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I propose a method to derive the familiar laws of physics from algo-
rithmic information theory (AIT). Specifically, I introduce the notion of
a proven computing reserve and I use it to connect AIT to physics.

1 Introduction

We intuitively understand scientific inquiry as a methodology to
improve our understanding of the objective world. According to
falsifiability, the evidence is to be collected with the intent to fal-
sify hypotheses. Through an iterative process, ever more validated
physical theories are produced, tested, and falsified. Confidence in a
scientific theory is increased by actively attempting to falsify it (and
failing to do so). The end goal of scientific inquiry is a final theory
which would presumably explain all known and future evidence.

In practice, the inquiry process is usually divided into an exper-
imental part and a theoretical part. Experimentalists gather experi-
mental data, patterns are noticed within this data, and theoreticians
formalize these patterns within the model of mathematics.

Whilst those involved understand the world through the lenses
of science and falsifiability, the theories so produced are, however,
unaware of the process which created them. Indeed, each such for-
mal theory is defined first and foremost as a set of axioms. Then, its
theorems are the indubitable consequence of its axioms. Although
falsifying a theory ought to be a scientist’s primary motivation, this
possibility of future falsification is, however, not derivable from the
axioms of the theory alleged to be a correct description of reality.

This typical type of formal construction does not correspond to
how the world is scientifically understood to be. First and foremost,
scientists understand that the world is and thus its description over-
writes and takes priority over any hypothesized set of axioms; sci-
entifically, the axioms which explains the world are implied by the
world. Consequently, in the framework of scientific inquiry and in
practice, axioms are disposable, mutable, and interchangeable. Their
shared general constraint is that each correct set of axioms must
produce an accurate description of the world. How can we create a
formal model aware of this information?

The model presented here semantically corrects this error. The
primary step will be to reverse the usual formalization of a typical
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physical theory. Instead of describing the theory (with axioms) and
solving for a description of the world (listing the theorems), we will
first describe the world, then solve for the theories that explain it.
Reversing the problem in this way greatly reduces the difficulty. Let’s
introduce a few definitions that will allow us to do just that.

1.1 Definitions

We will formulate this work within the formal system of Zermelo-
Fraenkel set theory (ZF).

We recall the definition of a language L over an alphabet Σ. The
sentences of L are a subset of Σ∗, defined as the set of all sentences
over the alphabet Σ. For instance, the alphabet of the binary lan-
guage is the set Σ := {0, 1}. We define the set Σ∗ as an infinite set
containing all possible sentences over the alphabet Σ, thus Σ∗ :=
{ε, 0, 1, 00, 01, 10, 11, 000, ...} where ε is the empty sentence. The
language L is a subset of Σ∗, thus L ⊆ Σ∗. A language can be cat-
egorized in many different ways depending on the computational
complexity of the rules used to decide if a sentence of Σ∗ is or is not
a sentence of L. The most common classes are perhaps a) decidable
and b) recursively enumerable.

We will now introduce a number of definitions, first in a heuris-
tic sense, then formally. From philosophy, a fact is a statement that
is consistent with reality or can be proven with evidence. The usual
test for a statement of fact is verifiability — that is, whether it can
be demonstrated to correspond to experience. Inspired by this def-
inition, we introduce a formal analog to it as the foundation of the
model using a definition for the world as a set of facts.

Definition 1.1.1 (World). A fact is a sentence s of an alphabet Σ∗ such
that s ∈ W and such that W can be constructed via a formal system T by
listing its theorems. Thus, a World is:

W := {s : (s ∈ Σ∗) ∧ (T ` s)} (1.1.2)

In this definition, W is a language and T are the rules to validate the sen-
tences. In the case of the real world, we understand T to be a final theory
(e.g., the theory of everything). The goal is finding T on the understanding
that W is "given".

We will say that the world is describable by a formal theory if it
admits this definition, otherwise, it is not. As we will see, algorithmic
information theory is well suited to study this definition of the world
along with its connection to the theory that explains it.
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1.2 The World implies the theory

This definition is key as it reverses the usual implication of T with
respect to W. To see how this definition resolves the semantic error
that we previously mentioned, let’s compare it to a typical physical
theory.

Typically in theoretical physics, T is hypothesized from experi-
mental data and then tested. The axioms of T are presented as the
primary actors of the theory, and they command the most attention.
In most cases, the axioms directly represent the laws or symmetries
of nature and are inspired from empirical data.

