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§1. Introduction

The complexity (the number of spanning trees) τ(G) of a finite connected undirected graph

G is defined as the total number of distinct connected acyclic spanning subgraphs. There are

many techniques to compute this number. Kirchhoff [1] gave the famous matrix tree theorem.

In which τ(G) = any cofactor of L (G ) , where L (G ) is equal to the degree matrix D (G )

of G minus the adjacency matrix A (G ) of G .

There are other methods for calculating t(G). Let µ1 > µ2 > · · · > µp denote the eigenval-

ues of H matrix of a p point graph. Then it is easily shown thatµp = 0. In 1974, Kelmans and

Chelnokov [2] shown that, τ(G) = 1
p

∏p−1
k=1 µk. The formula for the number of spanning trees in

a d-regular graph G can be expressed as t(G) = 1
p

∏p−1
k=1(d − µk) where λ0 = λ1, λ2, · · · , λp−1

are the eigenvalues of the corresponding adjacency matrix of the graph. However, for a few

special families of graphs there exist simple formulas that make it much easier to calculate and

determine the number of corresponding spanning trees especially when these numbers are very

large. One of the first such results is due to Cayley [3] who showed that complete graph on n

vertices, Kn has nn−2 spanning trees that he showed τ(Kn) = nn−2, n > 2. Clark [4] proved

that τ(Kp,q) = pq−1qp−1, p, q > 1, where Kp,q is the complete bipartite graph with bipartite

sets containing p and q vertices, respectively.
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Therefore, many works derive formulas to calculate the complexity for some classes of

graphs. Bogdanowicz [5] derived the explicit formula for the fan network if n > 1,

τ(Fn) =
1√
5
[(

3 +
√

5

2
)n − (

3 −
√

5

2
)n].

Sedlacek [6] proposed a formula for the number of spanning trees in a ladder graph. The

ladder Ln is the Cartesian product of P2 and Pn. The number of spanning trees in Ln is given

by

τ(Ln) =

√
3

6
[(2 +

√
3)n − (2 −

√
3)n]

for n > 1. A. Modabish and M. El Marraki investigated the number of spanning trees in the

star flower planar graph [7]. In [8], E.M. Badr and B.Mohamed derived the explicit formulas

for triangular snake (∆k − snake),double triangular snake (2∆k − snake) and the total graph

of path Pn(T (Pn)). Badr and Mohamed [9] derived the explicit formulas for the subdivision of

ladder, fan, wheel, triangular snake (∆k-snake), double triangular snake (2∆k-snake) and the

total graph of path Pn(T (Pn) ).

In this paper we prove that the number of spanning trees of the linear and general cyclic

snake networks is the same using the combinatorial approach. We derive the explicit formulas

for the subdivided fan network S(Fn) and the subdivided ladder graph S(Ln) . Finally, we

calculate their spanning trees entropy and compare it between them.

§2. Preliminary Notes

The combinatorial method involves the operation of contraction of an edge. An edge e of a

graph G is said to be contracted if it is deleted and its ends are identified. The resulting graph

is denoted by G.e . Also we denote by G− e the graph obtained from G by deleting the edge e.

Theorem 2.1([10]) Let G be a planar graph (multiple edges are allowed in here). Then for

any edge e,

τ(G) = τ(G − e) + τ(G · e).

Remark 2.2 If G’ is obtained from G by removing all the pendant edges of G, then

τ(G
′

) = τ(G).

Remark 2.3 If G’ is obtained from G by removing all the loops of G, then τ(G
′

) = τ(G).

Remark 2.4 If G’ is obtained from G by removing one or more than one multiple edges of G,

then τ(G
′

) < τ(G).

Definition 2.5([11]) A triangular snake (∆k-snake) is a connected graph in which all blocks

are triangles and the block-cut-point graph is a path.
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Definition 2.6 Cn-cyclic snake is a connected graph in which all blocks are Cn and the block-

cut-point graph is a path. Furthermore, if the length of its path is exactly k, we call it a

kCn-cyclic snake.

