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Abstract

The length, displacement, and magnitude distributions of the escape paths of the
points in some quaternion fractal sets are visualized.

1 Length, displacement, and magnitude histograms

As discussed in [1], a 3D scalar field of quaternion magnitudes |Z| =
√
Z2

x + Z2
y + Z2

z + Z2
w

results from calculating a quaternion fractal set when using a finite 3D lattice of regularly
spaced points as input. Here we will visualize the distributions of the escape paths’ lengths,
displacements, and magnitudes for those points where |Z| remains below the threshold of
4.0 during 8 iterations. A small C++ code is given in the next section, which shows how to
perform the iteration process.

See Fig. 1 for a simplified 2D illustration of length, displacement, and magnitude per
escape path. The escape paths used to calculate the histograms given in this paper are in
4D.

The histograms in Figs. 2 - 10 together show how the maximum length is generally
greater than the maximum displacement. This is also generally the case for the length and
displacement per individual escape path, which is generally indicative of curved escape paths
– the escape paths generally meander because there are bends.

In a lot of the cases (but not all cases) a curved escape path forms a loop (see pages 7, 12,
and 13 in [2]), which gives rise to the commonly-used name ‘orbit’ (see [3]). However, most
of the time the loop is not quite exact, and so all ‘maximum iteration count’+1 = 9 points
per escape path end up being distinct. This means that when a curved escape path forms
an orbit, the orbit is generally not quite perfect – the curved escape path is likely jittery, or
precessing, or spiral-shaped, or all three.

Are there new fractals to be discovered by limiting the length or displacement, like we do
with magnitude? It turns out that the answer is not really. In most cases, a similar shape is
produced by all three criteria. This is interesting because all three criteria are represented
by vastly different (but equally beautiful) histograms. Analysis of this behaviour will be the
focus of future research.
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2 Core C++ code

The following code performs the iteration process:

f loat q u a t e r n i o n f r a c t a l s e t : : i t e r a t e (
vector<vector 4> &escape path po in t s ,
const quatern ion &seed Z ,
const short unsigned int maximum iterat ion count = 8 ,
const f loat th r e sho ld = 4 .0 f )

{
// seed Z cons ta in s :
// 1) a 3D l a t t i c e l o c a t i o n f o r seed Z . xyz , and
// 2) a cons tant f o r seed Z .w
Z = seed Z ;

e s cape pa th po in t s . c l e a r ( ) ;

// Add f i r s t po in t to escape path
vec to r 4 p ;
p . x = Z . x ;
p . y = Z . y ;
p . z = Z . z ;
p .w = Z .w;
e s cape pa th po in t s . push back (p ) ;

// Use squared va l u e s to avoid us ing s q r t f ( ) dur ing the i t e r a t i o n
f loat magnitude squared = Z . s e l f d o t ( ) ;
const f loat th r e sho ld squared = thre sho ld ∗ th r e sho ld ;

for ( short unsigned int i = 0 ; i < maximum iterat ion count ; i++)
{

// I t e r a t i v e equat ion
Z = Z∗Z + C;

// Add add i t i o n a l po in t ( s ) to escape path
p . x = Z . x ;
p . y = Z . y ;
p . z = Z . z ;
p .w = Z .w;
e s cape pa th po in t s . push back (p ) ;

magnitude squared = Z . s e l f d o t ( ) ;

// Abort e a r l y i f magnitude tends toward i n f i n i t y
i f ( magnitude squared >= thre sho ld squared )

break ;
}

return s q r t f ( magnitude squared ) ;
}
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The following code shows the quaternion implementation:

class quatern ion
{
public :

// Construc tors omit ted f o r b r e v i t y . . .

inl ine f loat s e l f d o t (void ) const
{

return x∗x + y∗y + z∗z + w∗w;
}

quatern ion operator ∗( const quatern ion &r i gh t ) const
{

quatern ion r e t ;

r e t . x = x∗ r i g h t . x − y∗ r i g h t . y − z∗ r i g h t . z − w∗ r i g h t .w;
r e t . y = x∗ r i g h t . y + y∗ r i g h t . x + z∗ r i g h t .w − w∗ r i g h t . z ;
r e t . z = x∗ r i g h t . z − y∗ r i g h t .w + z∗ r i g h t . x + w∗ r i g h t . y ;
r e t .w = x∗ r i g h t .w + y∗ r i g h t . z − z∗ r i g h t . y + w∗ r i g h t . x ;

return r e t ;
}

quatern ion operator+(const quatern ion &r i gh t ) const
{

quatern ion r e t ;

r e t . x = x + r i gh t . x ;
r e t . y = y + r i gh t . y ;
r e t . z = z + r i gh t . z ;
r e t .w = w + r i gh t .w;

return r e t ;
}

f loat x , y , z , w;
} ;

// For i t e r a t i v e equa t i ons l i k e Z = s in (Z) + C ∗ s in (Z)
quatern ion s i n ( const quatern ion &in )
{

quatern ion r e t ;

const f loat mag vector = s q r t f ( in . y∗ in . y + in . z∗ in . z + in .w∗ in .w) ;

r e t . x = s i n ( in . x ) ∗ cosh ( mag vector ) ;
r e t . y = cos ( in . x ) ∗ s inh ( mag vector ) ∗ in . y / mag vector ;
r e t . z = cos ( in . x ) ∗ s inh ( mag vector ) ∗ in . z / mag vector ;
r e t .w = cos ( in . x ) ∗ s inh ( mag vector ) ∗ in .w / mag vector ;

return r e t ;
}
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Figure 1: Length, displacement, and magnitude of a meandering escape path that consists
of ‘maximum iteration count’+1 = 9 points.
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Figure 2: Lengths of Z ′ = Z2 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this histogram the
maximum length is 21.2391; mean: 7.05497; mode: 5.95688.

Figure 3: Displacements of Z ′ = Z2 +C, where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this histogram
the maximum displacement is 2.36506; mean: 1.38231; mode: 1.53986.

Figure 4: Magnitudes of Z ′ = Z2 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this histogram
the maximum magnitude is 3.99997; mean: 1.18208; mode 0.614353.
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Figure 5: Lengths of Z ′ = Z5 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this histogram the
maximum length is 14.8154; mean: 3.15715; mode: 1.97868.

Figure 6: Displacements of Z ′ = Z5 +C, where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this histogram
the maximum displacement is 2.04231; mean: 1.16552; mode: 1.13196.

Figure 7: Magnitudes of Z ′ = Z5 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this histogram
the maximum magnitude is 3.99525; mean: 0.667052; mode 0.546928.
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Figure 8: Lengths of Z ′ = sin(Z) + C sin(Z), where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this
histogram the maximum length is 28.7689; mean: 7.19823; mode: 5.37916.

Figure 9: Displacements of Z ′ = sin(Z) + C sin(Z), where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this
histogram the maximum displacement is 3.93216; mean: 2.22363; mode: 2.45514.

Figure 10: Magnitudes of Z ′ = sin(Z) + C sin(Z), where Cxyzw = 0.3, 0.5, 0.4, 0.2. For this
histogram the maximum magnitude is 3.99999; mean: 1.95538; mode 1.49582.
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