# Proof of the Legendre's Conjecture 

Andrey Skrypnyk<br>ansk66@mail.ru


#### Abstract

This article solves the problem for the second time using the Formula of Disjoint Sets of Odd Numbers numbers that I proposed

Index Terms—algorithm


## I. Definition of the Legendre's Conjecture

Is it true that between $n^{2}$ and $(n+1)^{2}$ there is always a prime number $\left(y_{o}\right)$, where $n \in \mathbb{N}^{*}$ and $\mathbb{N}^{*}$ be natural numbers without zero?

## II. Algorithm for Proof of the Legendre's CONJECTURE

After number 2 the sequence of primes $\left\{y_{o}\right\}$ enters an infinite sequence of odd numbers $\{y\}$, the formulation of the Legendre's Conjecture must be changed to consider this sequence.
For this, if $n^{2}$ or $(n+1)^{2}$ are even numbers, they will be replaced by odd numbers $\left(n^{2}-1\right)$ or $\left((n+1)^{2}-1\right)$, respectively, which does not change the very essence of the question, since these numbers are composite.

Let the odd number $n^{2}=y^{2}$, then the even number $(n+1)^{2}=(y+1)^{2}=y^{2}+2 y+1$. Let's replace this even number in a sequence of odd numbers $\{y\}$ :

$$
\begin{equation*}
y^{2}+2 y+1-1=y^{2}+2 y=y(y+2) \tag{1}
\end{equation*}
$$

Thus, let's must consider each set:

$$
\begin{equation*}
\left\{y_{n} \mid y_{k}^{2}<y_{n}<y_{k}\left(y_{k}+2\right), y_{k} \geq 3\right\} \tag{2}
\end{equation*}
$$

The number of terms in each set (2):

$$
\begin{equation*}
N_{y_{n}}=y_{k}-1 \tag{3}
\end{equation*}
$$

But in the sets:

$$
\begin{equation*}
\left\{y_{n} \mid y_{k}\left(y_{k}-2\right)<y_{n}<y_{k}^{2}, y_{k} \geq 3\right\} \tag{4}
\end{equation*}
$$

the number of terms is also equal to (3).
It is logical to consider (2) and (4) with respect to sets with equal $N_{y_{n}}$. But the segments between $y_{k}\left(y_{k}-2\right)$ and $y_{k}^{2}, \quad y_{k}^{2}$ and $y_{k}\left(y_{k}+2\right)$ are segments in a sequence of odd numbers for which the Formula of Disjoint Sets of Odd

Numbers is valid. For the entire sequence of odd numbers $\{y\}$, it has the form of the following expression:

$$
\begin{align*}
& Z_{y}=(0,0 \ldots 01 \%(1)+33,3 \ldots 3 \%(\{3 y\})+ \\
& +\sum_{n=3}^{n \rightarrow \infty} Z_{y_{o n}}\left(\left\{y_{o n} y_{n} \left\lvert\, \frac{y_{n}}{3} \notin \mathbb{N}^{*}\right., \ldots\right.\right.  \tag{5}\\
& \left.\left.\left.\ldots, \frac{y_{n}}{y_{o(n-1)}} \notin \mathbb{N}^{*}\right\}\right)\right) \rightarrow 100 \%
\end{align*}
$$

where:
$Z_{y}$ is of appearance of all odd numbers $y$;
the number of digits represented by (...) in the first two terms $\rightarrow \infty$;
$Z_{y_{o n}}$ is the frequency of appearance of the given set (in \%) in the sequence $\{y\}$;
$n$ is the number of a member of a sequence of odd primes; $y_{n}$ is a sequence of odd numbers with the conditions given in the formula;
$y_{o(n-1)}$ is the prime number in sequence of primes just before $y_{o n}$.

For the segments (3) of (2) and (4) Formula of Disjoint Sets of Odd Numbers (5) takes the following form, where the percentage of the sets remains unchanged:

$$
\begin{align*}
& Z_{y_{c o m p}}\left(\left\{y_{c o m p}\right\}\right)= \\
& =33,3 \ldots 3 \%\left(\left\{3 y \mid y \geq 3,3 y=y_{n}\right\}\right)+ \\
& +\sum_{m=3} Z_{y_{o m}}\left(\left\{y_{o m} y_{m} \mid y_{m} \geq y_{o m}, y_{o m} y_{m}=y_{n}\right.\right.  \tag{6}\\
& \left.\left.y_{o m}<N_{y_{n}}, \frac{y_{m}}{3} \notin \mathbb{N}^{*}, \ldots \frac{y_{m}}{y_{o(m-1)}} \notin \mathbb{N}^{*}\right\}\right)
\end{align*}
$$

where:
$Z_{y_{\text {comp }}}$ is the frequency of the appearance of composite numbers (in \%) in a given segment of the sequence $\{\mathrm{y}\}$;
$y_{\text {comp }}$ is a composite odd number in a given segment of a sequence of odd numbers $y$;
the number of digits represented by (...) in the first term, $\rightarrow \infty$;
$m$ is the number of a member of a sequence of odd primes;
$Z_{y_{o m}}$ is the frequency of appearance of the given set (in \%) in the sequence $\{y\}$;
$y_{m}$ is a sequence of odd numbers with the conditions given in the formula;
$N_{y_{n}}$ is the number of terms in (2) or (4) (see (3)).

But since in the whole sequence of odd numbers $y$ the frequency of appearance of known sets according to (5) only tends to $100 \%$, then in the case of (6):

$$
\begin{equation*}
Z_{y_{\text {comp }}}\left(\left\{y_{\text {comp }}\right\}\right)<100 \% \tag{7}
\end{equation*}
$$

That is, between $n^{2}$ and $(n+1)^{2}$ there is always a prime number.
(2015 year)

## Acknowledgment

## REFERENCES