Definition 2.7 A kCn -snake is called linear if its block-cut-vertex graph of kCn -snake has

the property that the distance between any two consecutive cut-vertices is
⌊

n
2

⌋
.

§3. Main Results

Theorem 3.1 The number of spanning trees of the linear kC4 -snake satisfies the following

recursive relation:

τ(kC4 − snake) = 4k

Proof Let us consider a graph kC
/
4 − snake constructed from kC4 − snake by deleting two

edges. See Figure 1

KC4-Snake kC
/
4 -Snake

Figure 1 Linear kC4-Snake

We put kC4 − snake = τ(kC4 − snake) and kC
/
4 − snake = τ(kC

/
4 − snake).

It is clear that

kC4 − snake = 3(k − 1)C4 − snake + 4(k − 1)C
/
4 − snake

and

kC4 − snake = 2(k − 1)C4 − snake − 4(k − 1)C
/
4 − snake

with initial conditions C4 − snake = 4, C
/
4 − snake = 1. Thus, we have


 kC4 − snake

kC
/
4 − snake


 = A


 (k − 1)C4 − snake

(k − 1)C
/
4 − snake


 ,
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where, A =


 3 4

2 −4


, which implies that


 kC4 − snake

kC
/
4 − snake


 = A


 (k − 1)C4 − snake

(k − 1)C
/
4 − snake


 = · · · = An−1


 C4 − snake

C
/
4 − snake


 .

We compute An−1 as follows:

det(A − λI2) = λ2 + λ − 20 = 0, λ1 = −5 and λ2 = 4, λ1 6= λ2.

Therefore, there is a matrix M invertible such that A = MBM−1, where

B =


 λ1 0

0 λ2




and M is an invertible transformation matrix formed by eigenvectors

M =


 1 1

−2 1
4


 ⇒ M−1 =

1

9/4




1
4 −1

2 1


 .

Notice that An−1 = MBn−1M−1, where Bn−1 =


 (−5)n−1 0

0 4n−1


. We therefore obtain

An−1 =




(−5)n−1

9 + 2∗4n

9
−4∗(−5)n−1

9 + 4n

9

−2∗(−5)n−1

9 + 2∗4n−1

9
8∗(−5)n−1

9 + 4n−1

9




and hence the result follows. 2
Theorem 3.2 The number of spanning trees of the linear kc6 − snakesatisfies the following

recursive relation τ( kc6 − snake ) = 6k

Proof Consider a graph kC
/
6 −snake constructed from kC6−snake by deleting two edges.

See Figure 2 following.

kC6-Snake kC
/
6 -Snake

Figure 2 Linear kC6-Snake
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We put kC6 − snake = τ(kC6 − snake) and kC
/
6 − snake = τ(kC

/
6 − snake). It is clear

that

kC6 − snake = 5((k − 1)C6 − snake) + 6((k − 1)C
/
6 − snake)

and

kC
/
6 − snake = 2((k − 1)C6 − snake) − 6((k − 1)C

/
6 − snake)

with initial conditions (C1 − snake) = 6, (C
/
1 − snake) = 1. Thus, we have


 kC6 − snake

kC
/
6 − snake


 = A


 (k − 1)C6 − snake

(k − 1)C
/
6 − snake


 ,

where, A =


 5 6

2 −6


, which implies that


 kC6 − snake

kC
/
6 − snake


 = A


 (k − 1)C6 − snake

(k − 1)C
/
6 − snake


 = · · · = An−1


 C6 − snake

C
/
6 − snake


 .

We compute An−1 as follows:

det(A − λI2) = λ2 + λ − 42 = 0, λ1 = −7 and λ2 = 6, λ1 6= λ2.

