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1- Abstract-

Ttris article refers to the paper http: f /vixra.org/abs7'1801.0037, "Turbulence as stnrctured Route r:f Energy
from Order into Chaos", published by Udo E. Steinemann (virra.org, Category: Physics, Classical Physics,
1801 [2] ). Within aqrclg§lg! of the referenced text a statement was made: "This way a picture about an eddy's
deca3, can be drawn as a well strrrctured route of energy from orrler into chaos, similar to those of many other
dynamicai systems too". The c.urrert text will give additional explanations to this staternent.

The ctrrrent text will sketch the way entrance to chaos is show-n for the quadratic iterntor ancl how the major
outcomes from this perception can be used in addition to the above mentioned articie.

2. Introduction.

lVlrat are the signs of chaos? 'Ihere are many dynamical systems that can produce chaos. Brit in the
following focus is on quadratic transformatiorr, which comes in different forms, one of them is for example:

2.7. r + a.r(7-r)

It has turned out that the qualitative phenomena of the quadratic transformation ane in fact the paradigm of
chaos in dynamical systems. Moreover, for the quadratic transformation the properties of chaos can be
observed and completely analyzed mattrematically.

The next figure shows the computed time-series of e-values stating at some value 16 with the parameter
set at o = 4, the parabola is the graph of the iteration function a.r(t*r) and is the locus of point s (n,, r,,r):

F.2.1.

This is called the orbit of rcg. On horizontal axis the number of iterations is marked, on vertical axis the
amplitudes for the iterations are given. The points are connected by segments. It is obvious Lhat graph cannot
escape the bounds 0 and 1.

In followirrg figure not only one initial point 16 but an entire interval is iterated. It can be observed that all
values in the interval are attracted bv the same final state.

F.2.2.

The phenomenon of sensitivity on the initial conditions magnifies even the smaliest error, a.n effect that is
demonstrated in the next fisures;
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F.2.3. 1

The initial smali intervals have aiready gro$'n considerably after just a few iterations. The property of this
scnsivity is central for chaos. In the quadratic iterator r: 4.r(1-r) small errors wili roughly double in each
iteration. The concept of LJAPUNOV-exponents quantifies the average growth of infinitesimally suralt in
the initial point of the iteration. Small error is amplifierl in the course of iteration. small interval of initial
values finally becottre spread overil,hole unit interval this behaviour is called mixing. One can describe the
mixing property of the iterations in the fbliou,ing wäy: For any two open intervals (which can arbitrarily small.
but must have non-zero length, initial values frour one interval can eventually be fbund in the other interval.

Chaos and order have long been viewed as antagonistic, one of the great srrrprises revealed through the
studies of the quadratic iterator':

2.2. ri,L=a,fri(1- fr), j =O,7,2,....,a=[1,4]

is that troth antagonistic states can be mles by a single law and there is a well defined rorrte u'hich leads from
order into cha,os. Furthemrore it was recognized that this route is universal. Route uleans that there are
abrupt qualitative changes -- called bifurcations - which mark the transition from order into chaos like a
schedulc and universal means that thcse bifurcations can be found in many natural systerns both qualilatively
and quantitatively.

One is interested to explore tiie long terrn betraviclur of the quaclratic iterator for all values <.rf the par.arneter
a. Ttris means one would like to know what will happen to the iterate z, wiren the dependerrce of the initial
choice re is diluted to aknost zero. The time-series randomiy chosen parameter o and initial value 16 aftcr a
transient phase of a few iterations the orbit will settle down to a fixed point - called final state -. If one
repeats this experiment for different initial values and parameter-values one will reach other final sta,tes. If
one enters all these states into the final-state-diagram bv drawing them versus the values of appropriate
parameter-value a € [1,4]. one rvill come ciut with the following picture:

F.2.4.

One will note that for a> 3 the final state is not a mere point but a col.lection of 2 ,4,... ,2r points and at
parameter-valrre 4 one will find the chaos discussed previously and the points of the final states fill up the
complete interval densely. Sometimes this image is also called FEIGEIIBAt,iM-diagrarl.

