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Abstract

We present an NLP solver for nonlinear optimization with quadratic
penalty terms and logarithmic barrier terms. The method is suitable for
large sparse problems. Each iteration has a polynomial time-complexity.
The method has global convergence and local quadratic convergence, with
a convergence radius that depends little on our method but rather on the
geometry of the problem.
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1 Problem Statement
We consider computing local solutions to:

min
x∈Rn

φ(x) := f(x) + ρE
2 · ‖x‖

2
S

+ 1
2 · ωE

· ‖c(x)‖2W

− τE · gT ·
(

log(x− xL) + log(xR − x)
) (NLP)

Therein, ρE , ωE , τE > 0 very small; g ∈ Rn strictly positive, S ∈ Rn×n sym-
metric positive definite, W ∈ Rm×m diagonal positive definite, xL < xR ∈ Rn;
twice continuously differentiable functions

f : Rn → R , (1)
c : Rn → Rm . (2)

The Lagrangian function L(x,λ) := f(x) − λT · c(x). Initial guesses x0 ∈
Rn,λ0 ∈ Rm, where xL < x0 < xR.

1.1 Motivation of the Problem Statement
Typically, one would formulate a problem like

min
x∈Rn

f(x)

subject to c(x) = 0 , xL ≤ x ≤ xR .
(3)

The disadvantage of this problem over (NLP) is that there can be issues related
to infeasibility (i.e. when there is no solution to c(x) = 0), complementarity
and constraint qualifications (i.e. when the optimality conditions have ill-posed
Lagrange multipliers), as well as local uniqueness (i.e. when the local minimizer
x is not strict). For sufficiently small values ρE (regularization of strictness),
ωE (regularization of possible collinearity of equality-constraints), τE (regular-
ization of complementarity) these issues do not arise.

Further it is also advantageous that (NLP) makes sense when m ≥ n,
whereas the commonly used optimization packages IPOPT [19], KNITRO [4],
WORHP [3] reject such problem statements as of 2018.

Beyond benefits of (NLP) with regard to regularity, there is the advantage
that φ matches exactly with problem formats that originate from stable direct
transcription methods for optimal control problems [17].

Below, we present a robust and locally efficient numerical method for com-
puting stationary points x.

1.2 Scope and Motivation of the Numerical Method
Nowadays, in the literature you find that NLP solvers are ranked by their per-
formance when solving the CUTEr test set of optimization problems. That is
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a set of mostly trivial test problems1 whereas another fraction of 5% are just
stated in a numerically untreatable way – indicating that this is not a problem
collection made for systematically testing the robustness of solvers with regard
to treatment of difficult problems.

In industry we strive for an entirely different goal, namely for methods that
are reliable. It does not help if NLP solver XY is so fast that it can compute
10000 iterations per hour, when this means that after one hour it has performed
indeed 10000 iterations but made zero progress, cf. to our experiments in [16];
or when it just does not converge for the particular problems that the user
is interested in; or terminates with unsatisfactory criteria such as ”restoration
found point that is unacceptable to the filter”, especially when it were initialized
from a feasible point x0; or when a rescaling of the cost-function with a factor
of 10 breaks the method.

In this work, we do not try to find just another milder globalization princi-
ple and barrier-parameter update heuristic for the line-search Newton-method
on the ε-KKT equations [18]. Instead, we merge concepts from different types
of methods to combine their strengths and arrive at a superior algorithm. In
achieving this goal, we neglect concerns related to cost of the method. That is,
our method can be considered as a Sequential Quadratic Programming (SQP)
method2, where the subproblem is solved with an Interior-Point method (IPM).
It is understoof that for such an SQP method a single iteration is consider-
ably more expensive than for an IPM, since in the former a QP has to be
solved in each iteration (costs about 40 linsolves) whereas in IPM only one lin-
ear system has to be solved per iteration (i.e., costs one linsolve). However,
SQP methods like WORHP that indeed solve the QP via IPM are widely used
and acknowledged in industry for their superior robustness, especially for badly
scaled problems. So, cost is secondary as long as it is tractable.