Then, there is a matrix M invertible such that A = MDM−1, where B =


 λ1 0

0 λ2


 and

M is an invertible transformation matrix formed by eigenvectors

M =


 1 1

−2 1
6


 ⇒ M−1 =




1
13

−6
13

12
13

6
13


 ⇒ An−1 = MBn−1M−1 ,

where Bn−1 =


 (6)n−1 0

0 (−7)n−1


. We therefore obtain

An−1 =




(6)n−1

13 + 12∗(−7)n−1

13
−(6)n

13 + 6∗(−7)n−1

13

−2(6)n−1

13 + 2∗(−7)n−1

13
2∗(6)n

13 + (−7)n−1

13


 1

2

and hence the result follows. 2
Theorem 3.3 The number of spanning trees of the linear (kCn − snake)satisfies the following

recursive relation τ(kCn − snake) = nk.

Proof Consider a graph kC
/
n − snake constructed from kcn − snake by deleting two edges.

See Figure 3 following.
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kCn-Snake kC
/
n-Snake

Figure 3 Linear kCn-Snake

We put kCn − snake = τ(kCn − snake) and kC
/
n − snake = τ(kC

/
n − snake). It is clear

that

kCn − snake = 5((k − 1)Cn − snake) + 6((k − 1)C/
n − snake)

and

kC/
n − snake = 2((k − 1)Cn − snake) − 6((k − 1)C/

n − snake)

with initial conditions (Cn − snake) = n, C
/
n − snake) = 1. Thus, we have


 kCn − snake

kC
/
n − snake


 = A


 (k − 1)Cn − snake

(k − 1)C
/
n − snake


 ,

where, A =


 n − 1 n

2 −n


, which implies that


 kCn − snake

kC
/
n − snake


 = A


 (k − 1)Cn − snake

(k − 1)C
/
n − snake


 , = · · · = An−1


 Cn − snake

C
/
n − snake


 .

We compute An−1 as follows:

det(A − λI2) = λ2 + λ − 42 = 0, λ1 = −(n + 1) and λ2 = n, λ1 6= λ2.

Then, there is a matrix M invertible such that A = MDM−1, where B =


 λ1 0

0 λ2


 and

M is an invertible transformation matrix formed by eigenvectors

M =


 1 1

−2 1
n


 ⇒ M−1 =




1
(2n+1)

−n
(2n+1)

2n
(2n+1)

n
(2n+1)


 ⇒ An−1 = MBn−1M−1 ,

where Bn−1 =


 (n)n−1 0

0 (−(n + 1))n−1


. We therefore obtain
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An−1 =




(n)n−1

(2n+1) + 2n∗(−(n+1))n−1

(2n+1)
−(n)n

(2n+1) + n∗(−(n+1))n−1

(2n+1)

−2(n)n−1

(2n+1) + 2∗(−(n+1))n−1

(2n+1)
2∗(n)n

(2n+1) + (−(n+1))n−1

(2n+1)




and hence the result follows. 2
Remark 3.4 The number of spanning trees of the subdivision of linear (kCn − snake)satisfies

the following recursive relation τ(S(kCn − snake)) = 2n τ((k − 1))Cn − snake, where k is the

number of blocks and n is the number of vertices for each block.

Theorem 3.5 The number of spanning trees of the general kC4 − snake satisfies the following

recursive relation τ( kC4 − snake ) = 4k, where k is the number of blocks.

Proof Consider a graph kC
/
4 −snake constructed from kC4−snake by deleting two edges.

See Figure 4 following.

kC4-Snake kC
/
4 -Snake

Figure 4 General kC4-Snake

We put kC4 − snake = τ(kC4 − snake) and kC
/
4 − snake = τ(kC

/
4 − snake). It is clear

that

kC4 − snake = 3(k − 1)C4 − snake + 4(k − 1)C
/
4 − snake

and

kC4 − snake = 2(k − 1)C4 − snake − 4(k − 1)C
/
4 − snake

with initial conditions C4 − snake = 4, C
/
4 − snake = 1. Thus, we have


 kC4−snake

kC
/
4−snake


 = A


 (k − 1)C4−snake

(k − 1)C
/
4−snake


 ,

where A =


 3 4

2 −4


, which implies that


 kC4−snake

kC
/
4−snake


 = A


 (k − 1)C4−snake

(k − 1)C
/
4−snake


 = · · · = An−1


 C4−snake

C
/
4−snake


 .
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We compute An−1 as follows:

det(A − λI2) = λ2 + λ − 20 = 0, λ1 = −5 and λ2 = 4, λ1 6= λ2

Then, there is a matrix M invertible such that A = MBM−1, where B =


 λ1 0

0 λ2


 and M

is an invertible transformation matrix formed by eigenvectors

M =


 1 1

−2 1
4


 ⇒ M−1 =

1
9
4




1
4 −1

2 1


 ⇒ An−1 = MBn−1M−1 ,

where, Bn−1 =


 (−5)n−1 0

0 (4)n−1


. We therefore obtain

An−1 =




(−5)n−1

9 + 2∗(4)n

9
−4∗(−5)n−1

9 + (4)n

9

−2∗(−5)n−1

9 + 2∗(4)n−1

9
8∗(−5)n−1

9 + 4n−1

9




and hence the result follows. 2
Theorem 3.6 The number of spanning trees of the general kC6 − snake satisfies the following

recursive relation τ( kC6 − snake ) = 6k.

Proof Consider a graph kC6−snake constructed from kC
/
6 −snake by deleting two edges.

See Figure 5.

kC6-Snake kC
/
6 -Snake

Figure 5 General kC6-Snake

We put kC6 − snake = τ(kC6 − snake) and kC
/
6 − snake = τ(kC

/
6 − snake). It is clear

that

kC6 − snake = 5((k − 1)C6 − snake) + 6((k − 1)C
/
6 − snake)

and

kC
/
6 − snake = 2((k − 1)C6 − snake) − 6((k − 1)C

/
6 − snake)
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with initial conditions (C1 − snake) = 6(C
/
1 − snake) = 1. Thus we have


 kC6 − snake

kC
/
6 − snake


 = A


 (k − 1)C6 − snake

(k − 1)C
/
6 − snake


 ,

where A =


 5 6

2 −6


 , which implies that


 kC6 − snake

kC
/
6 − snake


 = A


 (k − 1)C6 − snake

(k − 1)C
/
6 − snake


 = · · · = An−1


 C6 − snake

C
/
6 − snake


 .

We compute An−1 as follows:

det(A − λI2) = λ2 + λ − 42 = 0, λ1 = −7 and λ2 = 6, λ1 6= λ2.

Then, there is a matrix M invertible such that A = MDM−1, where B =


 λ1 0

0 λ2


 and

M is an invertible transformation matrix formed by eigenvectors

M =


 1 1

−2 1
6


 ⇒ M−1 =




1
13

−6
13

12
13

6
13


 ⇒ An−1 = MBn−1M−1,

where, Bn−1 =


 (6)n−1 0

0 (−7)n−1


. From which, we obtain

An−1 =




(6)n−1

13 + 12∗(−7)n−1

13
−(6)n

13 + 6∗(−7)n−1

13

−2(6)n−1

13 + 2∗(−7)n−1

13
2∗(6)n

13 + (−7)n−1

13




and hence the result follows. 2
Theorem 3.7 The number of spanning trees of general (kCn − snake)satisfies the following

recursive relation τ(kCn − snake) = nk.

Proof Consider a graph kCn−snake constructed from kC
/
n−snake by deleting two edges.

See Figure 6 following.

We put kCn − snake = τ(kCn − snake) and kC
/
n − snake = τ(kC

/
n − snake). It is clear

that

kCn − snake = 5((k − 1)Cn − snake) + 6((k − 1)C/
n − snake)

and

kC/
n − snake = 2((k − 1)Cn − snake) − 6((k − 1)C/

n − snake)
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with initial conditions (Cn − snake) = n, (C
/
n − snake) = 1. Thus we have


 kCn − snake

kC
/
n − snake


 = A


 (k − 1)Cn − snake

(k − 1)C
/
n − snake


 ,

where A =


 n − 1 n

2 −n


 ,

kCn-Snake kC
/
n-Snake

Figure 6 General kC6-Snake

which implies that


 kCn − snake

kC
/
n − snake


 = A


 (k − 1)Cn − snake

(k − 1)C
/
n − snake


 = · · · = An−1


 Cn − snake

C
/
n − snake


 .

