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81. Introduction

Fixed point theory plays a basic role in applications of many branches of mathematics. Finding
fixed point of contractive mappings becomes the center of strong research activity. Banach
proved a very important result regarding a contraction mapping, known as the Banach con-
traction principle [2] in 1922.

In [3], Bakhtin introduced b-metric spaces as a generalization of metric spaces. He proved
the contraction mapping principle in b-metric spaces that generalized the famous contraction
principle in metric spaces. Since then, several papers have dealt with fixed point theory or
the variational principle for single-valued and multi-valued operators in b-metric spaces (see [4,
5, 11] and references therein). In recent investigation, the fixed point in non-convex analysis,
especially in an ordered normed space, occupies a prominent place in many aspects (see [14,
15, 17, 20]). The authors define an ordering by using a cone, which naturally induces a partial
ordering in Banach spaces.

In 2007, Huang and Zhang [14] introduced the concept of cone metric spaces as a gen-
eralization of metric spaces and establish some fixed point theorems for contractive mappings
in normal cone metric spaces. Subsequently, several other authors [1, 16, 20, 23] studied the
existence of fixed points and common fixed points of mappings satisfying contractive type con-
dition on a normal cone metric space. In 2008, Rezapour and Hamlbarani [20] omitted the
assumption of normality in cone metric space, which is a milestone in developing fixed point
theory in cone metric space.

Recently, Hussain and Shah [15] introduced the concept of cone b-metric space as a general-
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ization of b-metric space and cone metric spaces. They established some topological properties
in such spaces and improved some recent results about K K M mappings in the setting of a cone
b-metric space. In this paper, we give some examples in cone b-metric spaces, then obtain some

fixed theorems for contractive type conditions in the setting of cone b-metric spaces.

Definition 1.1([14]) Let E be a real Banach space. A subset P of E is called a cone whenever
the following conditions hold:)

(c1) P is closed, nonempty and P # {0};

(c2) a,b € R, a,b>0 and x,y € P imply ax + by € P;

(cs) PO (=P) = {0}

Given a cone P C E, we define a partial ordering < with respect to P by x <y if and only
if y—x € P. We shall write x < y to indicate that x <y but x # y, while v < y will stand for
y—x € PY, where P° stands for the interior of P. If PY # () then P is called a solid cone (see

[22]).

There exist two kinds of cones- normal (with the normal constant K) and non-normal ones

([12]).
Let E be a real Banach space, P C E a cone and < partial ordering defined by P. Then
P is called normal if there is a number K > 0 such that for all z,y € P,

0 <z <yimply |z] < Kllyl, (1.1)
or equivalently, if (Vn) z, <y, < 2z, and
lim z, = lim 2, =z imply lim ¥, = . (1.2)
The least positive number K satisfying (1.1) is called the normal constant of P.

Example 1.2([22]) Let E = C£[0,1] with [|z]| = [|z]jec + |#/[|cc on P = {z € E : z(t) > 0}.
This cone is not normal. Consider, for example, x,,(t) = % and y,(t) = % Then 0 < z,, < yp,
and limy, o0 Yn = 0, but ||z,,|| = maxsepo 1) |5 | + maxgepo ) [t" 7 = L +1 > 1; hence z,, does

not converge to zero. It follows by (1.2) that P is a non-normal cone.

Definition 1.3([14,24]) Let X be a nonempty set. Suppose that the mapping d: X x X — E

satisfies:

(d1) 0 < d(z,y) for all z,y € X with x #y and d(z,y) =0 & x=y;
(d2) d(z,y) = d(y,z) for all z,y € X;
(d3) d(.I,y) S d(.I,Z) + d(Z,y) fOT all z, Y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space [14].

The concept of a cone metric space is more general than that of a metric space, because

each metric space is a cone metric space where F =R and P = [0, +00).

Example 1.4([14]) Let E=R?* P={(z,y) eR*:2>0,y>0}, X =Randd: X x X - F
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defined by d(z,y) = (| — y|, a|z — y|), where @ > 0 is a constant. Then (X, d) is a cone metric
space with normal cone P where K = 1.