1.3 Novel Mathematical Ideas of the Method
Our objective φ looks like the merit function in the Sequential Unconstrained
Minimization Technique [7]. Following the idea in the reference, we minimize a
function like φ but with geometrically decreasing parameters ω ↘ ωE , τ ↘ τE .
Since φ is smooth, a KKT-based Newton-method will converge locally quadratic
with a radius of quadratic convergence that depends on the magnitude of ω, τ ;
hence crucial that these decrease at a moderate rate. So far our method is
pretty identical to the works of Fiacco and McCormick.

Their method decreases ω, τ in the same geometric rate (i.e. ω does not
decrease faser than τ or vice versa). This can cause an issue because it is not
clear how the ratio between ω, τ should be. For instance, when ω is too large
then local convexity of φ may not be encountered because the constraints may
add crucial convexity. Worse, for ω not sufficiently small the iterates may move
away from feasible points and do not find back. As a first novelty, to get rid of

1Wächter and Biegler [19] notice that 75% of the problems can be solved with a naive
Newton method on the ε-KKT system without any need for a globalization technique.

2though the subproblems are not exactly quadratic programs
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this issue we use our modified augmented Lagrangian method [15] as a tailored
treatment for the quadratic penalty terms with c(x). This allows us to use
relatively small penalty-parameters ω from the beginning and hence avoid the
aforementioned issues related to convexity and feasibility.

When computing descent directions for minimizing the unconstrained objec-
tive, we avoid use of Newton steps. These steps rely on ”centrality”, meaning
that only close to local minimizers the logarithmic terms of the objective are
well-scaled. This is so because the Newton step is technically the minimizer of a
quadratic model to the objective, cf. [5, 19, 9, 10]; and this quadratic approxi-
mation of the logarithmic barrier function is inefficient unless the current iterate
is centralized. As a second novelty, by augmenting the quadratic model with
logarithmic terms, we obtain descent directions that are superior over the New-
ton step. This is so simply because our log-augmented model gives a good fit
to the objective even when the current iterate is not close to a local minimizer,
because the log-terms are represented by the model in an exact way.

Finally, when it comes to incorporating a globlization technique for the step-
length, an estimated amount of 95% of all proposed solvers and softwares on the
internet use a line-search with the Armijo condition. While line-search meth-
ods lack behind trust-region methods by theoretical properties –in particular
‖∇2

x,xL‖ must be bounded at all iterates for line-search methods, while the
same is not needed for trust-region [5]– , the Armijo condition in particular
has little compatibility with the primal-dual merit functions [8] of interior-point
methods. This is so because the strong convexity of the log-barriers causes con-
vergence of ‖∇2

x,xL‖ to infinity as the barrier parameter τ decreases to zero,
cf. the objective in [19, eqn. (3a)]. This illness is not easily repaired, because
second-derivative information would be needed to account for highly convex fea-
tures in the merit-function. But at the same time, when augmenting the Armijo
condition with a quadratic Taylor term, the criterion would no longer guarantee
a sufficient descent (in fact, not even a descent at all). As a third novelty, we
therefore use a step-acceptance criterion that uses a quotient of predicted and
actual descent (like in trust-region methods). The key to making this quotient
insensitive to the current barrier parameter τ is that in our new method we
compute the predicted decrease from our model that represents the log-terms in
an exact way. Hence, the quotient does not converge to zero (which would imply
small step-sizes) when the iterate is close to the border of the feasible region.
Hence, we expect the method to not slow down (in contrast to many interior-
point methods) when the initial guess or intermediate iterates come close to the
border of the feasible region.

1.4 Structure of the Paper
In the following section we only present the actual method. We do not give
further motivations than already given above to individual decisions that relate
to the algorithmic components.