We compute An−1 as follows:

det(A − λI2) = λ2 + λ − 42 = 0, λ1 = −(n + 1) and λ2 = n, λ1 6= λ2.

Then, there is a matrix M invertible such that A = MDM−1, where B =


 λ1 0

0 λ2


 and

M is an invertible transformation matrix formed by eigenvectors

M =


 1 1

−2 1
n


 ⇒ M−1 =




1
(2n+1)

−n
(2n+1)

2n
(2n+1)

n
(2n+1)


 ⇒ An−1 = MBn−1M−1 ,

where Bn−1 =


 (n)n−1 0

0 (−(n + 1))n−1


. From which, we therefore obtain

An−1 =




(n)n−1

(2n+1) + 2n∗(−(n+1))n−1

(2n+1)
−(n)n

(2n+1) + n∗(−(n+1))n−1

(2n+1)

−2(n)n−1

(2n+1) + 2∗(−(n+1))n−1

(2n+1)
2∗(n)n

(2n+1) + (−(n+1))n−1

(2n+1)




and hence the result follows. 2
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Remark 3.8 The number of spanning trees of the subdivision of general S(kCn − snake)

satisfies the following recursive relation: τ(S(kCn)) = 2nτ(S(k − 1)Cn − snake) = (2n)k

where k is the number of blocks.

Theorem 3.9 The number of spanning trees of the subdivided fan graph satisfies the following

recurrence relation

τ(S(Fn)) =
1

2
√

5
[(3 +

√
5)n − (3 −

√
5)n],

where τ( S(F1) ) =1 and τ( S(F2) ) =6.

Proof Consider a graph S(Fn) constructed from S(F
/
n) by deleting two edges. See Figure

7 following.

S(Fn) S(F
/
n)

Figure 7 Subdivided Fan Graph

We put S(Fn) = τ(S(Fn) ) and S(F
/
n) = τ(S(F

/
n ) ) , It is clear that

S(Fn) = 32S(Fn−2) − 24S(F
/
n−3),

where S(F
/
n) is the number of odd block and

S(F /
n ) = 6S(Fn−1) − 4S(F

/
n−2),

where S(Fn) is the number of even block with initial conditions S(F1) = 6, S(F
/
1 ) = 1 and


 S(Fn)

S(F
/
n)


 = A


 S(Fn−1)

S(F
/
n−1)


 ,

where, A =


 6 −4

32 −24


 , which implies that


 S(Fn)

S(F
/
n )


 = A


 S(Fn−1)

S(F
/
n−1)


 = · · · = An−1


 S(F1)

S(F
/
1 )


 ,

λ1 =
1061

1250
and λ2 =

23561

1250
, λ1 6= λ2.
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Then, there is a matrix M invertible such that A = MBM−1 where B =


 λ1 0

0 λ2


 and M

is an invertible transformation matrix formed by eigenvectors

M =


 1 1

1.2878 6.2121


 ; M−1 =


 1.2615 −0.2031

−0.2615 0.2031


 ; An−1 = MBn−1M−1 ,

Bn−1 =


 (0.8488)n−1 0

0 (−18.8488)n−1


 .

From which, we therefore obtain

An−1 =


 1.2615(0.8488)n−1 − 0.2615(−18.8488)n−1 −0.2031(0.8488)n−1 + 0.2031(−18.8488)n−1

1.6246(0.8488)n−1 − 1.6245(−18.8488)n−1 −0.2616(0.8488)n−1 + 1.2617(−18.8488)n−1




and hence the result follows. 2
Theorem 3.10 The number of spanning trees of the subdivided ladder graph satisfies the fol-

lowing recurrence relation

τ(S(Ln)) =
2n−2

√
3

[(2 +
√

3)n − (2 −
√

3)n]

for any n > 1, where τ( S(L1) ) = 1 and τ( S(L2) ) = 8.

