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Abstract

Bell’s Theorem implies that quantum correlation of entangled particles as cal-
culated in quantum mechanics violates elementary probabilistic inequalities. It is

shown that the reason is a problem in scaling of detector directions.

Bell’s Theorem [1] considers measurements of spin for entangled particles.

The entangled wave function studied in this teorem is

$) = %wm ® ) — [s—) ® [121))

where |¢;1) and |¢;_), j € {z,y, 2}, are the eigenvectors of the Pauli matri-
ces o corresponding to the eigenvalues 1 and -1 respectively. The spin of the first
particle is detected with two detector directions a and a’ and the spin of the sec-
ond particle is detected in the second measurement with two detector parameters

b and b’'. Measurement of the spin means applying operators
(0-a)®Id | Id® (o -b).

In both cases the spin measurement can only give the results spin up or spin
down and collapses the wave function to direct products of eigenvectors of Pauli

matrices. The quantum correlation
C(a,b)qg = {(¢1d & (0 - b)(0 - a) @ 1d|¢)

gives the expected value for the empirical correlation

Cla,b). = Niy+N__-N,_—N_4
T Npy+ N+ N+ N,

where N, g, a,8 € {+,—}, is the number of cases when the first particle is

measured spin « and the second spin . A direct calculation shows that

C(a,b)g=—b-a.
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The measurements of entangled pairs in the directions a,b, a,b’, a’,b and o', b’
form four time series that have only values +1. We can define binary probability
variables A, B, A’ and B’ and assign to them probabilities of being 1 or -1 from
these time series. The corretion between these variables is then the expectation

value of the product of the variables, thus
C(a,b), = E(AB).

Binary variables satisfy certain inequalities, called Bell’s inequalities. The CHSH

inequality is a convenient Bell’s inequality for proving Bell’s theorem:
C(a,b), + C(a,b), + C(a’,b), — C(a’, V'), < 2. (1)

Assiging detector directions as
0 (2)

gives

C(a,b)q+ Cla,b)q+ Cla',b)g — C(a’,b')y = 2v/2 > 2 (3)

showing that C(a,b), # C(a,b),. Bell’s inequality violations have been observed
in experiments. However, the reason is quite simple. The detector values are

normalized to give

a-b=a-ad=0b-b=0b-b =1 (4)

which may initially seem correct, but it is not. The correct scaling is
Dolail =) lail = |bal =) bl =1. (5)

Scaling the directions according to (5) removes the Bell’s inequality violation in

(2).
In order to show that the scaling (4) is incorrect, let the directions be scaled

as in (4) and let us consider the first particle

9 = =) = )
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without focusing on the entanglement. It is measured by applying the operator
o -a. The wave function (o -a)|y) collapses to one of the eigenvectors |¢m,q),
m € {z,y, 2}, a € {+,—} , of Pauli matrices and the corresponding eigenvalue is
a. If the first particle collapses to |¢n,qa) the second particle collapses to [m,s),
B # a. In the second measurement this collapsed second particle collapses to one
of the eigenvectors [thn,), n € {z,y,2}, v € {+,—}. Because |({n,|mg)|> = 5 if
n # m, the probability of |¢,,,) collapsing to |1, ) is the same as the probability
that it collapses to |¢,—). As the eigenvalues for |¢,,+) and |¢,,_) are opposites,
these contributions to the correlation of the first and the second particle cancel.
There remains the collapse of [thyg) t0 [Ymy), ¥ € {+,=}. As |(Ymy|t¥mp)|? =
dp=- if can only collapse to |¢mg).

In the scaling (4) the wave function |¢) of the first particle collapses to [1mq)
with the probability a,,. Because of entanglement, the second particle collapses
after the first measurement to |¢,,3), 8 # a, with the same probability a,,. In
the second measurement this collapsed second particle collapses to either |, )
or |t,_) with the weight |b,|. The sum of these weights must be one. Thus, the

probability of the collapse is
bn

> i bil-

Thus, the quantum correlation is not —b-a. It is

C(a,b), = % (8)

Correcting the quantum correlation removes Bell’s inequality violation in (2).