Example 1.5([19]) Let E =2, P = {{zn}n>1 € E : 2, > 0,for all n}, (X, p) a metric space,
and d: X x X — FE defined by d(z,y) = {p(z,y)/2"}n>1. Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains the class of
metric spaces.

Definition 1.6([15]) Let X be a nonempty set and s > 1 be a given real number. A mapping
d: X x X — F is said to be cone b-metric if and only if, for all x,y, z € X, the following
conditions are satisfied:

(b1) 0 < d(zx,y) with x #y and d(z,y) =0 & © =1y;
(b2) d(xvy) = d(yv:p);
(bs) d(x,y) < sld(z,z) + d(z, y)].

The pair (X, d) is called a cone b-metric space.

Remark 1.7 The class of cone b-metric spaces is larger than the class of cone metric space
since any cone metric space must be a cone b-metric space. Therefore, it is obvious that cone

b-metric spaces generalize b-metric spaces and cone metric spaces.

We give some examples, which show that introducing a cone b-metric space instead of a

cone metric space is meaningful since there exist cone b-metric space which are not cone metric
space.
Example 1.8([13]) Let E = R* P = {(z,y) € E : 2 > 0,y > 0} C E, X = R and
d: X x X — FE defined by d(z,y) = (|Jz — y|?, oz — y|?), where « > 0 and p > 1 are two
constants. Then (X, d) is a cone b-metric space with the coefficient s = 27 > 1, but not a cone
metric space.

Example 1.9([13]) Let X = ¢ with 0 < p < 1, where % = {{z,,} CR: Y 07 |z,|P < co}.
1
Let d: X x X — R defined by d(z,y) = (2211 |z, —yn|p) " where x = {z,}, y = {yn} € .

Then (X, d) is a cone b-metric space with the coefficient s = 2!/? > 1, but not a cone metric

space.
Example 1.10([13]) Let X = {1,2,3,4}, E =R? P = {(z,y) € E: 2 > 0,y > 0}. Define
d: X x X — E by
(lz =yl lz—y[™h) ifz#y,
0, ifx=uy.

d(:E, y) =

Then (X,d) is a cone b-metric space with the coefficient s = g > 1. But it is not a cone

metric space since the triangle inequality is not satisfied,
d(1,2) > d(1,4) +d(4,2), d(3,4) >d(3,1) +d(1,4).

Definition 1.11([15]) Let (X,d) be a cone b-metric space, x € X and {z,} be a sequence in
X. Then
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o {x,} is a Cauchy sequence whenever, if for every ¢ € E with 0 < ¢, then there is a
natural number N such that for all nym > N, d(xpn, Tm) < ¢;

o {z,} converges to x whenever, for every ¢ € E with 0 < ¢, then there is a natural number
N such that for all n > N, d(z,,x) < ¢. We denote this by lim, oo T, =  or 2, — X as

n — 0.

o (X.d) is a complete cone b-metric space if every Cauchy sequence is convergent.

In the following (X, d) will stands for a cone b-metric space with respect to a cone P with

PO £ () in a real Banach space F and < is partial ordering in F with respect to P.

Definition 1.12([10]) Let (X,d) be a metric space. A self mapping T: X — X is called quasi

contraction if it satisfies the following condition:
A(Tw, Ty) < hmax {d(z,y), d(z, Tx), d(y, Ty), d(z, Ty), d(y, Tx) }
for all xz,y € X and h € (0,1) is a constant.

Definition 1.13([10]) Let (X,d) be a metric space. A self mapping T: X — X is called Ciric

quasi-contraction if it satisfies the following condition:

d(z,T d(y, Ty) d(z,T d(y,T
(T, Ty) < hmax{d(x,y% (2, Tz) +d(y, Ty) d(@,Ty) +dly, I)}
2 2
for all xz,y € X and h € (0,1) is a constant.

The following lemmas are often used (in particular when dealing with cone metric spaces

in which the cone need not be normal).

Lemma 1.14([17]) Let P be a cone and {a,} be a sequence in E. Ifc € int P and 0 < a, — 0

as n — 00, then there exists N such that for alln > N, we have a, < c.

Lemma 1.15([17)) Letz,y, z € E, ifx <y and y < z, then ¢ < z.

