# Proof of the Goldbach's Conjecture 

Andrey Skrypnyk<br>ansk66@mail.ru


#### Abstract

This article solves the problem using the Formula of Disjoint Sets of Odd Numbers numbers that I proposed Index Terms-algorithm


## I. Definition of the Goldbach's Conjecture

Definition: Each even number $(x)$ can be represented as a sum of two primes $\left(y_{o}\right)$.

## II. Algorithm for Proof of the Goldbach's CONJECTURE

## A. Chains of Odd Numbers

Sequence of even numbers $\{x\}$ is a sequence of chains of odd numbers $y$ of the form $1 \leq y \leq(x-1)$, which are closed by the expression $1+(x-1)$ from the side $\mathbf{A}$. These chains are closed by the expression $(x / 2)+(x / 2)$ from the side $\mathbf{B}$ if $(x / 2)$ is an odd number, otherwise - by the expression $((x / 2)-1)+((x / 2)+1)$. The addition of mutually directed chain links gives the original even number $x$.
See Fig. 1, Fig. 2, Fig. 3.


Fig. 1. For the number fourteen


Fig. 2. For the number sixteen


Fig. 3. For the number eighteen

## B. Conclusion 1

Each new even number is a consecutive shift to one larger value in the expressions in the chain $y$ with respect to a smaller value. A new links of the chain $y$ appears when the expression $(x / 2)+(x / 2)$ appears on the side $\mathbf{B}$.

## C. New Definition of the Goldbach's Conjecture

Goldbach's Conjecture means that with each shift in the links of the chain $y$ and the appearance of a new links of the chain there are always mutually directional chain links, where only the primes $\left(y_{o}\right)$.

Half of the smaller values of the chain $y$ are practically unchanged, only gradually added from the side of $\mathbf{B}$ by smaller values of the opposite half of the chain.
As the value of $x$ increases, the fraction $y_{o}$ decreases in both halves of the chain $y$, but especially at half the large values.

## D. Formula of Disjoint Sets of Odd Numbers

The entire infinite sequence of odd numbers $\{y\}$ can be represented as disjoint sets.
Let the frequency of appearance of all odd numbers $y-100 \%$. Then:

$$
\begin{align*}
& (0,0 \ldots 01 \%(1)+33,3 \ldots 3 \%(\{3 y\})+ \\
& +\sum_{n=3}^{n \rightarrow \infty} Z_{y_{o n}}\left(\left\{y_{o n} y_{n} \left\lvert\, \frac{y_{n}}{3} \notin \mathbb{N}^{*}\right., \ldots\right.\right.  \tag{1}\\
& \left.\left.\left.\ldots, \frac{y_{n}}{y_{o(n-1)}} \notin \mathbb{N}^{*}\right\}\right)\right) \rightarrow 100 \%
\end{align*}
$$

where:
$\mathbb{N}^{*}$ be natural numbers without zero;
the number of digits represented by (...) in the first two terms $\rightarrow \infty$;
$n$ is the number of a member of a sequence of odd primes; $y_{n}$ is a sequence of odd numbers with the conditions given in the formula;
$y_{o(n-1)}$ is the prime number in sequence of primes just before $y_{o n}$;
$Z_{y_{o n}}$ is the frequency of appearance of the given set (in \%) in the sequence $\{y\}$.

It is easy to see that the first term is $y_{o}$ in all sets of (1). The first terms of an infinite sequence of all sets are all $y_{o} \geq 3$.

The frequency of appearance of $Z_{y_{o n}}$ (in percent) in the sequence $\{y\}$ is calculated easily:
The frequency of appearance of the set $\{3 y\}$ by definition $Z_{3}=33,3 \ldots 3 \%$ (every third term in the sequence $\{y\}$ ).
The frequency of appearance of the total sum of known sets $\Sigma_{3}$ in the sequence $\{y\}$ :

$$
\begin{equation*}
\Sigma_{3}=0,0 \ldots 01 \%+33,3 \ldots 3 \%=33,3 \ldots 4 \% \tag{2}
\end{equation*}
$$