As represented by the table of contents, we first state the hierarchical levels of
simplifying problem (NLP) into a sequence of simpler problems. This leads over
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a penalty-barrier problem into an augmented Lagrangian problem. A model for
determining descent directions for solving the latter is obtained from a quasi-
quadratic approximation of the augmented Lagrangian problem.

In a second part we introduce the globalization technique, that uses both
a line-search and a trust-region principle. Eventually, in the third part we
explain how to form a practical method for minimization of the merit model for
computation of a step direction.

We close the paper with a discussion and outlook.

2 Description of the Numerical Minimization
Method

2.1 Iterative Levels of Solution
2.1.1 Penalty-Barrier Problem

We replace solving (NLP) by solving successively for (ω, τ) ↘ (ωE , τE) the
problem:

min
x∈Rn,λ∈Rm

ψII(x,λ) := f(x) + ρE
2 · ‖x‖

2
S

+ 1
2 · ω ·

(
‖W · c(x)‖2W−1 + ‖W · c(x) + ω · λ‖2W−1

)
− τ · gT ·

(
log(x− xL) + log(xR − x)

)
(4)

We consider that problem solved for respective ω, τ when

F II(x,λ,µL,µR) :=


∇xL(x,λ) + ρE · S · x + G · (µR − µL)

W · c(x) + ω · λ
µL ◦ (x− xL)− τ · 1
µR ◦ (xR − x)− τ · 1

 (5)

is zero (i.e., in practice its norm is smaller than a tolerance). That is because
in contrast to the residual of F II the gradient of ψII is badly scaled and hence
unsuitable for a convergence check.

2.1.2 Modified Augmented Lagrangian Problem

The penalty-barrier problem in turn is solved either directly (in later stages) or
via a modified augmented Lagrangian method. In case of the latter, we keep λ
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fixed and solve:

min
x∈Rn,y∈Rm

ψI(x,y) := L(x,λ) + ρE
2 · ‖x‖

2
S

+ 1
2 ·
∥∥∥W · c(x) + ω · λ

∥∥∥2

W−1·(ω·I+D)−1

+ 1
2 ·
∥∥∥W · c(x) + ω · λ + (ω · I + D) · y

∥∥∥2

W−1·(ω·I+D)−1

− τ · gT ·
(

log(x− xL) + log(xR − x)
)

(MALM)
We consider that problem solved for respective ω, τ,λ when

F I(x,y,µL,µR) :=


∇xL(x,λ + y) + ρE · S · x + G · (µR − µL)

W · c(x) + ω · λ + (ω · I + D) · y
µL ◦ (x− xL)− τ · 1
µR ◦ (xR − x)− τ · 1

 (6)

is zero (i.e., in practice its norm is smaller than a tolerance). D,W ∈ Rm×m
must be diagonal positive definite. Once solved, we update:

λ := λ + y (7)

Then, we minimize ψI for the new parameters ω, τ,λ. Always using initial guess
y0 := 0, we repeat minimization of φI,mod with the updated λ until y→ 0.

From a linearised analysis we find that in the limit the norm of the minimizers
y converges to zero like

‖yk+1‖ ≤ ‖W · (W + ω · I + D)−1‖ · ‖yk‖ (8)

where k is the iterator over the number of updates of λ. Thus, choosing D
appropriate (e.g. D = 10 · ω ·W) yields reasonably fast convergence of y and
hence of λ.

2.1.3 Merit Model for the Computation of a Step Direction

We find descent directions to ψI by minimizing the following model of ψI .

ψI,mod(dx,dy) := 1
2 · d

T
x ·
(
∇2

xL(x,λ + y) + ρ · S
)
· dx +∇xL(x,λ + y)T · dx

+ 1
2 ·
∥∥∥W ·

(
c(x) +∇c(x)T · dx

)
+ ω · λ

∥∥∥2

W−1·D̂−1

+ 1
2 ·
∥∥∥W ·

(
c(x) +∇c(x)T · dx

)
+ ω · λ + D̂ · (y + dy)

∥∥∥2

W−1·D̂−1

− τF · gT ·
(

log(x + dx − xL) + log(xR − x− dx)
)
(TRQP)