However, this is not the logical way to correct it. We certainly want that

{¥[(o-a)(o-a)ly) =a-a.

This holds if we scale as in (5):
> lai| = 1.

Adopting this scaling we see that

Za? <1 9)
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and may wonder where the missing probability is. It is in the contributions that
cancelled in the calculation of quantum correlation and which also cancel in the
calculation of autocorrelation (8). Indeed, the probability of |¢) collapsing to
either |¢,,1) or |1,—) is not a2,. That is only the part that is seen. Calculating
autocorrelation (8) can be understood as two measurements, as with the correla-
tion of two particles. The first measurement collapses [1) to eigenvectors [, )
or |tm,—) with the probability |a,,| in the scaling (5). In the second measurement
these eigenvectors are further collapsed to [,,) and the probability of collapses
to either |1,4) or |1,_) is |a,|. Thus, the sum of the probabilities of eigenvectors
to which |¢;,+) or |¢,—) collapse is

am|(|az| + ‘ay‘ + laz]) = |amn|

of which we see only the part |a,,|? as the other parts cancel in the measurement.
The total probability of scaling (5) is one, though it appears, as in (9), that
probabilities do not sum to one. This phenomenon explains why experiments have
verified violations of Bell’s inequality. In these experiments the probabilities have
been derived from the numbers of detected particles and their sum has been scaled
to 1 as in (9). This ignores the probability of contributions that cancel.

Bell’s Theorem is sometimes explained by the following example. Assume that
in a test of entangled particles the detectors in both sides are perfectly aligned,
a, = b, = 1. We see perfect anticorrelation. Then move the detector of the first
particle in the (x,z)-plane to a small angle o« = y/2 so that there are 1% errors
in detection. Moving the detector of the second particle in the (x,y)-plane to the
angle 8 = —vy/2 must also introduce 1% errors. Thus, there should be 2% errors,
but according to quantum mechanics, and experiments, there will be 4% errors.
The number of errors was sin?(y/2) when the (small) angle between the detectors

was 7/2 and it grows to

sin?(y) = (2sin(y/2) cos(y/2)? ~ 4sin?(v/2)),

to four times as large when the angle between the detectors is .
In reality, there is no mystery. The number of errors is related to the x-
coordinate of the detector as sin®(y/2) = a2 thus a, = sin(y/2). In a communi-

cation system analogy we can think that the fraction a, of the bits have errors.
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When 3 is set to /2 the errors in the communication analogy grow to about
2a;. The number of noticed errors is thus about (2a,)?, that is, four times as
many errors as when the angle was only in one side.

The mathematical form of the quantum correlation —b - @ can be expressed

with the angle § between the detectors as
—b-a=—bya, — byga, = —|b||a| cos(a) cos(B) — |b||a|sin(c) sin(B)
= —cos(a — ) = —cos(h)

as |a| = |b| = 1 by the norming (4), which is used when deriving this mathematical
form of the correlation and also in experiments that have confirmed the form
—cos(0).

The function —cos(f) is -1 if § = 0, zero if § = 7/2 and 1 if 0 = .
Sometimes it is argued that as a classical correlation should be a linear function
and the linear function fitting to these three points is %0, but as experiments
confirm that — cos(f) is the correct form, this is a demonstration that quantum
mechanics differs from classical physics.

Quantum mechanics certainly differs from classical physics, there is e.g. the
collapse of wave functions, but this particular mathematical form of quantum
correlation does not touch those issues. The correlation should indeed classically
be a linear function, but a linear function of |a;|. As |a;| = sin(f) we have to
look for a linear function agreeing on those three points. Two free parameters is
not enough to fit the three points. We have to still take a linear shift of # in the

inside function sin(f). Thus, we look for a solution of the type
C(a,b)g=Fksin(@+~)+r

where k,r and v are to be determined. From the three points we get three

equations and the solution is K = —1, r = 0 and v = % giving the correct
quantum correlation C(a,b), = — cos().

Hopefully this short note has helped to demystify Bell’s Theorem. The rea-
son for the failure of Bell’s inequalities seems to be incorrect scaling of detector

directions and it has nothing to do with hidden parameters in the EPR paradox.
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