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Abstract

We look at some of the details of Cantor’s Diagonal Method and

argue that the swap function given does not have to exclude 9 and 0,
base 10. We also puzzle out why the convergence of the constructed

number, its value, is of no concern. We next review general properties
of decimals and prove the existence of an irrational number with a

modified version of Cantor’s diagonal method. Finally, we show, with
yet another modification of the method, that ζ(2) is irrational.

Introduction

Cantor’s diagonal method is typically used to show the real numbers

are uncountable [2, 3]. Here is the reasoning.
If the reals are countable they can be listed. In particular the

decimal, base 10 versions of the real numbers in the open interval
(0, 1) can be listed. List these numbers. Then starting with the upper
left hand corner digit, construct, going down the upper left to lower

right diagonal, a decimal not in the list. Use the following guide: if
the decimal is 7 make your decimal 5 and if it is anything other than

7 make it 7. The number you construct is not in the list. This follows
as the number constructed, per the construction, differs from every

number in the list at least at one decimal place. The only exception
to the uniqueness of these decimal representations occurs with rational

numbers: .20 = .19, but because our swap function doesn’t generate
any 0s or 9s in the constructed number we are assured our constructed

number is not in the list. Therefore the real numbers in (0, 1) are
uncountable and a fortiori R is uncountable.
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Could use 0 and 9

It is not difficult to see why even with a swap function involving 0 and

9, the construction still works. One must contrive a list of real numbers
in (0, 1) in a particularly pernicious order. Every nth position after a

point must be not 9 in order to build a string of all 9’s. If this could
be true of a list, a number like .000009 could be the one constructed.

If we observe .00001 in the list we have not constructed a number
not in the list. But for any nth position there must be an infinite

number with all possible digits, {0, 1, . . . , 9}, at that position. Hence,
after working down the list, to say the mth number, there is a number

further down that will block, in effect, any construction from being
repeated. Every list will have a repetition of all combinations after
any finite number in the list.

By making the swap with numbers like 5 and 4 or 3 and 7 or any
two that are not 9 and 0, we don’t have to reason this out.

What about convergence?

Cantor’s diagonal method does not address the convergence of the
decimal representation of a real number constructed. Could it be all

5’s (.5) and hence converging to a rational number – a number in the
list. A combination of 5’s and 7’s that represent an infinitely repeating
decimal? These observations are of no concern because the argument

is that the number’s representation is not in the list. Statements
beyond this seem irrelevant.

Of course if we suppose that ambiguity of representation is not
allowed: only finite decimal representations are given of numbers like

.5 and .49, then the infinite decimal we construct might be an excluded
infinite decimal version of a number included in the list. This is when

the use of not 9 and not 0 fix the situation fast. One could do a
reductio ad absurdum argument. Suppose the constructed number

converges to a number in the list, but the number in the list differs by
at least one decimal point. So how close can .5554445454 . . . get to say
.555444454 . . . – they differ at the 7th place. The numbers must differ

by at least .0000001. Another argument: decimal representations are
unique, excluding representations like .59 = .6, but such a situation is

impossible when neither 9 nor 0 are used in the swap function – there
are no 0s or 9s in the constructed number.

But, all of these convulsive reasonings are superfluous: we can have
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redundancy in the representation of the numbers. Both .50 and .49
can be included in the list: in fact, the list is succinctly and efficiently

given by all combinations of .x1x2 . . . with xk ∈ {0, 1, . . . , 9}. Then
any pair, indeed 0 and 9, will do. Note: that with 0 and 9, a number

terminating in all 9’s will have to be swapped for one with a 0 occurring
in the string of 9’s. Such numbers terminating in all 9 will have to

occur after any finite number, so really in all cases the program works:
a list of finites only; a list of finites terminating in all 9’s; and a mixture

of both types.

Constructing an irrational number

Curiously, Cantor, arguably, is most famous for his diagonal method
and his construction of a transcendental number. The two are con-

nected. He proved that all algebraic numbers are countable. If one lists
all algebraic numbers then uses Cantor’s diagonal method (henceforth

CDM), we see that numbers exist that are not algebraic (not in the
list): the number is a transcendental number [5]. It is rather curious

that one is at once constructing a transcendental number, but ending
up with just a number only in theory. It is difficult to list all algebraic

numbers in a systematic way [4]. This is to be contrasted with Liou-
ville’s for real construction of a transcendental number years before
Cantor’s proof that they must exist [5], in spirit, so to speak. Hardy

gives the history succinctly: first just one by arduous construction;
then an infinity of them with Cantor’s diagonal method; and then

specific interesting instances with Hermite and Lindemann’s proofs
that e and π are transcendental [5].

It is also curious that no one, apparently till now, has thought
to use CDM to prove the existence of an irrational number. This

is most likely because the existence of irrational numbers was never
in contention. They are a type of algebraic number and proofs that

specific numbers like
√

2 are irrational are relatively easy. There would
seem to be little point in proving the existence of irrational numbers
using CDM or any other means. All of this said, here’s the idea.