Using mathematics, a theoretical physicist can unpack the axioms
of T into theorems. If all theorems of the theory are found to be an
element of W, then the theory is validated, and thus, it has survived
falsification. However, if a mismatch is found, T is falsified and must
be replaced with an alternative.

Due to this formulation, physical theories so produced will erro-
neously proclaim, on paper, that the world (the theorems) is a con-
sequence of the theory. Indeed, formulated as such, the description
of the world W is obtained by unpacking T into its theorems. This
typical construction will semantically claim the following:

T =⇒ W (The theory implies the world) (1.2.1)

The knowledge that the origin of T actually lies within W is un-
derstood in the minds of those who hypothesized T (as the conse-
quence of scientific inquiry) but is absent from the formal description
of T. Constructed as such, T is fundamental, and W is a mere conse-
quence of it.

As per the definition of W (definition 1.1.1), this implication is
reversed for the model presented here. Indeed, in this new model,
the fundamental actors are now the elements of W, and the formal
theory T that explains W is a consequence of W. Thus, the relation
is reversed, and the model semantically claims that it is instead the
world that implies the theory:

W =⇒ T (The world implies the theory) (1.2.2)

Based on the results presented throughout this work, we would ar-
gue that the incorrect implication (i.e., the theory implies the world)
is the primary error in the way T is typical constructed. Once the
relationship is reversed, solving for T is surprisingly simple. In our
model, rather than guessing T via iterative falsifiability, T will be
obtained as a solution to the model using the tools of algorithmic
information theory.
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1.3 The computational cost to explain a fact

Due to non-negligible computing costs, one who sub-divides his
explanation of the world into multiple theories, each applicable
to a certain subset of the world, may be more successful and ulti-
mately obtain a more complete understanding of reality than one
who doesn’t. Please note that here we distinguish between a more
complete understanding and a more complete theory. In this context,
a theory neglects the computing costs whereas an understanding
doesn’t. For example, it could be argued that a person who under-
stands biology plus chemistry plus history possibly understands
more about the world than someone only knowns of quantum fields
but without access to a supercomputer to solve intractable problems.
In the case of quantum fields, the theoretician is in possession of a
more complete theory, but the subset of W which he has verified
from the theory is smaller than the subset verified by the person who
understands many different fields. Quantum fields can, in principle,
be unpacked to recover the theorems of chemistry or biology but the
computational cost to do so is intractable.

We understand, at least heuristically, that our understanding is
computationally bounded. However, we perhaps have yet to fully
appreciated its consequence as it pertains to the formalization of T
and how it connects to our ability to verify or falsify it. Most facts of
the world are computationally intractable with respect to the theory
T that explains them. For example, determining if there is milk in
the fridge is experimentally easy; by opening the door to the fridge
and simply looking inside. However, obtaining the same answer
by solving the equations of physics from the initial state of the Big
Bang is intractable. Indeed, almost all facts of the universe as they
stand today are the results of 13.7 billions years of extremely high-
speed physical interactions and would require enormous amounts of
computation to solve from first principles.

We are only beginning to encounter computer-assisted proofs
in mathematics. The first and possibly most famous is the four-
color theorem proven in 1997 by Robertson, Sanders, Seymour, and
Thomas. Computer-assisted proofs are not without "mild contro-
versy" in mathematics (i.e., they are considered unaesthetic by some).
However, physically, most problems are intractable. Almost any ques-
tion about the present state of the universe requires solving the equa-
tions from first principles; from the initial state of the Big Bang. Each
such solution requires the simulation of all molecules which have or
could have contributed to, say, the presence or absence of milk in the
fridge. Solving this kind of problem for a macroscopic sized system
is intractable.
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Historically, our understanding of the world was improved by
strong insights (i.e., short programs). Thus, there is a hope that ac-
cumulating insights is the key to making sense of the world. For
example, the discovery of the scientific method (a relativity simple
program) has contributed tremendously to our understanding of the
world. Insights occur when one sees a new symmetry in nature or a
simplified way to solve an equation, or even by finding a new exact
equation to a complicated formula. However, insight is in limited
supply. At some point, we will run out of insights (there are more
long programs than short programs). Our ultimate and final ability
to verify our understanding of the world is limited, in the most gen-
eral of cases, by the computing resources made available to us by the
world.

For instance, the use of computational resources to explain facts
introduces an opportunity cost that must be paid for each fact that
we chose to verify from the set of W. For instance, if a physicist
spends 20 years of his career trying to explain one fact, then that
is 20 fewer years available to him to explain other facts. The resource
of time is consumed.