One essential strtrcture seen in this FEIGENBAtIX,l-diagram is that of a branching tree which portrays the
qtralitative changes of the iterator r-+a.r(L-r). Orrt of a major stem two branches are bifurcating, out of
lhese branches another two branches bifurcate again and so on. This is the period-dorrbling regime of the
scenarit"r.

Where one sees just one branch the long term behaviour of the system tends towards a fixecl final statc,
which, howeYer, depends on the parameter cr,. This finai state'il,ill bc reachecl no matter where - at which
initial state r0 - one stalts. If one sees two branches this means that the long term behaviorrr of the system is
now alternating l-retween two different, states. a lou.er and an upper one. This is calleri periodic beiraviour.
Since tliere are two states now, one says that the periorl is two now. With four branches it
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of finai state behaviour as increase from two to four. finally oue get a period-cloubling-cil,scades of 1 + 2 -+ I
+ ... ---+ 2t. Beyond this period-doubling cascade at ttre right of end of the figrrre one can see a structure with a
iot of detaiied and remarkable designs.

FEIGENBAUN{-diagram has features that are }roth of a qualiLative nature and quantitative one. The
qualitative feature are best be analyzed by methodology of fractai geometry. The structure in F.2.4 hils sclf-
similarity properties.

Tlie following figure sirows a sequence of close-ups. The sequence starts with a reproduction of picture F.2.3
and magnifies the rectangular windo,,rvs in the initial dia,gram, brrt sltowing it upside down. It's the first
close-up image, rvhiclt indeed iooks likc the whole diagram, A further magnification of the rectangle indicates
and shows tire result upside down obtaining the second close-up. The third close-up is the la-st one iri the
demonstra,tion-series. Theoretically, one r:otrlcl go on infinitely often, as indicatecl by clrawing t,he next
succeeding close-up windows into the bottom image. In other r-ords, the final-state-diagram is as self-
similar structure.

F.2.5.
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With respect to the quantitative features it has to noted thab the branches in the period-doubling regirne
become shorter and shorter if one looks from ieft to righb. Therefore it is imaginable that the lengths of the
branches (in direction of the o,-axis) relative to each other might decrease according to some geometric iaw.
if this is true, it would constitute a threshold, i.e. a r,'alue of parameter o never failen beyontt. This w6uld
rnark the end of period-doubling regime. There is strcir a threshoid named FEIGENIJAL-M-point
o, = §- = 3.5699456..., the value of a rvhere the sequence of rectangles shon n in figure F.2.5 converges. The
FEIGENBAUM-point splits the final-state-diap;ram into two distinct parts. the pcriod-doubling-trec on
the left and an area governed by chaos on the right.

Iltere is a rule that qrtantifies the way the period-doubling-tree approaches tlie FTIGENBALiM-point,
Tliis law can be isolated from the branching betraviour and was exactly the same lor many different s\rstems.
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Actually, in a very precise sense the law can be captured in just one number measured as ri = 4.6602... by
M. J. }-EIGtrNBAUM 1975 and he also found out that 6 is universal for many different systems.

The meaning of the universal constant ö is: If one meäsures the lengths two succeeding branches in direction
of the o-axis then their ratio turns out to be approximately ö.

F.2.6.

One possible and very useful interpretation of tlie universality of ä is by using it for predictions, By
measuriug two successive bifirrcations one becomes able to predict the bifurcations thereafter and also pretlict
where the threshold wouid be. Ttrus althouglr. ttr,e quadratic iterator in some sense is much to sirnple to carry
information atrout real systems. in a very striking and general sense it does carry the essential information
hou'systcms rnay develop chaotic behaviour.

In figure F.2.5 the self-similarity feature in final state diagram of the quadratic iterator is already
visiable itt the first part of the cliagram. the pericid-doubling-tree ranging from a = 1 to the FEIGENBAUM-
point o = s-. How'ever the seif-similarity in eittrer case is not strict: Altirough the branches of the tree look like
small of the u'hole tree there are parts, Iike the stem of the tree, which clearly do not. Nloreover, even the
branches of the tree are not exact copies of the entire tree. Here one has to use the term self-sirnilarity in a
more intrritive sense u,ithout being precise.