Therein, τF := τ , the current barrier parameter, and D̂ := ω · I + D. That
model is minimized subject to

‖dx‖∞ ≤ ∆x (9)
‖dy‖∞ ≤ ∆y (10)
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Choosing ρ ≥ ρE sufficiently large, the merit model can be globally minimized
for the unique minimizers dx ∈ Rn,dy ∈ Rm with interior-point methods for
convex quadratic programming. In practice, the computational cost for that is
about equivalent to solving 40 linear equation systems. Details on solving that
problem are given in a subsection below.

When minimizing ψI,mod, we get values for µL,µR for free. These give a
match for F I , whenever x,y converges to a root of it; i.e. we insert those
Greeks into F I (and F II) to check whether the (respective) problem has been
solved yet.

2.2 Globalization Technique
We have computed the step direction in a trust-region with radii ∆x,∆y. We
now perform a line-search along the found direction. Afterwards, we update
∆x,∆y in preparation for the subsequent iteration.

2.2.1 Line Search

Once the minimizer dx,dy to ψI,mod has been computed, we update x,y as

x := x + αx · dx (11)
y := y + αy · dy . (12)

Primal and dual step lengths αx, αy ∈ (0, 1] are computed according to a suffi-
cient decrease condition3.

To define the descent condition, we use the writings

ψIα(αx, αy) := ψI(x + αx · dx,y + αy · dy) (13)
ψI,modα (αx, αy) := ψI,mod(αx · dx, αy · dy) (14)

and the optimal dual step-length

αopt
y (αx) := arg min

αy∈(0,1]

{
ψIα(αx, αy)

}
, (15)

which can be computed analytically when αx is fixed; hence here written as
function with argument αx. The analytic formula for αopt

y is cheap.
We define the quotient of actual merit decrease and predicted merit decrease

by the model4:

η(αx, αy) := ψIα(0, 0)− ψIα(αx, αy)
ψI,modα (0, 0)− ψI,modα (αx, αy)

(16)

3Notice the iterates remain strictly interior because the log-barriers have been incorporated
into the model for the step direction.

4Notice that quotient converges to 1 as x moves to a border of the box defined by xL,xR;
thus the quotient is well-defined and strict interiorness of an initial guess is actually not
required when using the limit. Further notice that the denominator in η is strictly positive
(since φI,mod is convex and globally minimized) or zero; the latter only when x is a critical
point for φI ; hence η gives a sufficient decrease condition.
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We use the short writing

η(αx) := η
(
αx, α

opt
y (αx)

)
. (17)

The descent condition is as follows:

η(αx) ≥ 0.1 (18)

That means the step length gives a significant decrease to ψI .
The algorithmic principle for computing αx, αy is as follows.

1: αx := 1
2: while η(αx) < 0.1 do
3: αx := 0.8 · αx
4: end while
5: α̌y := αopt

y (αx)
6: αy := 1
7: while η(αx, αy) < 0.1 and αy > α̌y do
8: αy := max{ α̌y , 0.8 · αy }
9: end while

10: return αx, αy

The goal of the line-search was to select αx, αy largest possible, as we consider
this in general more advantageous than actually minimizing ψI along the line.
Reason: dx,dy are coupled and their coupling assumption in (TRQP) is αx =
αy = 1. The trust-region framework is incorporated to just achieve this, by
avoiding that small step-sizes are selected during several iterations in a row.

Our descent condition gives sufficient decrease, just like Armijo’s condition.
But, in contrast to the latter, our condition will allow larger step-sizes when the
merit function is locally strongly convex, i.e. when the slope of merit in α = 0
is way steeper than for α > 0 (as is the case for logarithmic barrier functions
whenever the current iterate lives close to the border of the feasible region).

2.2.2 Trust-Region Update

Trust-region methods are superior in convergence theory over line-search meth-
ods. So we marry the two.