Lemma 1.16([15]) Let P be a cone and 0 < u < ¢ for each ¢ € int P, then u = 0.
Lemma 1.17([8]) Let P be a cone, if u € P and u < ku for some 0 < k < 1, then v = 0.

Lemma 1.18([17]) Let P be a cone and a < b+ ¢ for each ¢ € int P, then a <b.

§82. Main Results

In this section we shall prove some fixed point theorems of contractive type conditions in the

framework of cone b-metric spaces.

Theorem 2.1 Let (X,d) be a complete cone b-metric space with the coefficient s > 1. Suppose
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that the mapping T: X — X satisfies the contractive type condition:

d(Tz,Ty) < oad(x,y)+ Bd(z,Tz) +vd(y, Ty)
+pld(z, Ty) + d(y, Tx)] (2.1)

for all x,y € X, where a, 8,7, > 0 are constants such that sa+ 3+ sy + (s> +s)u < 1. Then
T has a unique fixed point in X .

Proof Choose xg € X. We construct the iterative sequence {x,}, where x,, = Tx,_1,
n > 1, that is, x,11 = Tz, = T" xg. From (2.1), we have

d(@pi1,2n) = d(TTp, TTp_1)
ad(ZTp, Tn-1) + Bd(Tn, Txn) + vd(Xn—1,TTn-1)
+uld(xn, Tep—1) + d(@p—1,Tx)]
ad(Tp, Tn_1) + Bd(Tn, Tni1) + vd(Tpn_1,Tn)
+pld(n, 2n) + d(Tn—1, Tni1)]
= ad(zn,Tn-1) + Pd(xn, Tni1) + vd(Tn_1, Tn)
+pd(xp—1, Tpi1)
ad(xy, Tp—1) + Bd(Xpn, Tpt1) + Yd(Xp-1,Tn)
+spld(zn—1,2n) + d(@n, Tpi1]
= (a+75+sp)d(Tn, Tn-1)

+(B+ sp)d(Tn, Tnt1). (2.2)

IN

IN

This implies that

IN

a+v+s
d($n+1,$n) (#

1 _ 6 — S‘LL)d(:EnufEn—l)
= Ad(zn,Tpn-1) (2.3)

where
\— (a—|—’y+su)
S \1—p—su/’

As sa+ B+ sy + (s? +s)u < 1, it is clear that A < 1/s.

Similarly, we obtain
d(xp-1,Tn) < ANd(Tp—2,Tn_1). (2.4)

Using (2.4) in (2.3), we get
d(Tpi1,20) <N d(Tn_1,Tn_2). (2.5)
Continuing this process, we obtain

d(xpi1,on) < A" d(z1, 20). (2.6)
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Let m > 1, p > 1, we have

A(@m; Tmip) < S[d(@m, Tmr1) + A(Tmg1, Tomgp)]
= 8d(Tm, Tm+1) + 5d(Trmi1, Trmtp)
< 8d(Tmy Tmr) + S [A(@mr1, Tng2) + AT, Trp)]
= 8d(Tm, Tmi1) + 82d(Timi1, Tmr2) + S2d(Tmt2, Tmp)
< sd(Tm, Tmir) + 82d(@mat1, Tmao) + 2d(Tma2, Tmis)
4+ 4 Sp_ld(;vm+p_1,;vm+p)
< sA™d(21,20) + 2N (21, o) + PN T2 d(2y, o)

oo SPEMTPT (2 3g)
= SAT[L+sA+ A2+ 3N 4o 4 (sA)P T d (21, 7o)

{1€§ZA}dC“”IO)

Let 0 < ¢ be given. Notice that [fi\:;] d(x1,x9) — 0 asm — oo for any p since 0 < s\ < 1.