For the period-douirling-tree er.,erything is more complicated. First, one should nötd that the sequence of
diff'erences d* between parameter-values of the bifurcation-points is not precisely geometric. In other words,
if one rnakes close-ups as in figure F.2.5 the scaling-factor slightty changes from close-up to close-up and
only approaching the factor d = 4.6602... . But tiris is only true the scaling in horizontal direction of parameter
a. lVith respect lo the verlical direction one lta^s to scale with a factor of apprrixinmteiy 2.3.

F.2.7.

In figure F.2.7 these scaliug factors are used to obtain a schematic representation of the perio<i*doubling-tree
which exhibits these limiting scaling propertie-s in all stages. It should be noted that the ieaves of tlr.is tree form
a strictly self-sirnilar CANTOR-set. By comparing tlie tree of figure F.2.7 with the original bifurcation-tree,
the non-linear distortion becomes apparent. Here branches of the same stage are exactly the same, In the
original period-dottbling-tree, branches have different sizes. Ncverthclcss) onc can identify correspopding
branches. Also the lea.ves of the original tree form a CANTOR-set, this happens right at the FEIGENRA{iM-
ptoint.
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3. Homeomorphism between final-state diagrarn of the quadratic_iterator and decay-cascade of an eddy
in a turbulent fluid.

The finai-state-diagraur of the quadratic iterator (as describetl above) is considered as set X € R2. On X is
a topology,I" declared with following qualities:

3.1. {Ar, Aoc X, k € (2i .zi-j. j e lt, ... ,(2, -1)7, i,j e N*)} e l-.

If Ae,Aq€l-thenAp[^l Ar€]-andif [A.€ I'.neN*] thcnU*S*e -i-ralso @,X€.I.musthoiri.A,aselements
of f are open sets, opposite to closed sets for which holds: if Il,I C.f is closed then f -,M must be open.

The sets lAn e f , n € §l*] declared in 3.1 contain the branches of the final-state*diagram from quadratic
iterator up to the FEIGENBAIJM-point. A branch is considered to end at the bifurcation-point with the
same identification as the proper set Ä. The left end of any topological element r.ill be open.

F.3.1.
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Analog to the quadratic iterator an eddy's decay*cascade - the period-doubling-tree (described in
littp://vixra.org/abs/1801.0037) - shali be declared as set Y € lRz covered with a topology Ä:

3.2. {Br,BucY,ke (z',2;+j, j€,t,...,{2, -I)1, i,:e N*)}e C.

Set Y finishes to the right with tlie spiit-generation corresponding to the FEIGENBAUM-point in final-state
diagram from the quadratic iterator. Chaos starts beyond this limit becalse from here edclies ane transforrnecl
by friction into heat. What had been declared with respect to A,, X and f shall be va1itl for Bn, y ancl Ä as weil.

For each A, e f and Bn € ,4 exist steady functions f, ancl /,-l with:

3.3. (f ,: A,- B*) n (f n-r: B*+ A,,).

The two functions /* and /,-1are steady on Ä, and ,B, because for any ranclomly cttosen points zs € A* and
Uo e B-following relations hold:

3.4. (llr*roll <6=+llf"(r)-i,(ro)ll <e)^(llu-aoll<./=> llf,,-,(y)-f" '(y0)ll<€).

Because /, is a bijective function and both /, and .fo 
t *t weil are stearly, one can <leclare J* as homeomorphislr

ftom Anon 8,,. Frorn a topr-rlogical pi:int of view spaces iike A, and Bnmay be considered as equivalelt.
Because this is valid for any corresponding,4, € f and Bo € Ä one mav determine, the tree-structule of the
quadratic iterator and the decav*cascade of an eddv in a turbulent fluid are equivalent, both of them show
uaiitatively the same route from order into chaos.

udo E. steinemann, Final-state-Djagram ol Quadratic lterator topologically equivalent with an Eddfs Decay-cascade in a turbulent Fluid, 10109/201g.



4. Conclusion.

From the proceeding discussions it becomes obvious, that the text-statement in the paper 14]: "This way a
picture about an eddy's decay can be drawn as a structured route of energy from order into chaos, similar to
those of many other dynamical systems" now gets its authorization.
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