For this paragraph, foot-index ξ is for both foot-index x,y; e.g., ∆ξ, αξ.
Depending on the current iteration, trust-region radii ∆x,∆y > 0 are se-

lected for the subsequent iteration.

Increase/ Decrease Conditions Whenever αξ < 1, then ∆ξ must be de-
creased. Only if both αx, αy = 1 and η(1, 1) > 0.75, then ∆x,∆y are increased.
In summary, exactly one of the following does happen to the radii:

• Both ∆x,∆y increase. That is when αx = 1 and αy = 1 and η(αx, αy) >
0.75.

• A ∆ξ decreases. That is when αξ < 1.
The second item can mean that zero, one, or two trust-region radii are decreased.
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Increase/ Decrease Rule We use the following rule for increase:

∆ξ := max
{

∆ξ , min
{

3 ·∆ξ , 10 · ‖αξ · dξ‖∞
} }

(19)

We use the following rule for decrease:

∆ξ := min
{

0.5 ·∆ξ , 10 · ‖αξ · dξ‖∞
}

(20)

The reason for choosing the rules like that is as follows:
In the beginning, the radii are often too large. Steps ‖αξ ·dξ‖∞ are made that

may be several orders of magnitude smaller than the radius. Rapid adaption is
possible because then the second argument in the decrease formula is smaller.

In the end, unit steps will be accepted, due to local quadratic convergence.
Then, ‖αξ · dξ‖∞ becomes small, but an increase of trust-region radius is trig-
gered. The increase formula avoids that this trigger for increase will yield an
actual increase in value of ∆ξ whenever the steps are very small (which typically
happens in final iterations of quadratic convergence).

The factor 10 in front of ‖αξ · dξ‖∞ means that we do not attempt using
the current step size as an indicator of the subsequent one. We give the method
some slack, by an order of magnitude, so the eventual SQP iterates originate
from sub-problems whose trust-region constraints are inactive. That makes sure
we do not destroy second-order local convergence.

2.3 Computation of the Step Direction
We now explain how the step directions can be computed, i.e. how ψI,mod can
be minimized in the primal-dual box. To avoid clutter, we write x,y instead of
dx,dy, and D instead of D̂. Also, τ may be used here free from context above
(i.e. in this subsection we are in a new name-space of τ).

In fact, we identify the problem as minimizing, for τ ↘ τF and π ↘ +0, the
function:

wτ,π(x,y) := 1
2 · x

T ·
(
Q + ρ · S

)
· x + cT · x

+ 1
2 ·
∥∥∥W ·

(
A · x− b

)∥∥∥2

W−1·D−1

+ 1
2 ·
∥∥∥W ·

(
A · x− b

)
+ D · y

∥∥∥2

W−1·D−1

− τ · gT ·
(

log(x− xL) + log(xR − x)
)

− π · gT ·
(

log(∆x · 1 + x) + log(∆x · 1− x)
)

− π ·wT ·
(

log(∆y · 1 + y) + log(∆y · 1− y)
)

(21)

The matrices and vectors are just defined suitable as the Hessian, Jacobian, and
so on, according to φI,mod.
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The feasible region for y is the open box centred in origin with diameter
2 ·∆y. The feasible region for x is Ω∆:

B := {x ∈ Rn | xL < x < xR} (22)
S∆ :=

{
ξ ∈ Rn

∣∣ −∆x · 1 < x < ∆x · 1
}

(23)
Ω∆ := B ∩ S∆ . (24)

The KKT conditions are, where u ◦ v := diag(u) · v:

0 = (Q + ρ · S) · x + c−AT · (λx + λy) + G · (µR − µL + νx
R − νx

L ) (25a)
0 = −W−1 ·D · λy + W · (νy

R − νy
L ) (25b)

0 = W · (A · x− b) + D · λx (25c)
0 = W · (A · x− b) + D · y + D · λy (25d)

0 = µL ◦ (x− xL)− τF · 1 (25e)
0 = µR ◦ (xR − x)− τF · 1 (25f)

0 = νx
L ◦ (∆x · 1 + x)− π · 1 (25g)

0 = νx
R ◦ (∆x · 1− x)− π · 1 (25h)

0 = νy
L ◦ (∆y · 1 + y)− π · 1 (25i)

0 = νy
R ◦ (∆y · 1− y)− π · 1 (25j)

Just to sketch how they are derived: The Greek variables are substitutes for the
latter eight equations. When inserted into the first two, we obtain the gradients
of wτ,π after x and y, where in the latter we replaced the first term with an
expression of λy.