Making full use of Lemma 1.14, we find mgy € N such that

{ SA™

T S)\}d(xl,xo) <Le

for each m > mg. Thus
SA™

1—sA
for all m > 1, p > 1. So, by Lemma 1.15, {x,} is a Cauchy sequence in (X, d). Since (X,d) is
a complete cone b-metric space, there exists u € X such that x,, — u as n — co. Take ng € N

such that d(x,,u) < % for all n > ng. Hence,

d(xmaxm—i-p) < [ :|d($1,.’[:0) <K €

d(Tu,u) < s[d(Tu,Txy,)+ d(Txn,u))
= sd(Tu,Txy,) + sd(Txn,u)
< s{ad(u, ) + fd(u, Tu) + yd(@0, Ta,)

+pld(u, Txy) + d(z,, Tu)]} + sd(Tpt1,u)

s{ad(u, Zn) + Bd(u, Tu) + vd(Tn, Tny1)

+uld (1, T 1) + dl@n, Tw)] } + sd(wn i1, 0)
= s(a+p+ Dd(z,,u) + s(8+ p)d(Tu,u). (2.7)
This implies that
sla+p+1)
1—5(8+p)

for each n > ng. Then, by Lemma 1.16, we deduce that d(T'w,u) = 0, that is, Tu = u. Thus u
is a fixed point of T

d(Tu,u) < ( ) < g,

Now, we show that the fixed point is unique. If there is another fixed point u* of T such
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that Tu* = u*, then from (2.1), we have

du,u*) = d(Tu,Tu")

< ad(u,u*) 4+ Bd(u, Tu) + vyd(u*, Tu")
+uld(uw, Tu™) + d(u*, Tu)]

< ad(u,u*) + Bd(u,u) + yd(u*,u*)
Fuld(u, u*) + d(u*, u)]

= (o4 2p)d(u,u”)

< (sa+ B+ sy + (s° + s)p)d(u, ub).

By Lemma 1.17, we have u = u*. This completes the proof. O

Remark 2.2 Theorem 2.1 extends Theorem 2.1 of Huang and Xu in [13] to the case of weaker
contractive condition considered in this paper.

From Theorem 2.1, we obtain the following result as corollaries.

Corollary 2.3 Let (X,d) be a complete cone b-metric space with the coefficient s > 1. Suppose
that the mapping T: X — X satisfies the contractive condition:

d(Tz,Ty) < ad(z,y)
for all x,y € X, where a € [O, %) is a constant. Then T has a unique fixed point in X .

Proof The proof of Corollary 2.3 is immediately follows from Theorem 2.1 by taking
B8 =~ = u=0. This completes the proof. O

Corollary 2.4 Let (X,d) be a complete cone b-metric space with the coefficient s > 1. Suppose
that the mapping T: X — X satisfies the contractive condition:

d(Tz,Ty) < PBld(z,Tz)+d(y,Ty)]
for all x,y € X, where § € {0, ILJFS) is a constant. Then T has a unique fixed point in X .

Proof The proof of Corollary 2.4 is immediately follows from Theorem 2.1 by taking
a=p=0and 8 =+. This completes the proof. O

Corollary 2.5 Let (X,d) be a complete cone b-metric space with the coefficient s > 1. Suppose
that the mapping T: X — X satisfies the contractive condition:

d(Txz,Ty) < pld(z, Ty) + d(y, T)]
for all x,y € X, where u € {O, ﬁ) is a constant. Then T has a unique fixed point in X .

Proof The proof of Corollary 2.5 is immediately follows from Theorem 2.1 by taking
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« = [ =+ =0. This completes the proof. |

Remark 2.6 Corollaries 2.3, 2.4 and 2.5 extend Theorem 1, 3 and 4 of Huang and Zhang [14]

to the case of cone b-metric space without normal constant considered in this paper.

Remark 2.7 Corollary 2.3 also extends the well known Banach contraction principle [2] to

that in the setting of cone b-metric spaces.

Remark 2.8 Corollary 2.4 also extends the Kannan contraction [18] to that in the setting of

cone b-metric spaces.

Remark 2.9 Corollary 2.5 also extends the Chatterjea contraction [7] to that in the setting of

cone b-metric spaces.

Remark 2.10 Theorem 2.1 also extends several results from the existing literature to the case

of weaker contractive condition considered in this paper in the setting of cone b-metric spaces.

Theorem 2.11 Let (X, d) be a complete cone b-metric space with the coefficient s > 1. Suppose
that the mapping T: X — X satisfies the contractive type condition:

d(Tz, Ty) < ad(x,y) + pd(x, Ty) + vd(y, Tx) (2.8)

for all x,y € X and «a, 3,7 > 0 are constants such that sa + s(1 + s)y < 1. Then T has a
unique fized point in X.

