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Abstract

In a non-equilibrium thermodynamical physics, there has been al-
most no universal theory for representing the far from equilibrium sys-
tems. In this work, I formulated the thermodynamical path integral
from macroscopic view, using the analogy of optimal transport and
large deviations to calculate the non-equilibrium indicators quantita-
tively. As a result, I derived Jarzynski equality, fluctuation theorem,
and second law of thermodynamics as its corollaries of this formula.
In addition, the latter result implies the connection between non-
equilibrium thermodynamics and Riemannian geometry via entropic
flow.

1 Continuous time thermodynamical path integral

1.1 Optimal transport

First, we consider transport of a distribution. This concept has been al-
ready discussed for a long time [Vil09], and bears many fruits in probability
theory, mathematical statistics, and machine learning. To begin with, the
minimum distance which includes the concept of “cost” between start and
goal distributions is defined by Wasserstein distance.

Definition 1.1 (Wasserstein distance). Let P2(Rd) := {ρ ∈ P(Rd) :
∫
|x|2ρ(dx) <

∞} be the associated Wasserstein space of order 2, so L2−Wasserstein dis-
tance between ρ0, ρ1 ∈ P2(Rd) is defined by

W 2
2 (ρ0, ρ1) = inf

π∈Π(ρ0,ρ1)
{
∫
Rd×Rd

d2(x, y)dπ(x, y)}, (1)

where d(·, ·) is the cost function and π ∈ P(Rd × Rd) is coupling which
satisfies π(· × Rd) = ρ0(·), π(Rd × ·) = ρ1(·).

Intuitively, when the particle which mass is dπ(x, y) transferred, the
corresponding cost d2(x, y) is required to be paid. The infimum is taken all
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over the π(x, y) to minimize the cost, then we have the optimal transport
plan Π(ρ0, ρ1). Equivalently, this metric will be translated into dynamical
characterized one with the language of gradient flow.

Formula 1.2 (The Benamou-Brenier formula [BB00]). Wasserstein dis-
tance is also defined as follows;

W 2
2 (ρ0, ρ1) = inf

(ρt)t∈AC2(ρ0,ρ1)
{
∫ 1

0
∥∂tρt∥2ρtdt}, (2)

where the norm ∥∂tρt∥ρt about the infinitesimal variation ∂tρt of the measure
ρt is defined by

∥∂tρt∥ρt := inf
v∈L2(ρt;Rd)

{
∫
Rd

|v(x)|2dρ(x); ∂tρt +∇ · (ρtv) = 0}, (3)

and AC2(ρ0, ρ1) denotes the set of 2-absolutely continuous curve (ρt)t∈[0,1]
in (P2(Rd),W2).

1.2 Thermodynamical path integral

Next, the analogy of Feynman path integral formula [Kac49] is applied to
thermodynamical statistics. At first, we define the Wasserstein distance as
follows:

W 2
2 (ρ0, ρ1) = inf

∫ γ1

γ0

dγ

∫ 1

0
L(γt, γ̇t, t)dt. (4)

Here a cost function is

c(x, y) = {
∫ 1

0
L(γt, γ̇t, t)dt; γ0 = x, γ1 = y; γ ∈ C}, (5)

where C is a certain class of continuous curves and we can regard this cost
function as an action. Taking the infimum of the cost function means a least
action in the classical physics sense. Then, the cost function is applied to
the path integral formula, deriving

ρ1 ∝
∫ γ1

γ0

ρ0 exp[−
∫ 1

0
L(γt, γ̇t, t)dt]dγ. (6)

This expression makes the connection between optimal transport and ther-
modynamics through Lagrangian. In the thermodynamical sense, the nor-
malization factor is associated with the difference of the free-energy, and the
entropy constraint term requires to be added. Then we define the thermo-
dynamical cost function as follows.

2



Definition 1.3 (Thermodynamical Lagrangian). Let w(γt, γ̇t, t) be contin-
uous non-equilibrium external work time density, and S(·) entropy function
that is only defined in the equilibrium states (t = 0, 1). Besides Lagrangian
L(γ) =

∫
L(γt, γ̇t, t)dt is the sum of work and constraints force, thus we

define Lagrangian time density to satisfy them;

L(γt, γ̇t, t) = w(γt, γ̇t, t) + σ(ρt), (7)

where σ(ρt) denotes the entropy generation rate.

From path integral analogy, the propagator is written by

exp[−
∫ 1

0
L(γt, γ̇t, t)dt] = exp[−W (γ)− {S(ρ1)− S(ρ0)}]. (8)

Then, we get next formula.

Formula 1.4 (Thermodynamical path integral). Let (ρt)t∈[0,t] ∈ (P2(Rd),W2)
denote the Boltzmann distributions, and quasi-static isothermal process is
conducted. Then we can write an arbitrary equilibrium states ρt as

ρt =
1

Z0→t

∫ γt

γ0

ρ0 exp[− inf
(ρt)t

∫ t

0
L(γt, γ̇t, t)dt]dγ, (9)

where the relative partition function satisfies Z0→t = Zt/Z0.