The reason for stating the equations as (25) is that they can be written as
primal-dual Newton system whose Jacobian matrix can be symmetrized easily.
The Jacobian is shown in Figure 1. We see that the matrix becomes symmetric
by multiplying the rows from the left with the following matrices in order:

I (26)
I (27)
−W−1 (28)
−G · diag(µL)−1 (29)
−G · diag(µR)−1 (30)
−G · diag(νx

L )−1 (31)
−G · diag(νx

R)−1 (32)
−W · diag(νy

L )−1 (33)
−W · diag(νy

R)−1 (34)
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

Q + ρ · S −AT −AT −G G −G G
−W−1 · D −W W

W · A D
W · A D D

µL x − xL
−µR xR − x
νx

L ∆x + x
−νx

R ∆x − x
νy

L ∆y + y
−νy

R ∆y − y



Figure 1: Jacobian of the KKT system (25). We dropped diag(·) for vectors.

After symmetrization, the Newton system fits into the form[
H JT

J −D

]
· d = −r . (35)

Selecting ρ We choose ρ ≥ ρE such that the problem is convex since only then
we can be sure the computed KKT point is unique and the global minimizer of
ψI,mod.

We choose τE ≥ πE and select ρ ≥ ρE so large that the following function
ψτ is convex ∀x ∈ Ω∆ when τ := τF /2.

ψτ (x) := 1
2 · x

T · (Q + ρ · S) · x + cT · x

+ 1
2 · ‖A · x− b‖2W·D−1

− τ ·
(

log(x− xL) + log(xR − x)
) (36)

In [13] we explain why this is exactly the function that must be convex in
the feasible domain of x in order to obtain efficiency for the path-following
method. In fact, in the reference we show computational efficiency for a primal
interior-point method, of which the method presented here can be considered
the primal-dual variant.

ψτ is convex in Ω∆ when

∇2ψτF
(x) ≡ H := Q + ρ · S + AT ·W ·D−1 ·A + τF

2 · diag
(

g
(x− xL)2 + g

(xR − x)2

)
(37)

is positive definite ∀x ∈ Ω∆. The worst-case candidate for x is x = x̃M , where

x̃M := max
{
−∆ · 1,min{∆ · 1,xM}

}
(38)

xM :=0.5 · (xL + xR) . (39)
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The min,max are meant in separate for each row of a respective vector. Exam-
ple:

min


−1
−2
5

 ,

−2
3
18

  =

−2
−2
5

 .
For determination of ρ we use:

1: ρ := ρE , x := xM
2: while true do
3: Assemble H from (37), using ρ,x.
4: if H is positive definite then
5: return ρ
6: else
7: ρ := 10 · ρ
8: end if
9: end while

Path-Following We explain how to solve (25), using a primal-dual long-step
path-following method.

Initialization: We use central initial guesses for x0,y0. We choose τ = π
sufficiently large, such that x0,y0 are minimizers of an associated primal barrier
function. We then compute λx,λy, ...,ν

y
R according to the latter eight equations.

More to the initialization below.
Path-following for τ : We keep τ = π at same values. We use the Mehrotra

predictor-corrector method [11] to solve (25) for decreasing values of τ = π until
τ = τF .

Path-following for π: We keep τ := τF fixed. We use the Mehrotra predictor-
corrector method to solve (25) for decreasing values of π until π ≤ χ · π, where
χ = 10−3.