2 The proven computing reserve

Let’s investigate this further with a more technical example. Let’s say,
without loss of generality, that a physicist picks one element s of W
(e.g., one fact of the world) and produces an explanation for it. In al-
gorithmic information theory, this explanation is a computer program
p that takes as input the element of W it claims to explain. The ex-
planation is verified if the program halts, and invalid if the program
never halts. To credibly claim that the program is a valid explanation
of s (i.e., p(s) halts), the physicist must have, at a minimum, run the
program once in order to verify that it does halt (Otherwise, he is just
hoping that he has an explanation).

By carefully studying what the physicist has done, we are able to
make claims in regards to his experimental setup from that alone.
This will be our path into a description of the physical world. By
credibly providing us with an explanation for a fact, we must con-
clude that the physicist has access, somehow, to computing resources
in a quantity necessary to verify the explanation. We will call these
resources the proven computing reserve.

The idea that computing resources are limited is often neglected
(but never violated) if we understand the world primarily through
computationally simple and aesthetically powerful insights. However,
once we grow out of this regime, the limits on our ability to verify
a theory T of the world W are, at their most general expression, for-
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malized in terms of available computing resources.
We can precisely identify these computing resources by looking

at the characteristics of the program the physicist has supplied to us.
For example, say the program itself has 40 bits, and the element of
W it explains has 700 bits. Thus, by verifying this explanation, the
physicist has proven that he can access a machine able to read 740

bits of input. Furthermore, he must have run the program at least
once. Thus the physicist has further proven that his machine can halt
within a certain time (i.e., it has a certain runtime for this program).
The claim that these resources must somehow exist (perhaps in a
lab) is an unavoidable claim deduced purely from the application of
algorithmic information theory as it pertains to the computational
verification of facts.

This proven computing reserve define (and constraint) the labora-
tory of the physicist (here understood primarily as a supercomputer).
Under these constraints, the physicist could have chosen a differ-
ent fact to explain, or a different explanation for the same fact. The
only constraint would be that the explanation of any fact he picked
would have to be verified by consuming no more than the proven
computing reserve. The physicist could, in principle, find additional
resources to contribute to this goal (e.g., he could increase his su-
percomputing budget) and this could increase the potency of his
explanations or the total number of facts that he is able to explain
while keeping the potency of each explanation constant.

This computational relation, perhaps surprisingly, will be sufficient
to recover the laws of physics as a necessary consequence of the
computational connection between facts and their explanations. Let’s
first see in more detail why that would be the case; then we will
show it explicitly.

2.1 An inviolable relation

A physicist has a lot of freedom in how to build and run experiments
(e.g., how to set up his lab). However, whatever the physicist does
or ultimately concludes, what he cannot do is violate the relation
between the size of the proven computing reserve and the degree to
which he can verify a theory T of the world W.

Due to the nature of this argument, our model implies the two
following consequences:

• Via the notion of the proven computing reserve, claims are made
about the real world from algorithmic information theory. Sim-
plified; if a physicist can supply us with x bits of verified expla-
nation, then the world which embeds him must be able to supply
him with {n} resources of computation to verify those x bits.
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• This relation cannot be violated in any way and under any circum-
stances. For example, a physicist can explain a small fact of only
one bit using only one iteration, and the relation must hold. Or,
he can explain all elements of W if he can somehow manage to
convert the whole universe into a giant computer, and the relation
must still hold.

To see why this relation cannot be violated, let us consider the
implications of it failing. If the equation is violated, it would mean
a violation of the theory of computation in the universe. This would
defeat formal logic as a discipline. For example, it could mean that
certain theorems can be verified using less steps than what their
proofs would require (i.e. it would be non-sense).

2.2 Sketch of the derivation

We hypothesize that a relation which 1) makes claims in regard to
the world (i.e., there exists a proven computing reserve); and 2) is
inviolable, must somehow encode some laws of physics (and perhaps
all?) as this is what the laws of physics ultimately are. We will verify
this hypothesis by explicitly deriving the laws of physics from this
relation.

We will show that the computational relation between W and T
can be formally described as a partition function of statistical physics.
We can see that this is the case by considering that the physicist is
free to verify the explanation of any subset of W by consuming the
proven computing reserve until it runs out. The Lagrange multipliers
of the ensemble will be equated with the characteristics of the proven
computing reserve, and the entropy of the system will be associated
with the quantity of valid and complete theories of everything which
explains the facts within the available resources. Here, the theories
T are the micro-states of the system and the macroscopic state is
described in terms of computing resources.