In this manner, we will proof the famous theorem as a corollary.

Corollary 1.5 (Jarzynski equality [Jar97]). Under the assumptions that (i)
the work is isothermal process and (ii) the system follows Liouville’s theorem,
the conducted non-equilibrium work and the difference of free-energy have the
relation that,

exp[−W (γ)] = exp[−∆F ]. (10)

where an overline means path ensemble average.

Proof. According to the TOT,

ρ1 =
1

Z0→1

∫
ρ0 exp[−

∫ 1

0
L(γt, γ̇t, t)dt]dγ

=
ρ0 exp[−∆S]

Z0→1

∫
exp[−W (γ)]dγ,

because the difference of entropy ∆S and initial state ρ0 does not depend
on the path γ. Then, the averaged work is

∴ exp[−W (γ)] =
ρ1
ρ0

Z0→1 exp[∆S]

= exp[−∆F ],

which completes the proof.
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However, this equality is trivial because the assumption (ii) is too strong.
If there are no quantity that change dynamically in the non-equilibrium
situations, the result of non-equilibrium work would be the same as the
equilibrium. As a matter of fact, the cause that makes the system complex is
none other than the dynamical entropy flow which is derived from Boltzmann
equation. Thus, considering Liouville’s theorem is equivalent to require a
system being under an adiabatic process without entropic flow. Therefore
this assumption collapses, but the result is invariant due to the heat bath
and the relaxation. These details are discussed in my parallel work. On the
other hand, the proposed method is able to explain this dynamical factor
explicitly.

Next, a situation of an infinitesimal time variation is considered.

Corollary 1.6 (Fluctuation inequality). About the forward and backward
time evolution, the following relation consists.

ρ(t = −ϵ)

ρ(t = +ϵ)
≤ exp[2ϵ∆σ], (11)

where this equality holds for a minimum time step size |t| = 1 (ϵ ≥ 1), and
∆f, ∆σ are unit generation rates of free-energy and entropy.

Proof. Using TOT and the approximation
∫ ϵ
−ϵ L(γt, γ̇t, t)dt ≃ 2ϵL(γ), we

have,

ρ(t = ϵ)

ρ(t = −ϵ)
=

1

Z−ϵ→ϵ

∫
exp[−

∫ ϵ

−ϵ
L(γt, γ̇t, t)dt]dγ

= exp[2ϵ∆f ] exp[−2ϵ∆σ]

∫
exp[−w(γ)]2ϵdγ

≥ exp[2ϵ∆f ] exp[−2ϵ∆σ]exp[−w(γ)]
2ϵ

= exp[−2ϵ∆σ].

The inequality of third line is due to Hölder’s inequality.

This result denotes the realization probability of time reversal events.
The same as the last corollary, this inequality can be explained by the dy-
namical entropy flux and distortion effects. However, enough small ϵ will
not cause them explicitly.

2 Discrete time thermodynamical path integral

2.1 Large-deviation principles

To consider discretization of thermodynamic processes and deviation from
quasi-static processes, we introduce the large deviations rate functional.
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This functional does not only represent the realization probabilities of rare
events, but also calculates the deviance between the optimal path and the
actually operated path.

Definition 2.1 (Large deviations rate). Let ρ0 ∈ P2(Rd) fixed, the func-
tional Iτ (·|ρ0) : P2(Rd) → [0,+∞] is defined by

Iτ (ρ̄|ρ0) := inf
(ρt)t∈AC2(ρ0,ρ̄)

1

4τ

∫ t̄

0
∥∂tρt − τ∆ρt∥2ρtdt, (12)

where AC2(ρ0, ρ̄) denotes the set of 2-absolutely continuous curve (ρt)t∈[0,t̄]
in (P2(Rd),W2), and τ ∈ (0, 1] is the time constant of the heat equation.

∂tρt = τ∆ρt (13)

In this theory, the quasi-static process is comparable to τ = 0 (because
of keeping equilibrium, ∂tρt = 0), and requires infinity number of iteration
from ρ0 to ρ1. On the other hand, the case of τ = 1 requires only one step
to attain the target state. Then, the general non quasi-static case τ ∈ (0, 1]
is considered.

From this definition, we will find the next representation

2Iτ (ρ̄|ρ0) =
1

2τ

∫
dt∥∂tρt∥2ρt −

∫
dt⟨∂tρt,∆ρt⟩+

τ

2

∫
dt∥∆ρt∥2ρt

=
1

2τ
W 2

2 (ρ0, ρ1) + {S(ρ1)− S(ρ0)}+
τ

2

∫
dtG(ρt), (14)

where the first term is derived from Benamou-Brenier formula, and the
second term is given by [DLR13],

d

dt
S(ρt) = σ(ρt) = −⟨∂tρt,∆ρt⟩ρt . (15)

Specifically, if ρt satisfies the heat equation, we have

− d

dt
H(ρt) = ∥∆ρt∥2ρt = G(ρt), (16)

where H(ρt) =
∫
ρt ln ρt is Boltzmann’s H-functional and G(ρt) is Fisher

information metric.
Next, the convergence theorem of Iτ is given.