Proof Choose xg € X. We construct the iterative sequence {x,}, where x,, = Tx,_1,
n > 1, that is, 2,11 = T2, = T" wg. From (2.8), we have

d(Xpt1,2n) = d(Tz,,Tx,—1)

ad(Tp, Tn-1) + Bd(@n, TTn-1) + vd(Tn-1,T2n)
ad(Tn, Tn-1) + Bd(Tn, Tn) + Yd(Tn—1,Tnt1)
(
[

A

)
Oéd(In, $n,1) + 'Yd Tn—1, InJrl)
)

IN

ad(xn, Tn-1) + sy[d(@n—1,2n) + d(Tpn, Tpi1)]

(a+ sy)d(xn, Tp—1) + $Yd(Tn, Trny1)- (2.9)

This implies that

o+ sy
1— sy

o+ 8y
p:(1 )
— 5y

As sa+ s(s+ 1)y < 1, it is clear that p < 1/s.

d(Tpi1,Tn) < ( )d(xn,xn_l) = pd(Xpn,Tpn_1), (2.11)

where

Similarly, we obtain
d(xp—1,2n) < pd(xp_2,Tn-1). (2.11)
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Using (2.11) in (2.10), we get
A(Tpi1,20) < P2 d(XTn_1,Tn_2). (2.12)
Continuing this process, we obtain
d(xpy1,2n) < p"d(x1,z0). (2.13)

Let m,n > 1 and m > n, we have

d(xp,zm) < sld(@n, Tne1) + d(@nt1, Tm))
= sd(Tn,Tnt1) + 5d(Tni1, Tm)
< sd(Tn, Tpir) + 82 d(Tny1, Tra2) F d(Tng2, m))
= sd(@n, Tni1) + S2d(Tni1, Tnio) + 52d(Tnio, Tm)
< sd(xp, Tpy1) + 82d(Tni1, Tog2) + $3d(Tn o, ois)
o ST (1, )
< sp™d(zy, wo) + 82" (2, 20) + 82 p" (21, w0)

—+ -+ Smpn+m71d($1, .Io)
= sp"[L+sp+ 570> +5°p° + -+ (sp)™ " d(1, m0)

< [l

Let 0 < &1 be given. Notice that {f_pzp} d(z1,29) — 0 as n — oo since 0 < sp < 1. Making

full use of Lemma 1.14, we find ng € N such that

fer

11— Sp}d(:tl,fto) < €1

for each n > ng. Thus
sp"
1—sp

ATy Tn) < [ }d(xl,xo) <L e

for all n,m > 1. So, by Lemma 1.15, {x,} is a Cauchy sequence in (X,d). Since (X,d) is a
complete cone b-metric space, there exists v € X such that z,, — v asn — co. Taken; € N

such that d(x,,v) < % for all n > n;. Hence,

d(Tv,v) < sld(Tv,Tz,) + d(Tzy,v)]
= sd(Tv,Tzy) + sd(Txp,v)
< slad(v,xy) + Bd(v, Tay) + vd(xn, T)] + sd(Tnt1,v)
slad(v, x,) + Bd(v, Tpi1) + Yd(Tp, TV)] + sd(zpi1,v)
= s(a+ Dd(v,z,) + syd(Tv,v). (2.14)
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This implies that
s(a+1)

1—svy
for each n > ny. Then, by Lemma 1.16, we deduce that d(Tv,v) = 0, that is, Tv = v. Thus v
is a fixed point of T.

d(Tw,v) < ( )d(xn,v) < €1,

Now, we show that the fixed point is unique. If there is another fixed point v* of T such
that Tv* = v*, then from (2.8), we have

d(v,v*) = d(Tv,Tv")

ad(v,v*) + Bd(v, Tv*) + vd(v*, Tv)
ad(v,v*) + Bd(v,v™) + vd(v*, v)
(a+ B+ 1)d(v, v°)

(sa+ s(1 4 s)y)d(v,v").

