and it's di�erential is multiplied by a time dependent scale factor
a (t). In a previous work I showed, that an exact solution of Einstein's equations can analogously be generated from a
static transformation of de Sitter's metric. The present article is concerned with the application of this method on an
AdS (Anti de Sitter) related spacetime in n dimensions. It is shown that the resulting isotropic intervall is a solution
of the n−dimensional Einstein equations. Further, it is transformed into a spherical symmetric but anisotropic form,
analogously to the transformtion found by Kaloper, Kleban and Martin for McVittie's metric.

1. Introduction

As already mentioned in the abstract, higher dimensional anti-de Sitter spacetime is currently receiving more and
more attention: �Recently, it has been proposed by Maldacena that large N limits of certain conformal �eld theories
in d dimensions can be described in terms of supergravity (and string theory) on the product of d + 1-dimensional
AdS space with a compact manifold.� cf. [12]. In this article, the coordinate replacement (Multiplication of radial
coordinate and it's di�erential by a time dependent scale factor) which turns Schwarzschild's metric into McVittie's
intervall is applied to a modi�ed AdSn model. In previous considerations, see [6, 7], I used this replacement to receive
a de-Sitter based solution in four dimensions. These results can be transfered to construct a metric based on the
modi�ed AdSn spacetime. Anti de Sitter spacetime has negative scalar curvature and solves Einstein's empty space
equations Rik − 1

2Rδ
i
k + Λδik = 0 for negative cosmological constant Λ < 0. The following conventions are used in

this article: The signature of the metric is choosen to be (−,+, ...,+), Ricci tensor and curvature scalar are given by
Rnk =

∑
a

(
∂aΓakn − ∂kΓaan +

∑
b

(
ΓaabΓ

b
kn − ΓakbΓ

b
an

))
and R =

∑
n

∑
k g

nkRnk. The notation dΩ2
n−2 is used for the

line element on the unit (n− 2)−sphere:

dΩ2
n−2 = dθ2

1 + sin2 (θ1) dθ2
2 + sin2 (θ1) sin2 (θ2) dθ2

3 + · · ·+
n−3∏
k=1

sin2 (θk) dθ2
n−2

Anti-de Sitter space AdSn in n dimensions with respect to the coordinates {t, r, θ1, . . . , θn−2} is given by

ds2 = −
(

1− 2Λ

(n− 2) (n− 1)
r2

)
c2dt2 +

(
1− 2Λ

(n− 2) (n− 1)
r2

)−1

dr2 + r2dΩ2
n−2 (1)

cf. for example [5]. This line element can be transformed to a system of isotropic coordinates {t, q, θ1, . . . , θn−2} by

r = q

(
1 +

Λ

2 (n− 2) (n− 1)
q2

)−1

. (2)

After some calculation, metric (1) turns into the static and isotropic form:

ds2 = −

(
1− Λ

2(n−2)(n−1)q
2

1 + Λ
2(n−2)(n−1)q

2

)2

c2dt2 +
1(

1 + Λ
2(n−2)(n−1)q

2
)2

(
dq2 + q2dΩ2

n−2

)
(3)

2. Basic line element and Einstein's equations

Let l be a constant with physical unit m−1. Based on the latter metric (3) we get a suitable ansatz for the modi�ed
line element. Instead of the negative factor Λ

2(n−2)(n−1) an arbitrary constant −l2 < 0 is used. Now, according to

the method used in [7], the radial coordinate q is replaced by a (t) q and the di�erential dq by a (t) dq. It should be
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mentioned that this replacement is di�erent from a coordinate transformation, e.g. q = aq̄, since the ȧq̄dt term in
dq = ȧq̄dt+ adq̄ is ignored. Thereby one receives from (3) the isotropic line element:

ds2 = −
(

1 + l2 a2 (t) q2

1− l2 a2 (t) q2

)2

c2dt2 +
a2 (t)

(1− l2 a2 (t) q2)
2

(
dq2 + q2dΩ2

n−2

)
(4)

In order to work out Einstein's equations for this metric, the abbreviation

χ = χ (t, q) := l2 a2 (t) q2 (5)

is used in the following. Metric (4) then takes the simple form

ds2 = −
(

1 + χ

1− χ

)2

c2dt2 +
a2 (t)