The frequency of appearance of all members of the set $\{3 y\}$ from all odd numbers, multiples of $3, R_{3}=100 \%$.
Let's calculate $R_{5}$, the frequency of the appearance of the set $\left\{5 y_{5} \mid y_{5} / 3 \notin \mathbb{N}^{*}\right\}$ from all odd numbers that are multiples of 5 :

$$
\begin{equation*}
R_{5}=100 \%-33,3 \ldots 3 \%=66,6 \ldots 67 \% \tag{3}
\end{equation*}
$$

that it is possible to present so:

$$
\begin{equation*}
R_{5}=100 \%-\left(\Sigma_{3}-0,0 \ldots 01 \%\right)=66,6 \ldots 67 \% \tag{4}
\end{equation*}
$$

Let's compute $Z_{5}$, the frequency of the appearance of the set $\left\{5 y_{5} \mid y_{5} / 3 \notin \mathbb{N}^{*}\right\}$ in the sequence $\{y\}$ :

$$
\begin{equation*}
Z_{5}=\frac{R_{5}}{5} \approx 13,3 \ldots 3 \% \tag{5}
\end{equation*}
$$

The frequency of appearance of the total sum of known sets $\Sigma_{5}$ in the sequence $\{y\}$ :

$$
\begin{equation*}
\Sigma_{5}=\Sigma_{3}+Z_{5} \approx 46,6 \ldots 67 \% \tag{6}
\end{equation*}
$$

Expressions for $Z_{n}, \Sigma_{n}, R_{n}$ in general form will be:

$$
\begin{gather*}
Z_{y_{o n}}=\frac{R_{y_{o n}}}{y_{o n}}  \tag{7}\\
\Sigma_{y_{o n}}=\Sigma_{y_{o(n-1)}}+Z_{y_{o n}},  \tag{8}\\
R_{y_{o n}}=100 \%-\left(\Sigma_{y_{o(n-1)}}-0,0 \ldots 01 \%\right),  \tag{9}\\
R_{y_{o n}}=Z_{y_{o n}} y_{o n}=Z_{y_{o(n-1)}}\left(y_{o(n-1)}-1\right),  \tag{10}\\
\frac{Z_{y_{o(n-1)}}}{Z_{y_{o n}}}=\frac{y_{o n}}{\left(y_{o(n-1)}-1\right)} . \tag{11}
\end{gather*}
$$

## E. Final Conclusion on Goldbach's Conjecture

For $y_{o}=8999$, the frequency of appearance of the total sum of known sets in the sequence $\{y\} \Sigma_{8999} \approx 87,6726 \%$, and $Z_{8999} \approx 0,0014 \%$. Thus, the share of unknown sets, and among them the remainder unknowns $y_{o n}$, is reduced to $\sim 12,3274 \%$ (the share of $y_{o n}$, naturally, is even lower).
However, no matter how the $\Sigma_{y_{o n}}$ decreases with the growth of the value of $y_{o n}$ according to (9) and (10), the total sum of the known sets $\Sigma_{y_{o n}}$ will eventually reach, for example, $\Sigma_{y_{o n}} \approx 99 \%$. This will happen because the entire infinite sequence of odd numbers $\{y\}$ consists of disjoint sets of odd numbers according to (1), but primes whose sets are formed in such a range are high-level numbers with a large number of digits. The share of unknown sets in this range, including those remaining by unknowns of $y_{o n}$, is reduced to $\sim 1 \%$. If a prime number $y_{o n}$, with $\Sigma_{y_{o n}} \approx 99 \%$ and $R_{y_{o n}} \approx 1 \%$, put on the side $\mathbf{B}$ of the chain $y$ of the next even number
$x$, then the frequency of appearance of a $y_{o}<1 \%$ in half the large values. The highest frequency of appearance of $y_{o}$ is: the first four values in half the smaller values are $y_{o}$, the fraction $y_{o}$ in the first set $\{n 100\}$ of the sequence $\{y\}$ reaches $50 \%$. The frequency of appearance of $y_{o}$ becomes significantly less than $50 \%$ in half of the smaller values of the chains $y$ of even numbers $x$ with a large number of digits. In such a range of even numbers $x$, where the frequency of appearance of $y_{o}<1 \%$ in half of the large values of the chain $y$ and the frequency of appearance of $y_{o}$ is significantly less than $50 \%$ in half of the smaller values of the chain $y$, it is easy to achieve a state where $x \neq y_{o 1}+y_{o 2}$. This can be achieved by successively shifting the links of the chain $y$ in half of large values and adding odd numbers of the opposite half from the side $\mathbf{B}$ to half of the smaller values.

Thus, Goldbach's Conjecture is not confirmed.
(2015 year)

## Acknowledgment

REFERENCES