While for the long-step Mehrotra predictor-corrector method proposed here
there is no proof of computational efficiency, we have been able to prove that
a primal variant of the proposed method is indeed computationally efficient,
in the sense that its time-complexity is bounded by a polynomial in the input
length times a logarithmic factor on norms of the matrices and vectors in wτ,π.

Initialization We introduce the associated self-concordant [12] primal
barrier-function:

ŵτ (x,y) := 1
τ
· wτ,τ (x,y) , (40)

i.e. where in wτ,π the latter of the parameters is π = τ .
We select y0 := 0, and x0 as the minimizer of

Γ(x) := − gT ·
(

log(x− xL) + log(xR − x)
)

− gT ·
(

log(∆x · 1 + x) + log(∆x · 1− x)
) (41)
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That minimizer is easily computed numerically (and does not depend on g). To
this end, use Newton iteration for each component of x0 individually, noticing
that the Hessian of Γ is a diagonal matrix and hence there are no intercompo-
nential connections. A suitable guess to start the Newton iteration with is given
by the centre of mass of Ω∆.

In [13] we showed that in exact arithmetic the described Newton iteration
converges to 128 digits accuracy in 70 iterations at most. In practice, we are at
machine accuracy usually after 6 iterations, no matter what xL,xR,∆x.

To determine τ0, i.e. the initial value of τ and π, we use the primal barrier
function. Given x0,y0, we compute the Newton decrement

ϑ(τ) :=
√
∇ŵτ (x0,y0)T · ∇2ŵτ (x0,y0) · ∇ŵτ (x0,y0) (42)

for geometrically ascending values of τ0 until ϑ(τ0) < 0.25 [2]. The criterion
makes sure that for this τ0 the Newton iteration from x0,y0 converges quadrat-
ically to a point on the central path for τ = τ0 [14].

According to this strategy, τ0 may be large. But as a trade-off, the initial
guess will have excellent centrality, shown in ”Stable Interior-Point Method for
Convex Quadratic Programming with Strict Error Bounds” [14]. Hence, path-
following will be able to rapidly decrease τ . Hence, in practice it does not
matter how large τ is in the beginning, and only a few dozens of path-following
iterations will be needed until convergence anyway.

1: τ0 := 1
2: while ϑ(τ0) ≥ 0.25 do
3: τ0 := 10 · τ0
4: end while
5: return τ0

After determining x0,y0, τ0, we compute the Greeks
λx,λy,µL,µR,ν

x
L ,ν

x
R,ν

y
L ,ν

y
R by inserting x0,y0, τ0 into (25c)–(25j), and

solving these equations for the Greeks.
In summary, we have a starting point, and with this we begin the previously

described path-following, first for τ = π decreasing and then for τ fixed and π
further decreasing.

3 Discussion and Outlook
We discuss advantages and disadvantages of our method.

Advantages The method avoids some short-comings of current state-of-the-
art methods. In particular:

For our method, the quality of the step-direction is not linked to a centrality-
property of the current iterate. This is similar in advantage to as in SQP
methods, where a concept like centrality is inherently avoided. In the same turn,
we avoid the lack of second-order convergence, that most SQP methods suffer
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from. That is because, as discussed more deeply in [13], our step directions have
a convexization that arises from the log-barriers. Hence, in the limit, the shift ρ
matches ρE and therefore the model merit function is a second-order accuarate
approximation of the true merit function. In contrast to IPM, we consider the
log-barriers exactly when forming a model for computing the descent direction,
and so circumvent the major headache inherited in these methods when it comes
to approximation quality of the log-barriers. In the same turn, we avoid the need
for SQP to compute a suitable shift or an estimate to the active set, because we
keep the log-barriers in the sub-problem and exploit their contribution to the
convexity of the model of the merit function.