(1− χ)
2

(
dq2 + q2dΩ2

n−2

)
. (6)

Obviously, the metric is a special case of a general isotropic line element, which is given by:

ds2 = −eν(q,t)c2dt2 + eµ(q,t)
(
dq2 + q2dΩ2

n−2

)
(7)

Hereinafter, let overdots and primes stand for partial di�erentiation with respect to the time coordinate t and the spatial
coordinate q, respectively. Patel, Tikekar and Dadhich published equations that result from Einstein's equations for
a perfect �uid in such an isotropic spacetime with n + 2 dimensions, cf appendix A. Their paper [2] contains an
obvious typing error, located in equation (7), which does not reproduce the corresponding equation in the well known
four-dimensional case (see for example the article of Israelit and Rosen [3]). Up to this, their set of equations �ts to
the following Einstein-tensor for the intervall (7), which reads:

Gtt =
n− 2

2

{
−n− 1

4
µ̇2 e

−ν

c2
+

(
µ′′ +

n− 3

4
µ′2 +

n− 2

q
µ′
)
e−µ

}
+ Λ (8)

Gtq =
n− 2

2

{
µ̇′ − 1

2
µ̇ν′
}
e−ν

c2
, Gqt =

n− 2

2

{
1

2
µ̇ν′ − µ̇′

}
e−µ

Gqq =
n− 2

2

{
−
(
µ̈+

n− 1

4
µ̇2 − µ̇ν̇

2

)
e−ν

c2
+

(
ν′µ′

2
+
ν′

q
+
n− 3

q
µ′ +

n− 3

4
µ′2
)
e−µ

}
+ Λ

Gθkθk =
n− 2

2

{
−
(
µ̈+

n− 1

4
µ̇2 − µ̇ν̇

2

)
e−ν

c2
+

1

2

(
ν′′ + (n− 3)µ′′ +

ν′2

2
+
ν′

q
+
n− 3

q
µ′
)
e−µ

}
+ Λ

Einstein's tensor (8) for the general isotropic interval includes the corresponding Einstein-tensor for metric (6) as a
special case. The general isotropic metric (7) takes the form (6) if

ν = 2 {ln (1 + χ)− ln (1− χ)} , µ = 2 {ln (a)− ln (1− χ)} .

With H := ȧ/a it is χ̇ = 2Hχ and χ′ = 2χ/q and the required derivatives of the functions ν and µ are given by

ν̇ = 8H
χ

1− χ2
, ν′ =

8

q

χ

1− χ2
, µ̇ = 2H

1 + χ

1− χ
, µ′ =

4

q

χ

1− χ
, ν′′ =

8

q2

χ
(
1 + 4χ2

)
(1− χ2)

2 ,

µ̈ =
2

(1− χ)
2

{
ä

a

(
1− χ2

)
+H2

(
χ2 + 4χ− 1

)}
, µ̇′ =

8H

q

χ

(1− χ)
2 , µ′′ =

4

q2

χ (1 + χ)

(1− χ)
2 .

By using the above derivatives in (6), one receives the Einstein's tensor for the metric (4) after a relatively simple but
cumbersome calculation. The remaining nonzero components are:

Gtt =
(n− 2) (n− 1)

2

[
4l2 − H2

c2

]
+ Λ (9)

Gqq = Gφφ = Gθkθk =
n− 2

2

{
2

c2

(
H2 − ä

a

)
1− x
1 + x

+

[
4l2 − H2

c2

]
(n− 1)

}
+ Λ (10)

Correspondingly, Einstein's empty space equations lead to(
ȧ

a

)2

=

(
4l2 +

2Λ

(n− 2) (n− 1)

)
c2 (11)
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and
n− 2

c2

[(
ȧ

a

)2

− ä

a

]
1− x
1 + x

+
(n− 2) (n− 1)

2

[
4l2 − H2

c2

]
+ Λ = 0 (12)

3. Empty space solution

Equation (11) can be solved easily, it is

a (t) = a0 exp

(
±

√
4l2 +

2Λ

(n− 2) (n− 1)
c t

)
(13)

where a0 contains all constants of integration. Now it has to be shown, that (13) also solves (12). Generally, if (ȧ/a)
2

is an arbitrary nonzero constant, the term is equal to ä/a:

0 =
d

dt

[(
ȧ

a

)2
]

= 2
ȧ

a
· äa− ȧ

2

a2
= 2

ȧ

a

[
ä

a
−
(
ȧ

a

)2
]

Thereby, the �rst addend in (12) vanishes and the whole equation reduces to (11). Thus, we have a n−dimensional
exact solution of Einstein's �eld equations given by

ds2 = −

1 + l2 q2 a2
0 exp

(
±2
√

4l2 + 2Λ
(n−2)(n−1) c t

)
1− l2 q2 a2

0 exp
(
±2
√

4l2 + 2Λ
(n−2)(n−1) c t

)
2

c2dt2 +
a2

0 exp
(
±2
√

4l2 + 2Λ
(n−2)(n−1) c t

) (
dq2 + q2dΩ2

n−2

)
[
1− l2 q2 a2

0 exp
(
±2
√

4l2 + 2Λ
(n−2)(n−1) c t

)]2
(14)

4. Coordinate transformation

In the previous paper [7], I used the subsequent method to transform a four-dimensional de Sitter-like metric. Analo-
gously, our line element (4) can also be transformed to the coordinates {t, r, θ1, .., θn−2}, whereas it takes the anisotropic
form

ds2 = −gttdt2 + 2gtrdtdr + grrdr
2 + r2dΩ2

n−2. (15)

Comparing the gθθ components of (4) and (15) leads to r = aq
(
1 + l2a2q2

)−1
which can be rearranged to get the

transformation for the q−coordinate, it is:

q =
±1±

√
1 + 4l2a2r2

2l2ar

Therewith metric (4) can be transformed into:

ds2 =
[
H2r2 − c2

(
1 + 4l2a2r2

)]
dt2 +

2Hr dt dr√
1 + 4l2a2r2

+
dr2

1 + 4l2a2r2
+ r2dΩ2

n−2 (16)

A brief sketch of the necessary calculations are given in the appendix B. Collectively, both transformations are compa-
rable in structure with Kaloper, Kleban and Martin's method to transform Mc Vittie's metric, cf. [9]. It is remarkably
that this method also works in arbitrary dimensions for the anti-de Sitter metric.

Appendix A: Equations given by Patel, Tikekar and Dadhich

One receives the �eld equations given in the Patel, Tikekar and Dadhich paper [2] by adopting the dimension and using
the stress-energy tensor of a perfect �uid, further they have no cosmological constant. In our notation their equations
for the n−dimensional case should read:

8πγρ

c2
=

n− 2

2

{
−n− 1

4c2
µ̇2e−ν +

(
µ′′ +

n− 3

4
µ′2 +

n− 2

q
µ′
)
e−µ

}
8πγp

c4
=

n− 2

2

{
e−ν

c2

(
µ̈− µ̇ν̇

2
+
n− 1

4
µ̇2

)
− e−µ

(
ν′
(
µ′

2
+

1

q

)
+
n− 3

q
µ′ +

n− 3

4
µ′2
)}

0 = µ̇′ − µ̇ν′

2
and 0 = ν′′ + (n− 3)µ′′ +

ν′2

2
− n− 3

2
µ′2 − µ′ν′ − ν′

q
− (n− 3)

µ′

q

3



Appendix B: The Transformation

This section contains some intermediate data of the coodinate transformation given in the section 4, in order to make
it easier to understand. At �rst it is comfortable to use the abbreviation

ζ :=
√

1 + 4l2a2r2.

so that the transformation reads q =
(
2l2ar

)−1
(±1± ζ) and its di�erential is given by

dq =

(
−q
r
± 2

aζ

)
dr − qH dt (17)

The identity 1∓ 2r
aqζ = 1

ζ is helpful to compute the part

gqqdq
2 =

a2

(1− l2a2q2)
dq2 =

r2

q2
dq2 =

(
Hr dt+

dr

ζ

)2

(18)

of (4). Moreover one receives q2 = 1+ζ
2l4r4a2 and with some calculation

1 + l2a2q2

1− l2a2q2
= −ζ (19)

it follows gtt = ζ2. Since the comparison of both metrics claims gqqq
2dΩ2

n−2 = r2dΩ2
n−2, we �nally receive metric (16).
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