A

IN

By Lemma 1.17, we have v = v*. This completes the proof. O

Theorem 2.12 Let (X, d) be a complete cone b-metric space with the coefficient s > 1. Suppose

that the mapping T: X — X satisfies the following contractive condition: there exists

d(z,Tx) +d(y,Ty) d(xz,Ty)+d(y,Tx) }

u(e,y) € {d(.y), N , -

such that
d(Tz,Ty) < ku(z,y), (2.15)

for all x,y € X, where k € [0,1) is a constant with ks < 1. Then T has a unique fixed point in
X.

Proof Choose zp € X. We construct the iterative sequence {x,}, where x, = Tz,_1,
n > 1, that is, 2,11 = Tz, = T xg. From (2.15), we have

d(Txzy,, Txnp—1)
Eu(zn, xn-1) < - < k" u(z1,x0). (2.16)

d($n+17 {En)

IN

Let m,n > 1 and m > n, we have

d(xp,zm) < sld(@n, Tne1) + d(Tnt1, Tm))]
= sd(Tpn,Tnt1) + sd(Tpi1, Tm)
< sd(@n, tng) + $P[d(@ng1, Toge) + ATy, T
= sd(Tp, Tni1) + 2d(Tng1, Tngo) + 2d(Tni2, Tm)
< sd(xp, Tpi1) + 52d(Tni1, Tog2) + 52d(Tnpo, Togs)

4.4+ Sn—i—m 1d($n+m—17$m)
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IN

sk™u(zy, o) + s2k" T u(zy, xo) + 3k 2u(xy, 20)

o TRy (2, 20)

= k™[l + sk + s%k* + 5%k + -+ (sk)™ Hu(zy, m0)

[ sk™
1—sk

}u(xl, xo)-

Let 0 < r be given. Notice that

{ sk™

ot

as n — oo since 0 < k < 1. Making full use of Lemma 1.14, we find ng € N such that

{ sk™

T Sk}u(xl,xo) <Lr

for each n > ng. Thus
n

A(Zp, Trm) < {18

— Sk}u(:vl,xo) Lr

for all n,m > 1. So, by Lemma 1.15, {z,} is a Cauchy sequence in (X,d). Since (X,d) is a
complete cone b-metric space, there exists p € X such that z, — p asn — co. Taken; € N

such that d(z,,p) < m for all n > ny. Hence,

d(Tp,p) < sld(Tp,Tzn)+ d(Tzy,p)]
= sd(Tp,Txzy,) + sd(Txy,p)

< sku(p,zn) + sd(zpi1,p)
< skd(p,zp) + sd(xn,p)
This implies that
d(Tp,p) <,

for each m > my. Then, by Lemma 1.16, we deduce that d(T'p,p) = 0, that is, Tp = p. Thus p
is a fixed point of T.

Now, we show that the fixed point is unique. If there is another fixed point ¢ of T such
that Tq = g, then by the given condition (2.15), we have

d(p,q) = d(Tp,Tq) < ku(p,q) = kd(p,q).

By Lemma 1.17, we have p = ¢. This completes the proof. O

Theorem 2.13 Let (X, d) be a complete cone b-metric space with the coefficient s > 1. Suppose
that the mapping T: X — X satisfies the following contractive condition:

d(Tz,Ty) < h max{d(z,y),d(z,Tz),d(y, Ty)} (2.17)
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for all z,y € X, where h € [0,1) is a constant with sh < 1. Then T has a unique fized point in

X.

Proof Choose zp € X. We construct the iterative sequence {x,}, where x, = Tz,_1,
n > 1, that is, 41 = Tz, = T" g, From (2.17), we have

d(xn—i-l ) xn)

Similarly, we obtain

d(Txy, Txn—1)

< hmax{d(xn,Tn-1),d(@n, Txn),d(xn-1,TTHn-1)}
= hmax{d(zn,Tn_1),d(Tn, Tni1), d(Tpn_1,7n)}
< hd(.’L’n,.’Iin_l).

d(xn—laxn) < hd(xn—% xn—l)-

Using (2.19) in (2.18), we get

d($n+17 xn) S h2 d(xnfla $n72)-

Continuing this process, we obtain

d(Tpt1,Tn) < B d(x1, 20).