Proof Consider a graph S(Fn) constructed from S(F
/
n) by deleting two edges. See Figure

8 following.

S(Ln) S(L
/
n)

Figure 8 Subdivided Ladder Graphs S(Ln) and S(L
/
n)

We put S(Ln) = τ(S(Ln) ) and S(L
/
n) = τ(S(L

/
n) ) , It is clear that

S(Ln) = 8S(L
/
n−1) − 4S(Ln−2) ,

where S(Ln) is the number of even block,

S(L/
n) = 60S(L

/
n−2) − 32S(Ln−3)

with S(L
/
n) the number of its odd block with initial conditions S(L1) = 8, S(L

/
1) = 1. Thus,
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we have 
 S(Ln)

S(L
/
n)


 = A


 S(Ln−1)

S(L
/
n−1)


 ,

where A =


 8 −4

60 −32


 , which implies that


 S(Ln)

S(L
/
n)


 = A


 S(Ln−1)

S(L
/
n−1)


 = · · · = An−1


 S(L1)

S(L
/
1)


 ,

λ1 = 0.49 and λ2 = −24.49 , λ1 6= λ2.

Then, there is a matrix M invertible such that A = MBM−1 where B =


 λ1 0

0 λ2


 and M

is an invertible transformation matrix formed by eigenvectors

M =


 1 1

1.8775 8.1225


 ; M−1 =


 1.3006 −0.1601

−0.3006 0.1601


 ; An−1 = MBn−1M−1 ,

with Bn−1 =


 (0.49)n−1 0

0 (−24.49)n−1


. From which, we therefore obtain

An−1 =


 1.3006(0.49)n−1 − 0.3006(−24.49)n−1 −0.1601(0.49)n−1 + 0.1601(−24.49)n−1

2.4419(0.49)n−1 − 2.4416(−24.49)n−1 −0.3022(0.49)n−1 + 1.3004(−24.49)n−1




and hence the result follows. 2
§4. Spanning Tree Entropy

The entropy of spanning trees of a network or the asymptotic complexity is a quantitative

measure of the number of spanning trees and it characterizes the network structure. We use

this entropy to quantify the robustness of networks. The most robust network is the network

that has the highest entropy. We can calculate its spanning tree entropy which is a finite number

and a very interesting quantity characterizing the network structure, defined as in [15, 16] as:

Z(G) = lim
V (G)→∞

ln τ(G)

|V (G)| ,

Z(KC4−snake) = lim
n→∞

ln 4k

3k + 1
= 0.4621,

Z(KC6−snake) = lim
n→∞

ln 6k

5k + 1
= 0.3584
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Z(KCn − snake) = lim
k→∞

lnnk

(n − 1)k + 1
=

ln(n)

n − 1
,

Z(S(Fn)) = lim
n→∞

ln( 1
2
√

5
∗ (3 +

√
5)n − (3 −

√
5)n)

3n + 1
= ln(

3

√
3 +

√
5) = 0.5513

Z(S(Ln)) = lim
n→∞

ln(2n−2
√

3
∗ (2 +

√
3)n − (2 −

√
3)n)

5n − 2
= ln(

5

√
2 +

√
3) +

ln(2)

5
= 0.4020

§5. Conclusion

In this paper, we described how to propose the combinatorial approach to facilitate the cal-

culation of the number of spanning trees in linear and general cyclic snake networks. In par-

ticular, we derived the explicit formulas for the linear kc4 − snake, linear kc6 − snake and

linear kcn − snake . Finally, we derived explicit formulas for the general kc4 − snake, general

kc6 − snake and general kcn − snake.
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