Refutation of short circuit evaluation for propositional logic by commutative variants

© Copyright 2018 by Colin James III All rights reserved.

From: Ponse, A.; et al. (2018). Propositional logic with short-circuit evaluation: a non-commutative and a commutative variant. arXiv:1810.02142 a.ponse@uva.nl

At A.4. Theorem 6.3, the four-valued truth table is for the connective "o^" as a short-circuited operator And.

We substitute the logical values $\{0, 1, 2, 3\}$ by the 2-tuple as respectively $\{00, 01, 10, 11\}$:

<u>o^</u>	00	01	10	11
00	00	00	10	10
01	00	01	10	11
10	10	10	10	10
11	10	11	10	11

Our two examples are:

Therefore, $(1 \circ^{\wedge} 0) = (1 \circ^{\wedge} 1)$, implying 0 = 1.

The truth table for o[^] is *not* bi-valent and exact but a vector space and hence probabilistic.

The short circuit evaluation for propositional logic by commutative variants is *not* tautologous, and thereby refuted.