The equation of states of this system is most interesting as it rep-
resents the rules that are common for all verified theories T, which
explains the world W. These commons rules will be the laws of
physics!

In this sense, the relationship is able to import constraints of pure
logic (e.g., the theory of computation) into claims about the physi-
cal world, via the concept of a proven computing reserve, and then
show that the laws of physics are an emergent consequence of these
constraints.
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3 Technical introduction

3.1 Statistical physics

We will provide a brief recap of statistical physics. In statistical
physics, we are interested in the distribution that maximizes entropy,

S = −kB ∑
x∈X

p(x) ln p(x) (3.1.1)

subject to the fixed macroscopic quantities. The solution for this is
the Gibbs ensemble. Typical thermodynamic quantities are:

quantity name units type

T = 1/(kBβ) temperature K intensive (3.1.2)

E energy J extensive (3.1.3)

p = γ/β pressure J/m3 intensive (3.1.4)

V volume m3 extensive (3.1.5)

µ = δ/β chemical potential J/kg intensive (3.1.6)

N number of particles kg extensive (3.1.7)

Taking these quantities as examples, the partition function be-
comes:

Gibbs ensemble

Z = ∑
x∈X

e−βE(x)−γV(x)−δN(x) (3.1.8)

The probability of occupation of a micro-state is:

Gibbs measure

p(x) =
1
Z

e−βE(x)−γV(x)−δN(x) (3.1.9)

The average values and their variance for the quantities are:

E = ∑
x∈X

p(x)E(x) E =
−∂ ln Z

∂β
(∆E)2 =

∂2 ln Z
∂β2 (3.1.10)

V = ∑
x∈X

p(x)V(x) V =
−∂ ln Z

∂γ
(∆V)2 =

∂2 ln Z
∂γ2 (3.1.11)

N = ∑
x∈X

p(x)N(x) N =
−∂ ln Z

∂δ
(∆N)2 =

∂2 ln Z
∂δ2 (3.1.12)
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The laws of thermodynamics can be recovered by taking the fol-
lowing derivatives

∂S
∂E

∣∣∣∣
V,N

=
1
T

∂S
∂V

∣∣∣∣
E,N

=
p
T

∂S
∂N

∣∣∣∣
E,V

= − µ

T
(3.1.13)

, which can be summarized as

dE = TdS− pdV + µdN (3.1.14)

This is known as the equation of states of the thermodynamic
system. The entropy can be recovered from the partition function and
is given by:

S = kB
(
ln Z + βE + γV + δN

)
(3.1.15)

3.2 Algorithmic thermodynamics

Many authors (Bennett et al., 1998, Chaitin, 1975, Fredkin and Tof-
foli, 1982, Kolmogorov, 1965, Zvonkin and Levin, 1970, Solomonoff,
1964, Szilard, 1964, Tadaki, 2002, 2008) have discussed the similar-
ity between physical entropy S = −kB ∑ pi ln pi and the entropy in
information theory S = −∑ pi log2 pi. Furthermore, the similarity be-
tween the halting probability Ω and the Gibbs ensemble of statistical
physics has also been studied1. Tadaki suggests to augment Ω with a 1 Ming Li and Paul M.B. Vitanyi.

An Introduction to Kolmogorov
Complexity and Its Applications.
Springer Publishing Company, Incorpo-
rated, 3 edition, 2008. ISBN 0387339981,
9780387339986; Cristian S. Calude
and Michael A. Stay. Natural halting
probabilities, partial randomness, and
zeta functions. Inf. Comput., 204(11):
1718–1739, November 2006. ISSN 0890-
5401. doi: 10.1016/j.jc.2006.07.003.
URL http://dx.doi.org/10.1016/

j.jc.2006.07.003; John Baez and
Mike Stay. Algorithmic thermody-
namics. Mathematical. Structures in
Comp. Sci., 22(5):771–787, Septem-
ber 2012. ISSN 0960-1295. doi:
10.1017/S0960129511000521. URL
http://dx.doi.org/10.1017/

S0960129511000521; and Kohtaro
Tadaki. A generalization of chaitin’s
halting probability omega and halting
self-similar sets. Hokkaido Math.
J., 31(1):219–253, 02 2002. doi:
10.14492/hokmj/1350911778. URL
http://dx.doi.org/10.14492/hokmj/

1350911778

multiplication constant D, which acts as a decompression term on Ω.