List all the rational numbers in (0, 1) using base 10, or any other
decimal base. Hardy gives a nice treatment of decimal bases in his

Chapter 9 [5]. The list will include pure repeating decimals, finite
decimals, and mixed decimals. In base 10, 1/3, 1/4, and 1/6 are

examples of each respectively. Irrational numbers are non-repeating
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infinite decimals. Use the swap function that swaps or writes 4 if
the number encountered using CDM is not 4 and 5 if the number

encountered is 4. The number constructed is not in the list; it differs
by at least one decimal point from all numbers listed. As all the

numbers are all the rationals in (0, 1) and the number generated is
in (0, 1) it must be irrational. The number will be a non-repeating

infinite decimal consisting of a string of 4s and 5s, an irrational.

Using addition in CDM

The swap function seems a little arbitrary in nature. We will show
that it can be replaced by additions with the good effect that ζ(2) and
other numbers can be proven to be irrational.

As a warm-up to proving ζ(2) is irrational, we will prove that all
rational numbers can’t be written as a finite decimal in base 4. We

will use a modified version of CDM.
In Table 1, we have a list of all single decimals in base 4k in (0, 1):

that is
D4k = {1/4k, 2/4k, 3/4k, . . . , (4k − 1)/4k}

in Table 1. Each D4k will include new numeric values as well as all
values in previous D4m, where m < k. So given a finite decimal of

length r in base 4 it will be an element of D4r and hence in the list.
Numeric values are repeated infinitely often. For example 1/4 ∈ D4r

for all r ≥ 1.

D4

D42

D43

D44

D45

. . .

D4(k−1)2

. . .

Table 1: A list of all finite decimals base 4.

Now using addition, instead of Cantor’s swap function, we con-
struct a decimal, .1. Table 2 shows the procedure. Each column’s
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partial sum is excluded not only from the column’s decimal set, but
all the previous decimal sets to the left of the present column. For

example, 1/4 + 1/42 /∈ D4 and 1/4 + 1/42 + 1/43 /∈ D42 and also this
partial is not in D4 as well.

+1/4 +1/4 +1/4 +1/4 +1/4 . . . +1/4
+1/42 +1/42 +1/42 +1/42 +1/42 . . . +1/42

/∈ D4 +1/43 +1/43 +1/43 +1/43 . . . +1/43

/∈ D42 +1/44 +1/44 +1/44 ...

/∈ D43 +1/45 +1/45 ...

/∈ D44 +1/46 ...
/∈ D45

+1/4(k−1)2

+1/4k2

/∈ D4(k−1)2

. . .

Table 2: A list of all finite decimals base 4. The decimal number .1, base 4
is generated by the sums.

Each addition requires, per scientific notation, greater and greater

precision, a greater power of 4. No finite decimal can accommodate
infinite precision, an infinite decimal: .1. Collaborating this: we know

.1, base 4 is the infinite geometric series

∞
∑

k=1

1

4k
,

which converges to 1/3. Hardy gives a proof that in general a fraction
with a denominator of d will require an infinite repeating decimal in

base r if (r, d) = 1, that is, the denominator of the fraction and the
base are relatively prime [5]; we observe (3, 4) = 1.

From a different set topology angle: let Cx be the best approxima-
tion to 1/3 in D4x, where x is a natural number: |Cx − 1/3| 6= 0. As

the set of partials are the best approximations to 1/3 in these decimal
sets, the partials taken collectively are an infinite set and 1/3 is a limit

point – it must be outside all decimal sets.
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Here’s yet another set theory angle. In what follows R(0, 1) are
the real numbers in (0, 1). We have

n
∑

k=1

1

4n
/∈

n−1
⋃

k=1

D4k ,

(this is Table 2). We can infer

n
∑

k=1

1

4n
∈ R(0, 1) \

n−1
⋃

k=1

D4k,

and, taking the limit as n → ∞, this gives

∞
∑

k=1

1

4n
∈ R(0, 1) \

∞
⋃

k=1

D4k = R(0, 1) \ F(0, 1),

where F(0, 1) are finite decimals in base 4. Note: 1/3 ∈ R(0, 1)\F(0, 1).

The rational number 1/3, or .1 can’t be written as a finite decimal in
base 4.

Proving ζ(2) is irrational

The irrationality of ζ(2) and indeed ζ(2n) has long been established.
Both follow from the identity

ζ(2n) =
∞
∑

k=1

1

k2n
= (−1)p−1 22n−1

(2n!)
B2nπ2n (1)

where B2n are the Bernoulli numbers. As Bernoulli numbers are ra-
tional and π is transcendental, this identity shows ζ(2n) is irrational,

n a natural number greater than 2. A proof of the irrationality of
ζ(3) was given by Apery [1]. Apart from this result, there are less

than satisfactory results concerning other odd zeta values: there are
infinitely many odd irrationals [7] and one or more of ζ(3, 5, 7, 9, 11)

is irrational [8].
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D4

D9

D16

D25

. . .