Theorem 2.2 ([EMR15]). For every ρ0 ∈ P2(Rd) such that 0 ≤ G(ρ0) < ∞,
we have

Iτ (·|ρ0)−
1

4τ
W 2

2 (ρ0, ·)
Γ−−−→

τ→0

1

2
{S(·)− S(ρ0)}. (17)

in the sense of Γ−convergence.

Unrigorously speaking, this theorem implies

2Iτ ≃ 1

2τ
W 2

2 (ρ0, ρ1) + {S(ρ1)− S(ρ0)} as τ → 0, (18)

for the fixed (ρ0, ρ1).
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2.2 Deviation from a quasi-static process

In order to calculate the discrete path integral, we introduce the large
deviations density functional sequence (Iτ

i )i∈[0, 1
τ
−1] which is equivalent to∫ 1

0 L(γt, γ̇t, t)dt in the continuous time limit, where we cut the path with
length τ and the index of vertices i to fulfill ρ1/τ = ρ1. Moreover, we require
the system to relax to equilibrium state at each vertex because of the def-
inition of entropy. Then we have the large deviations rate density at each
step as follows:

2Iτ
i =

1

2τ
W 2

2 (ρ
τ
i , ρ

τ
i+1) + {S(ρτi+1)− S(ρτi )}+

τ2

2
G(ρτi ) (19)

= W τ
i + {S(ρτi+1)− S(ρτi )}+

τ2

2
G(ρτi ), (20)

where we defined a non-equilibrium work W τ
i := 1

2τW
2
2 (ρ

τ
i , ρ

τ
i+1). Then, we

apply this as a cost function to the thermodynamical path integral formula,

ρ1 =
1

Z0→1

∏
i

ρ0 exp[−2Iτ
i ]δx(ρ

τ
i , ρ

τ
i+1) (21)

=
ρ0

Z0→1

∏
i

exp[−W τ
i − {S(ρτi+1)− S(ρτi )} −

τ2

2
G(ρτi )]δx(ρτi , ρτi+1) (22)

=
ρ0 exp[−∆S]

Z0→1

∏
i

exp[−W τ
i ] exp[−

τ2

2
G(ρτi )]δx(ρτi , ρτi+1). (23)

Here, exp[− τ2

2 G(ρ
τ
i )] is the exponential map in Riemannian geometry, and

τ2G(ρτi ) denotes the squared discrete distance along δx(ρτi , ρ
τ
i+1) in the

tangent space on the information geometric manifold [Ama16]. So, this
map exp[τ2G(ρτi )] denotes the squared distance δγ2(ρτi , ρ

τ
i+1) between ρi

and ρi+1 on the Riemannian manifold. Therefore, we assume the conser-
vation law of work in the each space, such that exp[−W τ

i ]δx(ρ
τ
i , ρ

τ
i+1) =

exp[−Wτ
i ]δγ(ρ

τ
i , ρ

τ
i+1). Thus, the total work including the dynamical factor

is derived in the next form:∏
i

exp[−W τ
i ]

δx(ρτi , ρ
τ
i+1)

δγ(ρτi , ρ
τ
i+1)

=
∏
i

exp[−Wτ
i ] (24)

= exp[−Wτ
tot]. (25)

Therefore, the non-equilibrium work is conducted on the curved manifold
without the concept of dissipation in this manner. According to the con-
dition of τ ∈ (0, 1] or the relation of Boltzmann H-functional and Fisher

metric such that −G(ρt) = dH(ρt)
dt ≤ 0, we have∏

i

exp[−W τ
i ]

δx(ρτi , ρ
τ
i+1)

δγ(ρτi , ρ
τ
i+1)

≤
∫

exp[−W (γ)]dγ, (26)
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this equality is true in the case of τ = 0 or under the assumption of the
system following Liouville’s equation with no entropic flow. Finally due to
Jarzynski equality, we find

exp[−Wτ
tot] ≤ exp[−W (γ)] = exp[−∆F ] (27)

Then, the next famous law is proved from this geometrical viewpoint.

Theorem 2.3 (The extension second law of thermodynamics). Let Wτ

external work on a Riemannian manifold, and ∆F difference of Helmholtz
free energy, we have

Wτ ≥ ∆F, (28)

where this equality holds for τ = 0 or under an adiabatic process.

The relation of the thermodynamic process and the entropy flow is dis-
cussed in my another work.

3 Discussion

The explanation of non-equilibrium work succeeds by introducing a curved
path, and intrinsically non-equilibrium phenomenas happen on Riemannian
manifolds. There is one possible story that high energy scale phenomenas
would distort our real space through entropy flow, and the identity of the
Arrow of Time be the curvature of the universe. When the curvature gets flat
with Ricci flow or something, the universe will be in the state of Helmholtz’s
heat death. Finally, I am seeking a mentor and a Ph.D. via this theme.
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