Chaitin construction Tadaki ensemble (3.2.1)

Ω = ∑
q∈halts

2−|q| → ΩD = ∑
q∈halts

2−D|q| (3.2.2)

With this change, the Gibbs ensemble compares to the Tadaki
ensemble as follows;

Gibbs ensemble Tadaki ensemble

Z = ∑
x∈X

e−βE(x) ΩD = ∑
q∈halts

2−D|q| (3.2.3)

Interpreted as a Gibbs ensemble, the Tadaki construction forms
a statistical ensemble where each program corresponds to one of
its micro-state. The Tadaki ensemble admits a single quantity; the
prefix code length |q| conjugated with D. As a result, it describes the
partition function of a system, which maximizes the entropy subject
to the constraint that the average length of the codes is some constant
|q|;

http://dx.doi.org/10.1016/j.jc.2006.07.003
http://dx.doi.org/10.1016/j.jc.2006.07.003
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.14492/hokmj/1350911778
http://dx.doi.org/10.14492/hokmj/1350911778
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|q| = ∑
q∈halts

|q|2−|q| from 3.1.10 (3.2.4)

The entropy of the Tadaki ensemble corresponds to the average
length of prefix-free codes available to encode programs.

S = kB

(
ln Ω + D|q| ln 2

)
from 3.1.15 (3.2.5)

The constant ln 2 comes from the base 2 of the halting probability
function instead of base e of the Gibbs ensemble.

John C. Baez and Mike Stay2 take the analogy further by suggest- 2 John Baez and Mike Stay. Algorithmic
thermodynamics. Mathematical.
Structures in Comp. Sci., 22(5):771–
787, September 2012. ISSN 0960-1295.
doi: 10.1017/S0960129511000521.
URL http://dx.doi.org/10.1017/

S0960129511000521

ing an interpretation of algorithmic information theory based on
thermodynamics, where the characteristics of programs are con-
sidered to be thermodynamic quantities. Starting from Gregory
Chaitin’s Ω number, the Chaitin construction

Ω = ∑
q∈halts

2−|q| (3.2.6)

is extended with algorithmic quantities to obtain

Gibbs ensemble Baez-Stay ensemble (3.2.7)

Z = ∑
x∈X

e−βE(x)γV(x)−µN(x) Ω′ = ∑
q∈halts

2−βE(q)−γV(q)−δN(q) (3.2.8)

Noting the similarity between the Gibbs ensemble of statistical
physics (3.1.8) and (3.2.8), these authors suggest an interpretation
where E is the expected value of the logarithm of the program’s run-
time, V is the expected value of the length of the program, and N is
the expected value of the program’s output. Furthermore, they inter-
pret the conjugate variables as (quoted verbatim from their paper);

"

1. T = 1/β is the algorithmic temperature (analogous to temperature).
Roughly speaking, this counts how many times you must double
the runtime in order to double the number of programs in the
ensemble while holding their mean length and output fixed.

2. p = γ/β is the algorithmic pressure (analogous to pressure). This
measures the trade-off between runtime and length. Roughly speak-
ing, it counts how much you need to decrease the mean length to
increase the mean log runtime by a specified amount while holding
the number of programs in the ensemble and their mean output
fixed.

http://dx.doi.org/10.1017/S0960129511000521
http://dx.doi.org/10.1017/S0960129511000521
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3. µ = −δ/β is the algorithmic potential (analogous to chemical po-
tential). Roughly speaking, this counts how much the mean log
runtime increases when you increase the mean output while hold-
ing the number of programs in the ensemble and their mean length
fixed.

"

–John C. Baez and Mike Stay

From equation (3.2.8), they derive analogs of Maxwell’s relations
and consider thermodynamic cycles, such as the Carnot cycle or
Stoddard cycle. For this, they introduce the concepts of algorithmic
heat and algorithmic work.

Other authors have suggested other alternative mappings in other
but related contexts3.

3 Ming Li and Paul M.B. Vitanyi.
An Introduction to Kolmogorov
Complexity and Its Applications.
Springer Publishing Company, Incorpo-
rated, 3 edition, 2008. ISBN 0387339981,
9780387339986; and Kohtaro Tadaki. A
statistical mechanical interpretation of
algorithmic information theory. In Local
Proceedings of the Computability in
Europe 2008 (CiE 2008), pages 425–434.
University of Athens, Greece, Jun 2008.
URL http://arxiv.org/abs/0801.4194

3.3 Populating the set W

W can be recursively enumerated. First, we pose the assumption that
the world can embed a Universal Turing machine. Then, under this
assumption, W is the set of all halting computer programs, and it can
be recursively enumerated as follows:

For all sentences s ∈ Σ∗, we input s to a universal Turing machine
(UTM). If the UTM halts on s, then s ∈W.