Dk2

. . .

Table 3: Q(0, 1)

In Table 3 is a modified Cantor’s Diagonal Table. The symbols Dn2

give single decimal points in base n2. So, for example D4 = {.1, .2, .3}
in base 4. All rational numbers in (0, 1), Q(0, 1), are represented in
the union of these sets. This follows as p/q = pq/q2.

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 4: All rationals are excluded via partial sums of ζ(2) − 1.

We will take as a given the set exclusions in Table 4. They are
certainly plausible. For proofs see [6].

To read Table 4, all previous columns (left to right) pertain to the

new, right most partial. For example, 1/4+1/9 /∈ D4 and 1/4+1/9+
1/16 is not in D4, D9, or D16. So, like Cantor’s diagonal method

as applied to a list of base ten decimals, we build, not with a swap
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function, but with partial sums, a number not in any decimal base
given by a single decimal base n2. It is clear, that all bases, like base

4 are given by the union of sets, for base 4, the union of D4k sets. It
appears likely that ζ(2) − 1 requires an infinite decimal in all bases.

We can prove this following the idea of the previous section on .1, base
4 and the proof that there exists a number requiring a infinite decimal

in base 4.
Consider the following use of the triangle inequality: let Cx be the

best single decimal approximation in Dm2 , meaning closest to z2 in
Dm2, then for all n (and m !!!) large enough,

0 ≤
∣

∣

∣

∣

∣

Cx −
n

∑

k=2

1

k2

∣

∣

∣

∣

∣

< ε/2. (2)

and

0 <

∣

∣

∣

∣

∣

n
∑

k=2

1

k2
− z2

∣

∣

∣

∣

∣

< ε/2.

So, in all cases,
0 < |Cx − z2| < ε.

But this says z2 is not rational. Note: any given rational number is
repeated infinitely many times in Dkn . For example, all rationals with

denominators less than n are contained in D(n!)2. The best approxi-
mation of z2 in any Dm2 is never exact and later higher powers of m2

are better. Any real in (0, 1) can be approximated to any degree of
accuracy in any base. The precision necessary increases monotonically

in all bases.
The argument can be succinctly stated using set theory: given

n
∑

k=2

1

k2
/∈

n
⋃

k=2

Dk2,

that is given Table 1, we can infer

n
∑

k=2

1

k2
∈ R(0, 1) \

n
⋃

k=2

Dk2,

and, taking the limit as n → ∞, this gives

∞
∑

k=2

1

k2
∈ R(0, 1) \

∞
⋃

k=2

Dk2 = H(0, 1),
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where H(0, 1) are the irrational numbers in the interval (0, 1) and
R(0, 1) are the reals in (0, 1). This implies z2 is irrational.

It is a question of precision: ζ(2) − 1 requires infinite precision.
The screens of the decimals get so fine any rational number would be

caught or blocked, but ζ(2) − 1 is not blocked.

Relationship between the two

We have developed CDM, based on a single decimal base (one with a

swap function and one with a sum), and a modified version of CDM,
call it CDMM, based on effectively all decimal bases and using a sum.
One could pose that the relationship between the proof that there

is a number that can’t be given by a finite decimal in base 4 and
the ζ(2) − 1 development with this: there is a number that can’t

be written as a finite decimal in any base. Per Hardy’s proof that
a infinite repeating decimal is required in a base depending on the

denominator and the base, they being relatively prime, that such a
number must be irrational. There is no rational number’s denominator

that is relatively prime to all bases, all n > 1, natural numbers. Note:
n2 (and np, p > 2 a natural number) has the same primes as n. If one

could forget for a moment that proving ζ(n) is irrational, n a natural
number greater than 1 and focus on constructing a number that can’t
be given as a finite decimal in any number base, one could see the logic

of the argument given. It is just a generalization of CDM as applied
to proving the existence of a value requiring infinite decimal in base

4 given above. We repeat the argument with all decimal bases n2.
As one crosses, so to speak, 4r in Table 4, it is clear that the number

being constructed will require more than r decimal places; the number
is not in any of the sets Dm, m ≤ r.

Conclusion

Is the sum method better than the swap? The ambiguities with the

swap function seem to be addressed by the sum idea. We can list all of
the algebraic numbers and then, using the sum method, establish that

ζ(2) is not in the list and, hence, that ζ(2) is transcendental, a much
stronger result. Also, the ζ(2) case is easily generalized to ζ(n), n ≥ 2

and hence it can be used to show that all odds are also irrational. The
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method is much simpler and more general than Apery’s difficult ε− δ
proof for ζ(3).
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