Let m,n > 1 and m > n, we have

d(xp, Tm)

IN I IA

IN

IN

»

1—sh

s[d(@n, Tpi1) + d(@Tng1, Tm))

d(Tn, Tny1) + sd(Tny1, Tm)

(
d(!E :En-i-l) [d(xn-i-l 3 xn+2) + d(xn+2u xm)]
AT, Trg1) + 82d(Tni1, Tngz) + 52d(Tpyo, Tm)
(

$d(Tp, Tny1) + 2d(@ni1, Tny2) + °d(Tnt2, Tnis)

-+ 5n+m_1d($n+m—la xm)

sh™d(x1,x0) + s*R" T d (21, 20) + s°R"2d (21, 20)

st Smhn+m_1d($1, .I())

sh™[1 + sh 4 s*h? + s*h® + - - - 4 (sh)™ ]d(z1, x0)

hn
5 :|d($1,$0).

Let 0 < ¢ be given. Notice that

as n — oo since 0 < h < 1. Making full use of Lemma 1.14, we find Ny € N such that

{ sh™

1-— sh}d(xl’xo) -0

{ sh™

T Sh}d(xl,xo) <c

(2.18)

(2.19)

(2.20)

(2.21)
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for each n > Ngy. Thus
sh™

1—sh

ATy Tn) < [ }d(azl,xo) <ec

for all n,m > 1. So, by Lemma 1.15, {z,} is a Cauchy sequence in (X,d). Since (X,d) is a
complete cone b-metric space, there exists ¢ € X such that x, — ¢ as n — co. Take N; € N

such that d(z,,q) < (h+1) for all n > IN;. Hence,

d(Tq,q) < sld(Tq,Tx,)+ d(Tzy,q)]

sd(Tq,Txy) + sd(Txy, q)

sh max{d(q, x,),d(zn, Txy),d(q,Tq)} + sd(zn+1,q)
= sh max{d(q,zn), d(Tn, Tn+1),d(q, Tq)} + sd(Tn+1,9)
shd(q,zpn) + sd(zn, q)

= s(h+1)d(zn,q).

IN

IN

This implies that
d(Tq,q) <c,

for each n > Nj. Then, by Lemma 1.16, we deduce that d(T'q,q) = 0, that is, Tq = ¢g. Thus ¢
is a fixed point of T

Now, we show that the fixed point is unique. If there is another fixed point ¢’ of T such
that T'¢' = ¢/, then by the given condition (2.17), we have

d(Tq,Tq')

h max{d(q,q'),d(q,Tq),d(¢', Tq)}
h max{d(q,q'),d(q,q),d(d’,q")}

h max{d(q,q'),0,0}

hd(q,q')

d(q,q")

VA

IN

By Lemma 1.17, we have ¢ = ¢’. This completes the proof. O

Example 2.14([13]) Let X = [0,1], E = R?, P = {(z,y) € E : 2 > 0,y > 0} C E and
d: X x X — E defined by d(z,y) = (|lx —y|P, |z —y|P) for all z,y € X where p > 1 is a constant.
Then (X,d) is a complete cone b-metric space. Let us define T: X — X as T(z) = iz — 122

2 1
for all x € X. Therefore,

ATa,Ty) = (ITa~Typ, Tz~ TyP)
= (’%x— ——(a:—y)(x+y)p, %(I—y)—%(x—y)@*'y)p)
- (|x—y|P]——§<x+y>p,|x—y|f’.]§—§<x+y>p)
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Hence 0 € X is the unique fixed point of 7.

Other consequence of our result for the mapping involving contraction of integral type is
the following.

Denote A the set of functions ¢: [0,00) — [0, 00) satisfying the following hypothesis:
(h1) ¢ is a Lebesgue-integrable mapping on each compact subset of [0, 00);

(h2) for any € > 0 we have [~ ¢(t)dt > 0.

Theorem 2.15 Let (X,d) be a complete cone b-metric space (CCbMS) with the coefficient
s > 1. Suppose that the mapping T: X — X satisfies:

d(Tz,Ty) d(z,y)
/ vtdt < B / V()
0 0

for all x,y € X, where 3 € [0,1) is a constant with sf < 1 and ¢» € A. Then T has a unique
fixed point in X .