In this case, the universal Turing machine is responsible for delim-
iting the program-part and the data-part of the input. The program-
part represents the explanation of the data-part. The explanation
can be verified for a computational cost paid to execute the UTM to
completion.

In this construction, all elements of W represent a statement (data-
part) that is computationally connected to some arbitrary explanation
(program-part). Thus, in this encoding, the universe would contain
no "brute facts". As we will see in the following section, the expla-
nations being arbitrary suggests an entropy over explanations of
equivalent computing consumption.

4 The laws of physics

Let us now explicitly derive the equation governing the computa-
tional relation between T and W. As stated, the physicist is free to
pick any subset of facts to explain. Thus, we will seek a probability
distribution ρ(s) that maximizes the entropy over the set of facts:

S = − ∑
s∈W

ρ(s) ln ρ(s) (4.0.1)

http://arxiv.org/abs/0801.4194
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Consistent with the proven computational reserve associated with
a set of facts and their explanations, we must further constrain the
entropy with an average program runtime t, and an average program
length x. These are the computational constraints limiting the physi-
cist’s inquiry, and it characterizes his available computing resources.

t = ∑
s∈W

ρ(s)t(s) (4.0.2)

x = ∑
s∈W

ρ(s)x(s) (4.0.3)

and by the usual unitary condition that the probabilities sum to 1.

1 = ∑
s∈W

ρ(s) (4.0.4)

Here, the functions t(s) and x(s) map a fact of W to a real number.

t : s→ R (4.0.5)

x : s→ R (4.0.6)

where s ∈ W. Specifically, t(s) is the running time of s (in iterations),
and x(s) is the length of s (in bits).

We maximize the entropy using the method of the Lagrange multi-
pliers.

L =

(
− ∑

s∈W
ρ(s) ln ρ(s)

)
+ λ1

(
∑

s∈W
ρ(s)− 1

)

+ λ2

(
∑

s∈W
ρ(s)t(s)− t

)
+ λ3

(
∑

s∈W
ρ(s)x(s)− x

)
(4.0.7)

Maximizing L with respect to ρ(s) is done by taking its derivative
and posing it equal to zero:

0 =
∂L

∂ρ(s)
= − ln ρ(s)− 1 + λ1 + λ2t(s) + λ3x(s) (4.0.8)

Solving for ρ(s) we obtain:

ρ(s) = e−1+λ1+λ2t(s)+λ3x(s) (4.0.9)

From the constraint 1 = ∑s∈W ρ(s), we can find the value for λ1:
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1 = ∑
s∈W

ρ(s) (4.0.10)

1 = ∑
s∈W

e−1+λ1+λ2t(s)+λ3x(s) (4.0.11)

1 = e−1+λ1 ∑
s∈W

eλ2t(s)+λ3x(s) (4.0.12)

Posing Z := ∑s∈W eλ2t(s)+λ3x(s),

1 = e−1+λ1 Z (4.0.13)

Then we rewrite ρ(s) using Z, we obtain the Gibbs measure:

ρ(s) =
1
Z

eλ2t(s)+λ3x(s) (4.0.14)

where λ2 and λ3 are the Lagrange multipliers.

4.1 The equation of states of W

Finally, we obtain the partition function Z.

Z = ∑
s∈W

eλ2t(s)+λ3x(s) (4.1.1)

along with its equation of states:

dS = λ2dt + λ3dx (4.1.2)

This partition function and its equation of states describe the en-
tropy of all possible theory T that a physicist can produce to explain
W consuming the proven computing reserve —itself characterized by
an average program runtime t and an average program size x.

Recall that there can be no violation of this equation in the World,
or we have deeper problems with logic itself. We then ask, what
physical system is described by the partition function? We can use it
to model the case of a physicist attempting to explain just a few facts,
or we will see in the next section, can use it to model the universe on
the largest of scales.

4.2 The connection to physics

Logically speaking, if two theories T would give different laws of
physics, then it follows that at least one of them must be invalid.
Therefore, and perhaps as intuitively expected, the laws of physics
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would be the group of rules that are invariant with respect to the
choice of a valid theory T for the set W. Furthermore, to exclusively
study this group of laws, we need simply to focus on the equation of
states of the system since the macroscopic laws that it describes are
the same for all valid T.