As a second benefit, we make use of Augmented Lagrangian techniques
to treat large quadratic penalties/ equality constraints. These techniques are
recognised for their robustness [6, 1]. Though only of linear rate of convergence,
their convergence is fast and can be controlled by adapting the penalty parame-
ters, as given by (8). The Augmented Lagrangian approach avoids Maratos-like
effects5 because the penalty parameter used for the merit function in the glob-
alizaton technique remains of moderate size. Hence, second-order corrections
are unnecessary. We notice that it would be difficult anyway to come up with
a reasonable formula for a second-order correction in (NLP) because there is
no such concept as a ”feasible point”; that is, even the local minimizer of φ
will usually not satisfy c(x) = 0, and hence restoration of such equality would
hinder convergence to the local minimizer.

Third and finally, we incorporated a novel sufficient-decrease criterion that
computes the quotient of actual and predicted decrease. The significant advan-
tage of our criterion lives in the fact that our model for the predicted decrease
maintains the log-barrier terms in their original form. In consequence of this,
the high curvature of the log-terms does not impede the step-length. Hence,
the method is able to make good progress from decentralized points. Hence,
not only the step direction but also the globalization technique of our method
is robust with respect to the choice of the initial guess and with respect to
centrality.

Disadvantages Our method is quite expensive, as we show by a crude count
of the number of linear systems to be solved: We have all these levels of iterative
solution. First, we have the decrease of ω, τ . Let’s say this is a sequence of 8
problems. Within this sequence, we have a sequence of Augmented Lagrangian
problems with a sequence of updates for λ. Let’s say this is a sequence of 5
problems, respectively. Thus, so far we have to solve 40 problems. Let’s further
say that each problem converges in 5 iterations (on average; in the limit it will
be less, in the beginning it will be more). And that each iteration, solved via
minimization of (21), requires about 40 linsolves on average. Then this makes

5Notice that Maratos’ effect actually only arises for nonsmooth merit-functions, which we
avoid. But for smooth functions it can still happen that a similar effect holds until one is very
very close (e.g., at 10−30 distance) to the actual minimizer.
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up to 8000 linear equation systems that may have to be solved. That is in hard
contrast to maybe a couple of hundred iterations that an IPM may require to
converge (if it converges, i.e. does not stall or terminate unsuccessful).

Outlook Thinking in relative terms, this is rather a worst-case calculation. In
practice, through suitable adaptation of termination criteria for the subproblems
and maybe more aggressive update rules (i.e. larger geometric fractions for
decrease of ω, τ , more aggressive penalties for faster convergence of λ) can bring
a lot of change. Also, the subproblems are probably similar. Using warm-start
techniques for the interior-point method for computing the step-direction as
in [20], and using Krylov subspace recycling techniques for solving the related
linear systems, it may be possible to decrease this cost by a huge fraction.

Further work could focus on the design of a method that tries to achieve
similar convergence properties as the method presented while using suitable
(more cheaply computable) approximations for solving the step-direction and
globalization.
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of Liége, 2004.

[11] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIOPT, 2(4):575–601, 1992.

[12] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in
convex programming, volume 13 of SIAM Studies in Applied Mathematics.
SIAM, Philadelphia, PA, 1994.

[13] M. Neuenhofen. Weakly polynomial efficient minimization of a non-convex
quadratic function with logarithmic barriers in a trust-region. ArXiv e-
prints, June 2018.

[14] M. P. Neuenhofen. Stable interior-point method for convex quadratic pro-
gramming with strict error bounds. ArXiv e-prints. DOI:1711.01418, 2017.

[15] M. P. Neuenhofen. Modified augmented Lagrangian method for the min-
imization of functions with quadratic penalty terms. ArXiv e-prints.
DOI:1804.08072, 2018.

[16] M. P. Neuenhofen. PPD-IPM: Outer primal, inner primal-dual interior-
point method for nonlinear programming. ArXiv e-prints. DOI:1803.01829,
2018.

[17] M. P. Neuenhofen and E. C. Kerrigan. Dynamic Optimization with Con-
vergence Guarantees. ArXiv e-prints, October 2018.

[18] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series
in Operations Research and Financial Engineering. Springer, New York,
second edition, 2006.
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