Remark 2.16 Theorem 2.15 extends Theorem 2.1 of Branciari [6] from complete metric space

to that setting of complete cone b-metric space considered in this paper.

83. Applications

In this section we shall apply Theorem 2.1 to the first order differential equation.
Example 3.1 X = C([1,3],R), E=R? o> 0 and

dw,y) = (sup Ja() —y(®)F, @ sup [a(t) — y()*)

te(1,3] te(l1,3]

for every z,y € X, and P = {(u,v) ER?: u,v> O}. Then (X,d) is a cone b-metric space.
Define T: X — X by

T(x(t) =4+ /j (x(u) + u2)e“_5du.

For z,y € X,

AT, Ty) = ( sup [T(®) ~TWOF, a swp [TE0) - TEOF)
< / |(z(u) — y(u))|*e 2du, a/ |(z (u))|%e _2du)
= 2e 2d(x
< eild(:zr,y).

Thus for a = % <1, 8 =+ = p =0, all conditions of Theorem 2.1 are satisfied and so T
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has a unique fixed point, which is the unique solution of the integral equation:

t
x(t) =4 + / (x(u) + u2)e“_5du,
1
or the differential equation:
(1) = (x(t) n t?)et*, te1,3], z(1) = 4.

Hence, the use of Theorem 2.1 is a delightful way of showing the existence and uniqueness

of solutions for the following class of integral equations:

¢+ [ Ko, wdu =) € C(p.a) B").

Now, we shall apply Corollary 2.3 to the first order periodic boundary problem

dx
o = F(t,2(0), (3.1)

where F': [—h,h] x [u— 0, + 0] is a continuous function.

Example 3.2([13]) Consider the boundary problem (3.1) with the continuous function F and
suppose F(z,y) satisfies the local Lipschitz condition, i.e., if |z] < h, y1,y2 € [u— 6, + 6], it

induces
|F'(z,y1) — F(2,y2)| < Ly — yal.

Set M = max(_p p)x[u—6,ut0) | F(2,y)| such that h* < min{6/M? 1/L?}, then there exists
a unique solution of (3.1).

Proof Let X = F = C([-h,h]) and P = {u € E : u > 0}. Putd: X x X — FE as
d(x,y) = f(t) max_p<i<p |2(t) —y(t)|* with f: [~h, h] — R such that f(t) = e’. It is clear that
(X,d) is a complete cone b-metric space.

Note that (3.1) is equivalent to the integral equation
t
z(t) =p +/ F(u,z(u))du.
0
Define a mapping T': C([—h, h]) = R by z(t) = p+ fot F(u,z(u))du. If

z(t),y(t) € B(u, f0) = {p(t) € C([=h,h]) : d(u, p) < f0},



16 G.S.Saluja

then from
d(Tz, T ))d F d ’
Taty) = 10 pa, | [ o - [ Ryl
2
= ﬁai)éh‘/ (u, z(u F(u,y(u))]du‘
< B2 _ 2
< h f()_gg};th(u,:v(u)) F(u,y(u))|
< p272 _ 2 _ 1272
< WL max o(u) —y(u)l” = h"L7d(z, y),
and
d(Tz,p) = gﬁe}ih‘/ (u, z( du
< B2 2 - p2172¢ <
< W _max [F(ua(u)]” < WM < [0,

we speculate T': B(u, f0) — B(u, f0) is a contraction mapping.

Lastly, we prove that (B(u, f0),d) is complete. In fact, suppose {z,} is a Cauchy sequence
in B(u, f0). Then {z,} is a Cauchy sequence in X. Since (X,d) is complete, there is ¢ € X
such that z, — ¢ (n — 00), So, for each ¢ € int P, there exists N, whenever n > N, we obtain
d(zp,q) < c. Thus, it follows from

d(p, q) < d(zn, p) +d(p,q) < f0+c

and Lemma 1.18 that d(u, ¢) < f6, which means ¢ € B(u, f6), that is, (B(y, f0), d) is complete.
Thus, from the above statement, all the conditions of Corollary 2.3 are satisfied. Hence T has
a unique fixed point z(t) € B(u, f0) or we say that, there exists a unique solution of (3.1). O
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