So what does the equation of states represent? In another paper,
I have shown that the equation of Z is a valid model of the cosmos.
It connects the large-scale structure of the universe (the macroscopic
state of the system) to an ensemble of computationally verified facts
(the microscopic states). In other words, the equation for the proven
computing reserve can be rewritten as a model of the cosmos (ex-
pressed over the usual time and space quantities). We will now give a
sketch of the process.

Specifically, the model is able to explain the origins of special rel-
ativity, general relativity, dark energy, the law of inertia, the cosmo-
logical horizons, and the arrow of time from an arbitrary ensemble of
computationally verified facts.

From the equation of states Z, we obtain the laws of physics by
solving specific thermodynamic regimes and by a perturbation ex-
pansion over the x variable.

dS = λ2dt + λ3

(
x′(0)dx + x′′(0)xdx +

1
2

x′′′(0)x2dx + ...
)

(4.2.1)

for convenience, we rewrite the equation to

TdS = −Pdt + Fdx + kdA + pdV + ... (4.2.2)

where λ2 := −P/T, λ3x′(0) := F/T, λ3x′′(0) := k/T, xdx := dA,
(1/2)x′′′(0) := p/T and x2dx := dV.

4.3 Mapping to the space-time background

Z describes a physical system by the properties of its proven com-
puting reserve. In the common nomenclature of physics, however, it
is usually preferred to use terms such as time and space to describe
a physical system. Therefore, it would be interesting to convert the
current description into one based on common physical quantities
such as time and space.

Our strategy to do so will be borrowed from introductory statisti-
cal physics. We will adopt the same line of reasoning which allows
the Lagrange multiplier β of statistical physics to be connected to the
notion of a physical temperature. As you may recall, in introductory
statistical physics:
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1. The Gibbs ensemble is first derived from statistical arguments
as the ensemble which maximizes the entropy subject to fixed
quantities. The process introduces a multiplication constant known
as the Lagrange multiplier and is designated by β.

2. From the Gibbs ensemble, a relation between β, energy and en-
tropy is obtained: βdE = dS.

3. Then, it is shown that this relation recovers a well-known and
empirically-uncontested law; such that the two are exact replicas
if and only if β is defined using the temperature T. In this case,
S = ln Ω is used to connect β to T via β = 1/(kBT).

4. Thus, we conclude that the Gibbs ensemble is a description of a
physical system involving energy, entropy, and temperature.

We adopt the same line of reasoning for the derivation of the
space-time background from Z. Our goal is to derive as many laws
of physics as we can from Z so as to show the extent of the physical
connection. Specifically, we will show that some quantity of Z cor-
responds to the time in the equations for Special relativity, general
relativity, the law of inertia, etc., and that some other quantity of Z
corresponds to space in those same equations.

The validity of the mapping between the quantities of Z and the
physical notion of space-time is ultimately a conclusion of this work
and rests on deriving overwhelmingly many known laws of physics
from Z and to a degree such that it exceeds that which would be
expected from a mere coincidence.

4.4 The laws of physics

The permissible thermodynamic regimes and their associated laws
are obtained by the usual method of posing some derivatives to zero
in the equation of states and then studying how the remaining quan-
tities behave. In the referenced paper, we derive the following laws
associated with each regime. The results are summarized in the fol-
lowing table:
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The World TdS = − Pdt + Fdx + kdA + pdV + . . . (4.4.1)

...
...

...
...

...
...

Maximum speed TdS = − Pdt + Fdx (4.4.2)

Maximum viscosity TdS = − Pdt + kdA (4.4.3)

Maximum vol. flow rate TdS = − Pdt + pdV (4.4.4)

...
...

...
...

...
...

Special relativity 0 = − Pdt + Fdx (4.4.5)

...
...

...
...

...
...

Arrow of time TdS = − Pdt (4.4.6)

Law of Inertia TdS = + Fdx (4.4.7)

General relativity TdS = + kdA (4.4.8)

Dark energy TdS = + pdV (4.4.9)

...
...

...
...

...
...

For example, let us take the regime 0 = −Pdt + Fdx. We obtain the
relation P/Fdt = dx. The ratio P/F involves the Lagrange multiplier
P and F, both of which are constant throughout the system as per
the rules of statistical physics. The method allows us to find all the
constant quantities of the system and each implies a certain law of
physics.

The laws so-obtained are emergent from the entropy of the set
of computationally verified facts. They have the same mathematical
form as the familiar laws of physics. More precisely, computational
analogs to the following are obtained: the law of inertia as an en-
tropic force, general relativity as an entropic surface tension, dark
energy as an entropic negative pressure, special relativity as an en-
tropic speed, and the arrow of time is as an negative entropic power.
Finally, the cosmological horizons (particle horizon, event horizon,
and Hubble horizon) are obtained as the boundaries beyond which
the arrow of time is reversed in the model.

The method is very powerful in the sense that all correct numerical
factors for these analogous laws are recovered. For example, the mul-
tiplication constant in the Einstein field equations 8πG/c4 is exactly
recovered without introduction new assumption. The same goes for
all laws obtained from the method including the law of inertia, and
dark energy from an holographic boundary on the Einstein-Hilbert
action.
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4.5 Completing the mapping

All rules derived from Z have the same mathematical structure as
their physical counterparts. Based on this correspondence, we now
explicitly state the mapping. Each rule mathematically equivalent
to a law of physics that we have derived from Z adds weight to the
thesis of the mapping.

Property Variable Mapping Units

program-runtime t(q) t(q)→ physical-time seconds (4.5.1)

program-length x(q) x(q)→ physical-length meters (4.5.2)

The dimensional units will be introduced as definitions. First, the
units are mathematically introduced as follows. We introduce the
quotient 1s

1s = 1 where s is the dimensional unit of the second.

(
1s
1s

) (
λ2dt

)
multiplication by 1 (4.5.3)

Then, the variable λ2 absorbs the denominator and t absorbs the
numerator, as

(
λ2

1s

) (
d
(
1st
))
→ λ′2dt′ (4.5.4)

where λ′2 has the units of s−1 and t′ has the units of s. The same
procedure is done for the length variables by injecting 1m

1m = 1 into
λ3dx.

Extenting the mapping to the conjugated quantities, the units for
all variables of equation 4.2.2 are:

quantity symbol unit

temperature T K (4.5.5)

power P J/s (4.5.6)

time t s (4.5.7)

force F J/m (4.5.8)

length x m (4.5.9)

surface tension k J/m2 (4.5.10)

area A m2 (4.5.11)

pressure p J/m3 (4.5.12)

volume V m3 (4.5.13)
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5 Suggested continued reading

The author has written this paper under the assumption that the
reader who is interested in the explicit derivations of the laws of
physics from Z as well as more details about the physical interpreta-
tion of Z would read the following paper: 4. For this reason and to 4 Alexandre Harvey-Tremblay. On the

entropic origin of the cosmos. https:

//www.academia.edu/36633782/On_the_

entropic_origin_of_the_cosmos, 2018

minimize duplication of the same information, these derivations are
omitted from this paper.

6 Conclusion

The equation of states of Z, as it cannot be violated in the world,
naturally reveals the rules that cannot be violated in the universe.

The primary steps in the argument are summarized as follows:

1. We correct the semantic error in the formalization of a typical
physical theory. To do so, a model is constructed such that the
world implies the theory (instead of the reverse).

2. In the model, the world is described as a set of sentences which
are true in it (i.e., they are the facts of the world). The set of facts
can be repackaged (compressed) into a theory T for a computing
cost.

3. We then ask a physicist to explain elements of W. Each success-
ful explanation produced by the physicist is a claim on the exis-
tence of the physical resources available to him to verify such an
explanation. In this case, the physical resources are exclusively ex-
pressed in terms of computing resources. Together they form what
we call the proven computing reserve.

4. Using algorithmic thermodynamics, we obtain the equation of
state of the system. This relates the entropy of the group of theo-
ries T computationally verified to explain W to the size of proven
computing reserve required for the verification to be done.

5. The partition function of the system describes the system as an
ensemble of computationally verified facts. All elements of the
system are some fact that is computationally connected to some
fundamental theory T. Thus, Z describes the properties necessary
for a world to be explainable with a formal theory.

6. The equation of states describes the macroscopic laws that are
common for all T compatible with the existence of a proven com-
puting reserve necessary to explain the system from a fundamen-
tal theory T. They correspond to the familiar laws of physics.

https://www.academia.edu/36633782/On_the_entropic_origin_of_the_cosmos
https://www.academia.edu/36633782/On_the_entropic_origin_of_the_cosmos
https://www.academia.edu/36633782/On_the_entropic_origin_of_the_cosmos
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Under this construction, we find that the equation of states is a
valid model of the cosmos. Furthermore, many of the familiar laws of
physics have been shown to be emergent from the entropy of the sys-
tem; special relativity, general relativity, the law of inertia, the arrow
of time, the second law of thermodynamics, and the cosmological
horizons. It would thus appear that the world is best understood as
an ensemble of arbitrary computationally verified facts from which
the common laws of physics are unavoidably emergent.
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